Physics 4488/6562: Statistical Mechanics Material for Week 2 Exercises due Monday Feb 5 Last

Size: px
Start display at page:

Download "Physics 4488/6562: Statistical Mechanics Material for Week 2 Exercises due Monday Feb 5 Last"

Transcription

1 Physics 4488/6562: Statistical Mechanics Material for Week 2 Exercises due Monday Feb 5 Last correction at January 26, 218, 11:5 am c 217, James Sethna, all rights reserved Pre-class Preparation All exercises are from Version 2. of the text: sethna/ StatMech/v2EntropyOrderParametersComplexity.pdf Wednesday Read: Chapter 2, Sec. 2.3 (Currents and forces) Pre-class question: 2.17: Local conservation (Submit electronically by 9:3 Tuesday evening.) Friday Read: Chapter 2, Sec. 2.4 (Solving: Fourier & Green) Pre-class question: 2.18: Absorbing boundary conditions (Submit electronically by 9:3 Thursday evening.) Monday Read: Chapter 3, Sec. 3.1 (Microcanonical) and 3.2 (Ideal Gas) Pre-class question: 3.13: Weirdness in high dimensions. (Submit electronically by 9:3 Sunday evening.) Exercises Those in 4488 may choose two of the four exercises. 2.5: Generating random walks. (Hints are available in Python and Mathematica at http: //pages.physics.cornell.edu/ sethna/statmech/computerexercises.html.) 8.4: Red and green bacteria, treated as a random walk in the number of red bacteria. Full credit for sensible arguments that get within a factor of two of the right answer. 2.11: Stocks, volatility, and diversification. (Hints are available in Python and Mathematica at sethna/statmech/computerexercises.html.) Class choose one 2.19: Random walks, generating functions, and diffusion. 2.2: Continuous time random walks: Ballistic to diffusive transition : Diffusion equation and universal scaling functions. (This exercise covers material in Chapter 12, which is largely independent of the other parts of the book, but is very sophisticated. To do the problem, you will at least need to read some of that chapter to find out what relevant, marginal, and irrelevant mean. Read more of the chapter to find out why universal scaling functions and power laws are important.)

2 In-class exercises 2.2 Photon diffusion in the Sun. (Astrophysics) i If fusion in the Sun turned off today, how long would it take for us to notice? This question became urgent some time back when the search for solar neutrinos failed. Neutrinos, created in the same fusion reaction that creates heat in the Solar core, pass through the Sun at near the speed of light without scattering giving us a current picture. The rest of the energy takes longer to get out. (The missing electron neutrinos, as it happened, oscillated into other types of neutrinos.) Most of the fusion energy generated by the Sun is produced near its center. The Sun is km in radius. Convection probably dominates heat transport in approximately the outer third of the Sun, but it is believed that energy is transported through the inner portions (say to a radius R = m) through a random walk of X-ray photons. (A photon is a quantized package of energy; you may view it as a particle which always moves at the speed of light c. Ignore for this exercise the index of refraction of the Sun.) There are a range of estimates for the mean free path for a photon in the Sun. For our purposes, assume photons travel at the speed of light, but bounce in random directions (without pausing) with a step size of l =.1cm = 1 3 m. About how many random steps N will the photon take of length l to get to the radius R where convection becomes important? About how many years t will it take for the photon to get there? Related formulæ: c = m/s; x 2 2Dt; s 2 n = nσ 2 = n s 2 1. There are π s in a year Modified random walk. i Random walks with a constant drift term will have a net correlation between steps. This problem can be reduced to the problem without drift by shifting to a moving reference frame. In particular, suppose we have a random walk with steps independently drawn from a uniform density ρ(l) on [,1), but with a non-zero mean l = l. Argue that the sums s N = N n (l n l) describe random walks in a moving reference frame, with zero mean. Argue that the variance of these random walks (the squared standard deviation) is the same as the variance (s N s N ) 2 of the original random walks.

3 2.15 Modified diffusion. i Photons diffusing in clouds are occasionally absorbed by the water droplets. Neutrons diffusing in a reactor, or algae diffusing in the sea, may multiply as they move. How would you modify the derivation of the diffusion equation in eqns ( ) to allow for particle non-conservation? Which equation in 2.9 should change? What would the new term in the diffusion equation look like? 2.16 Density dependent diffusion. i The diffusion constant can be density dependent; for example, proteins diffusing in a cell membrane are so crowded they can get in the way of one another. What should the diffusion equation be for a conserved particle density ρ diffusing with diffusion constant D(ρ)? (Hint: see footnote 18 on page 21.) 2.7 Periodic diffusion. 2 Day 3 Consider a one-dimensional diffusion equation ρ/ t = D 2 ρ/ x 2, with initial condition periodic in space with period L, consisting of a δ-function at every x n = nl: ρ(x, ) = n= δ(x nl). (a) Using the Green s function method, give an approximate expression for the the density, valid at short times and for L/2 < x < L/2, involving only one term (not an infinite sum). (Hint: How many of the Gaussians are important in this region at early times?) (b) Using a Fourier series, 1 give an approximate expression for the density, valid at long times, involving only two terms (not an infinite sum). (Hint: How many of the wavelengths are important at late times?) (c) Give a characteristic time τ in terms of L and D, such that your answer in (a) is valid for t τ and your answer in (b) is valid for t τ. Day 3 1 You can use a Fourier transform, but you will find ρ(k, ) is zero except at the values k = 2πm/L, where it is a δ-function.

4 2.6 Fourier and Green. 2 An initial density profile ρ(x, t = ) is perturbed slightly away from a uniform density ρ, as shown in Fig. 1. The density obeys the diffusion equation ρ/ t = D 2 ρ/ x 2, where D =.1 m 2 /s. The lump centered at x = 5 is a Gaussian exp( x 2 /2)/ 2π, and the wiggle centered at x = 15 is a smooth envelope function multiplying cos(1x). (a) Fourier. As a first step in guessing how the pictured density will evolve, let us consider just a cosine wave. If the initial wave were ρ cos (x, ) = cos(1x), what would it be at t = 1 s? Related formulæ: ρ(k, t) = ρ(k, t ) G(k, t t ); G(k, t) = exp( Dk 2 t). (b) Green. As a second step, let us check how long it would take to spread out as far as the Gaussian on the left. If the wave at some earlier time t were a δ-function at x =, ρ(x, t ) = δ(x), what choice of the time elapsed t would yield a Gaussian ρ(x, ) = exp( x 2 /2)/ 2π for the given diffusion constant D =.1 m 2 /s? Related formulæ: ρ(x, t) = ρ(y, t )G(y x, t t ) dy; G(x, t) = (1/ 4πDt) exp( x 2 /(4Dt))..4 ρ(x, t = ) - ρ Fig. 1 Initial profile of density deviation from average. (c) Pictures. Now consider time evolution for the next ten seconds. The initial density profile ρ(x, t = ) is as shown in Fig. 1. Which of the choices (A) (E) represents the density at t = 1 s? (Hint: Compare t = 1 s to the time t from part (b).) Related formulæ: x 2 2Dt..4 ρ(x, t = 1) - ρ (A)

5 .4 ρ(x, t = 1) - ρ (B) ρ(x, t = 1) - ρ (C) ρ(x, t = 1) - ρ (D) ρ(x, t = 1) - ρ (E)

Name: Jesper Toft Kristensen Spring 2014 Chapter: 2

Name: Jesper Toft Kristensen Spring 2014 Chapter: 2 Name: Jesper Toft Kristensen Spring 2014 Chapter: 2 Problem 2.1 Random walks in grade space: The random walk is applicable in many settings. Let us try applying it to a multiple-choice test! We will perform

More information

Exercises. Class choose one. 1.11: The birthday problem. 1.12: First to fail: Weibull.

Exercises. Class choose one. 1.11: The birthday problem. 1.12: First to fail: Weibull. Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 1 Exercises due Monday Jan 29 Five Days From Today Last correction at February 2, 2018, 9:28

More information

In-class exercises Day 1

In-class exercises Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 11 Exercises due Mon Apr 16 Last correction at April 16, 2018, 11:19 am c 2018, James Sethna,

More information

In-class exercises. Day 1

In-class exercises. Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 3 Exercises due Mon Feb 12 Last correction at February 5, 2018, 9:46 am c 2017, James Sethna,

More information

Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am

Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am Reading David Chandler, Introduction to Modern Statistical Mechanics,

More information

In-class exercises. Day 1

In-class exercises. Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 8 Exercises due Mon March 19 Last correction at March 5, 2018, 8:48 am c 2017, James Sethna,

More information

Selected Topics in Nuclear Astrophysics

Selected Topics in Nuclear Astrophysics Selected Topics in Nuclear Astrophysics Edward Brown Overview I. A brief primer on stellar physics II. Neutron stars and nuclear physics III. Observing neutron stars in the wild Basics of stellar physics

More information

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2 Problem Set 2: Interferometers & Random Matrices Graduate Quantum I Physics 6572 James Sethna Due Friday Sept. 5 Last correction at August 28, 2014, 8:32 pm Potentially useful reading Sakurai and Napolitano,

More information

Physics of fusion power. Lecture 13 : Diffusion equation / transport

Physics of fusion power. Lecture 13 : Diffusion equation / transport Physics of fusion power Lecture 13 : Diffusion equation / transport Many body problem The plasma has some 10 22 particles. No description is possible that allows for the determination of position and velocity

More information

Lecture 3: From Random Walks to Continuum Diffusion

Lecture 3: From Random Walks to Continuum Diffusion Lecture 3: From Random Walks to Continuum Diffusion Martin Z. Bazant Department of Mathematics, MIT February 3, 6 Overview In the previous lecture (by Prof. Yip), we discussed how individual particles

More information

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star Why is the Sun hot and bright? Surface Temperature of the Sun: T =

More information

MATH 2554 (Calculus I)

MATH 2554 (Calculus I) MATH 2554 (Calculus I) Dr. Ashley K. University of Arkansas February 21, 2015 Table of Contents Week 6 1 Week 6: 16-20 February 3.5 Derivatives as Rates of Change 3.6 The Chain Rule 3.7 Implicit Differentiation

More information

Order of Magnitude Astrophysics - a.k.a. Astronomy 111. Photon Opacities in Matter

Order of Magnitude Astrophysics - a.k.a. Astronomy 111. Photon Opacities in Matter 1 Order of Magnitude Astrophysics - a.k.a. Astronomy 111 Photon Opacities in Matter If the cross section for the relevant process that scatters or absorbs radiation given by σ and the number density of

More information

ASTR 100. Lecture 16: Light and spectra, Classifying stars

ASTR 100. Lecture 16: Light and spectra, Classifying stars ASTR 100 Lecture 16: Light and spectra, Classifying stars Reading: Light and Matter (Ch. 5), The Sun (Ch. 10), and Stars (Ch. 11) Tomorrow: More spectra, start Ex. 6 Wednesday: Stars Friday: Quiz, Ex.

More information

Astro 162 Planetary Astrophysics Solutions to Set 6

Astro 162 Planetary Astrophysics Solutions to Set 6 Astro 162 Planetary Astrophysics Solutions to Set 6 Problem 1. Photon Pinball This problem shows how the usual e τ attenuation factor for light through an absorbing medium is incorrect for light passing

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science AOSC 652 Ordinary Differential Equations Week 12, Day 1 1 Differential Equations are central to Atmospheric and Ocean Sciences They provide quantitative

More information

Agenda for Ast 309N, Sep. 6. The Sun s Core: Site of Nuclear Fusion. Transporting Energy by Radiation. Transporting Energy by Convection

Agenda for Ast 309N, Sep. 6. The Sun s Core: Site of Nuclear Fusion. Transporting Energy by Radiation. Transporting Energy by Convection Agenda for Ast 309N, Sep. 6 The Sun s Core: Site of Nuclear Fusion Feedback on card of 9/04 Internal structure of the Sun Nuclear fusion in the Sun (details) The solar neutrino problem and its solution

More information

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence. Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence http://apod.nasa.gov/apod/astropix.html Outline of today s lecture Hydrostatic equilibrium: balancing gravity and pressure

More information

ESS15 Lecture 7. The Greenhouse effect.

ESS15 Lecture 7. The Greenhouse effect. ESS15 Lecture 7 The Greenhouse effect. Housekeeping. First midterm is in one week. Open book, open notes. Covers material through end of Friday s lecture Including today s lecture (greenhouse effect) And

More information

2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo

2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo Canadian Association of Physicists SUPPORTING PHYSICS RESEARCH AND EDUCATION IN CANADA 2016 Lloyd G. Elliott University Prize Exam Compiled by the Department of Physics & Astronomy, University of Waterloo

More information

Physics 218: Waves and Thermodynamics Fall 2003, James P. Sethna Homework 11, due Monday Nov. 24 Latest revision: November 16, 2003, 9:56

Physics 218: Waves and Thermodynamics Fall 2003, James P. Sethna Homework 11, due Monday Nov. 24 Latest revision: November 16, 2003, 9:56 Physics 218: Waves and Thermodynamics Fall 2003, James P. Sethna Homework 11, due Monday Nov. 24 Latest revision: November 16, 2003, 9:56 Reading Feynman, I.39 The Kinetic Theory of Gases, I.40 Principles

More information

Name: (This only happens every four years or does it?)

Name: (This only happens every four years or does it?) Name: (This only happens every four years or does it?) Calendars: Then and Now Name: 1. What is a leap year? What do you already know about leap years? 2. List at least three questions about leap years

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 13, 2016 3:10PM to 5:10PM Modern Physics Section 4. Relativity and Applied Quantum Mechanics Two hours are permitted

More information

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Announcements - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Review for Test #2 Oct 11 Topics: The Solar System and its Formation The Earth and our Moon

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun The Sun The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x 10 33 g = 330,000 M Earth = 1 M Sun Radius of Sun = 7 x 10 5 km = 109 R Earth = 1 R Sun Luminosity of Sun =

More information

Coursework Booklet 2

Coursework Booklet 2 Level 3 Applied Science UNIT 16: Astronomy and Space Science PHYSICS SECTION Coursework Booklet 2 1 P a g e Astronomy and space science Learning aim B Undertake measurement and observation of astronomical

More information

PHYS 390 Lecture 23 - Photon gas 23-1

PHYS 390 Lecture 23 - Photon gas 23-1 PHYS 39 Lecture 23 - Photon gas 23-1 Lecture 23 - Photon gas What's Important: radiative intensity and pressure stellar opacity Text: Carroll and Ostlie, Secs. 9.1 and 9.2 The temperature required to drive

More information

Principles of Astrophysics and Cosmology

Principles of Astrophysics and Cosmology Principles of Astrophysics and Cosmology Welcome Back to PHYS 3368 Friedrich Wilhelm Bessel July 22, 1784 March 17, 1846 Announcements - Reading Assignments: Chapter 4.1-4.3. - Problem Set 6 is due Wednesday,

More information

1. This diagram illustrates a sound wave. The peak of the wave is its maximum on the y-axis. The trough of the wave is its minimum on the y-axis.

1. This diagram illustrates a sound wave. The peak of the wave is its maximum on the y-axis. The trough of the wave is its minimum on the y-axis. M.7.NS.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. This diagram illustrates a sound wave. The peak of the wave is its maximum on the y-axis. The

More information

Grade 5. Practice Test. What is Light? How Light Behaves. Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com

Grade 5. Practice Test. What is Light? How Light Behaves. Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com Name Date Grade 5 What is Light? How Light Behaves Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com Today you will read two passages. Read these sources carefully to gather information

More information

Open Book Exam. Problems

Open Book Exam. Problems Physics 6562: Statistical Mechanics Spring 2016, James P. Sethna Prelim Exam, due Friday, March 18 (in class, or in the homework box) Latest revision: March 17, 2016, 9:50 pm Open Book Exam Work on your

More information

exp ( κh/ cos θ) whereas as that of the diffuse source is never zero (expect as h ).

exp ( κh/ cos θ) whereas as that of the diffuse source is never zero (expect as h ). Homework 3: Due Feb 4 1. 2.11 Solution done in class 2. 2.8 The transmissivity along any dection is exp ( κh/ cos θ) where h is the slab thickness and θ is the angle between that dection and the normal

More information

Statistics and nonlinear fits

Statistics and nonlinear fits Statistics and nonlinear fits 2 In this chapter, we provide a small window into the field of statistics, the mathematical study of data. 1 We naturally focus on the statistics of nonlinear models: how

More information

Lecture 13: The Sun, and how stars work. Astronomy 111 Wednesday October 11, 2017

Lecture 13: The Sun, and how stars work. Astronomy 111 Wednesday October 11, 2017 Lecture 13: The Sun, and how stars work Astronomy 111 Wednesday October 11, 2017 Reminders Star party tomorrow night! Homework #6 due Monday How do stars work? What is a star? What is a star composed of?

More information

Differential Equations Spring 2007 Assignments

Differential Equations Spring 2007 Assignments Differential Equations Spring 2007 Assignments Homework 1, due 1/10/7 Read the first two chapters of the book up to the end of section 2.4. Prepare for the first quiz on Friday 10th January (material up

More information

Answer Key Grade 5. Practice Test. What is Light? How Light Behaves

Answer Key Grade 5. Practice Test. What is Light? How Light Behaves Answer Key Grade 5 What is Light? How Light Behaves 1. Part A Based on the text and diagram, how many major bands of radiant energy are there? A Incorrect. Look at the Kinds of Radiant Energy diagram.

More information

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K.

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K. Name: Date: 1. What is the Sun's photosphere? A) envelope of convective mass motion in the outer interior of the Sun B) lowest layer of the Sun's atmosphere C) middle layer of the Sun's atmosphere D) upper

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

In-class exercises. Day 1, parts d, e

In-class exercises. Day 1, parts d, e Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 5 Exercises due Mon Feb 26 Last correction at February 4, 2018, 11:15 am c 2017, James Sethna,

More information

More on infinite series Antiderivatives and area

More on infinite series Antiderivatives and area More on infinite series Antiderivatives and area September 28, 2017 The eighth breakfast was on Monday: There are still slots available for the October 4 breakfast (Wednesday, 8AM), and there s a pop-in

More information

6. X-ray Crystallography and Fourier Series

6. X-ray Crystallography and Fourier Series 6. X-ray Crystallography and Fourier Series Most of the information that we have on protein structure comes from x-ray crystallography. The basic steps in finding a protein structure using this method

More information

Graduate Written Examination Spring 2014 Part I Thursday, January 16th, :00am to 1:00pm

Graduate Written Examination Spring 2014 Part I Thursday, January 16th, :00am to 1:00pm Graduate Written Examination Spring 2014 Part I Thursday, January 16th, 2014 9:00am to 1:00pm University of Minnesota School of Physics and Astronomy Examination Instructions Part 1 of this exam consists

More information

Atomic Physics 3 ASTR 2110 Sarazin

Atomic Physics 3 ASTR 2110 Sarazin Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any

More information

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t)))

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t))) THE WAVE EQUATION The aim is to derive a mathematical model that describes small vibrations of a tightly stretched flexible string for the one-dimensional case, or of a tightly stretched membrane for the

More information

Stellar Structure. Observationally, we can determine: Can we explain all these observations?

Stellar Structure. Observationally, we can determine: Can we explain all these observations? Stellar Structure Observationally, we can determine: Flux Mass Distance Luminosity Temperature Radius Spectral Type Composition Can we explain all these observations? Stellar Structure Plan: Use our general

More information

Chemistry 25 (Spring term 2016) Final Examination for NON-SENIORS GOOD LUCK AND HAVE A GREAT SUMMER!!!

Chemistry 25 (Spring term 2016) Final Examination for NON-SENIORS GOOD LUCK AND HAVE A GREAT SUMMER!!! Name ANSWER KEY Distributed Thursday, June 2 Due Chemistry 25 (Spring term 2016) Final Examination for NON-SENIORS GOOD LUCK AND HAVE A GREAT SUMMER!!! by Thursday, June 2 at 1 pm to 362 Broad a drop box

More information

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance (1 of 12) Further Reading: Chapter 04 of the text book Outline - matter-energy interactions - shortwave radiation balance - longwave radiation balance - global radiation balance (2 of 12) Previously, we

More information

Name Final Exam December 14, 2016

Name Final Exam December 14, 2016 Name Final Exam December 14, 016 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Part I: Multiple Choice (mixed new and review questions)

More information

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings 1 of 13 9/7/2012 1:57 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library

More information

2009 Math Olympics Level II

2009 Math Olympics Level II Saginaw Valley State University 009 Math Olympics Level II 1. f x) is a degree three monic polynomial leading coefficient is 1) such that f 0) = 3, f 1) = 5 and f ) = 11. What is f 5)? a) 7 b) 113 c) 16

More information

Atoms and Spectra October 8th, 2013

Atoms and Spectra October 8th, 2013 Atoms and Spectra October 8th, 2013 Announcements Second writing assignment due two weeks from today (again, on a news item of your choice). Be sure to make plans to visit one of the open observing nights

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

DAILY QUESTIONS 28 TH JUNE 18 REASONING - CALENDAR

DAILY QUESTIONS 28 TH JUNE 18 REASONING - CALENDAR DAILY QUESTIONS 28 TH JUNE 18 REASONING - CALENDAR LEAP AND NON-LEAP YEAR *A non-leap year has 365 days whereas a leap year has 366 days. (as February has 29 days). *Every year which is divisible by 4

More information

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00 1 Preliminary Exam: Electromagnetism, Thursday January 12, 2017. 9:00-12:00 Answer a total of any THREE out of the four questions. For your answers you can use either the blue books or individual sheets

More information

BENG 221 Mathematical Methods in Bioengineering. Fall 2017 Midterm

BENG 221 Mathematical Methods in Bioengineering. Fall 2017 Midterm BENG Mathematical Methods in Bioengineering Fall 07 Midterm NAME: Open book, open notes. 80 minutes limit (end of class). No communication other than with instructor and TAs. No computers or internet,

More information

STUDY GUIDE 4: Equilibrium, Angular Kinematics, and Dynamics

STUDY GUIDE 4: Equilibrium, Angular Kinematics, and Dynamics PH 1110 Term C11 STUDY GUIDE 4: Equilibrium, Angular Kinematics, and Dynamics Objectives 25. Define torque. Solve problems involving objects in static equilibrium. 26. Define angular displacement, angular

More information

Brownian motion and the Central Limit Theorem

Brownian motion and the Central Limit Theorem Brownian motion and the Central Limit Theorem Amir Bar January 4, 3 Based on Shang-Keng Ma, Statistical Mechanics, sections.,.7 and the course s notes section 6. Introduction In this tutorial we shall

More information

Physics 411: Homework 3

Physics 411: Homework 3 Physics 411: Homework 3 Because of the cancellation of class on January 28, this homework is a double-length homework covering two week s material, and you have two weeks to do it. It is due in class onthursday,

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Physics 351 Friday, April 24, 2015

Physics 351 Friday, April 24, 2015 Physics 351 Friday, April 24, 2015 HW13 median report time = 5 hours. You ve solved 145 homework problems this term (not counting XC). Whew! This weekend, you ll read Feynman s two lectures (Feynman Lectures

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons AST 100 General Astronomy: Stars & Galaxies 5. What s inside the Sun? From the Center Outwards Core: Hydrogen ANNOUNCEMENTS Midterm I on Tue, Sept. 29 it will cover class material up to today (included)

More information

Astro 1050 Fri. Apr. 10, 2015

Astro 1050 Fri. Apr. 10, 2015 Astro 1050 Fri. Apr. 10, 2015 Today: Continue Ch. 13: Star Stuff Reading in Bennett: For Monday: Finish Chapter 13 Star Stuff Reminders: Ch. 12 HW now on Mastering Astronomy, due Monday. Ch. 13 will be

More information

Weather An Introduction to Weather

Weather An Introduction to Weather Non-fiction: Weather An Introduction To Weather Weather An Introduction to Weather Monday Tuesday Wednesday Thursday Friday What does the word weather mean to you? Everyone knows how to describe the weather.

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. Fission & Fusion Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to understand

More information

Physics 111 Homework Solutions Week #9 - Thursday

Physics 111 Homework Solutions Week #9 - Thursday Physics 111 Homework Solutions Week #9 - Thursday Monday, March 1, 2010 Chapter 24 241 Based on special relativity we know that as a particle with mass travels near the speed of light its mass increases

More information

CODE NUMBER: 1 INSTRUCTIONS PHYSICS DEPARTMENT WRITTEN EXAM PART I

CODE NUMBER: 1 INSTRUCTIONS PHYSICS DEPARTMENT WRITTEN EXAM PART I CODE NUMBER: 1 INSTRUCTIONS PHYSICS DEPARTMENT WRITTEN EXAM PART I Please take a few minutes to read through all problems before starting the exam. Ask the proctor if you are uncertain about the meaning

More information

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I. FRIDAY, May 5, :00 12:00

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I. FRIDAY, May 5, :00 12:00 Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART I FRIDAY, May 5, 2017 10:00 12:00 ROOM 245 PHYSICS RESEARCH BUILDING INSTRUCTIONS: This examination consists

More information

COMPUTER METHODS AND MODELING IN GEOLOGY MODELING EARTH'S TEMPERATURE

COMPUTER METHODS AND MODELING IN GEOLOGY MODELING EARTH'S TEMPERATURE COMPUTER METHODS AND MODELING IN GEOLOGY MODELING EARTH'S TEMPERATURE The parts of this exercise for students are in normal text, whereas answers and explanations for faculty are italicized. In this week's

More information

Limb Darkening: The Inside of the Sun: What keeps the Sun shining? What keeps the Sun from collapsing? Gravity versus Pressure. Mechanical Structure

Limb Darkening: The Inside of the Sun: What keeps the Sun shining? What keeps the Sun from collapsing? Gravity versus Pressure. Mechanical Structure Reading: Chapter 16 (next week: Chapter 17) Exam 1: This Thursday, February 8 - bring a #2 pencil! ESSAY, Review Sheet and Practice Exam Posted Astro 150 Spring 2018: Lecture 9 page 1 Last time: Our Sun

More information

de = j ν dvdωdtdν. (1)

de = j ν dvdωdtdν. (1) Transfer Equation and Blackbodies Initial questions: There are sources in the centers of some galaxies that are extraordinarily bright in microwaves. What s going on? The brightest galaxies in the universe

More information

Chemical diffusion in a cuboidal cell

Chemical diffusion in a cuboidal cell Chemical diffusion in a cuboidal cell Chris Rycroft Department of Mathematics, MIT March 14, 28 1 Overview This article provides a short analysis of a chemical diffusion problem in a thin cuboidal cell

More information

Big Bang, Black Holes, No Math

Big Bang, Black Holes, No Math ASTR/PHYS 109 Dr. David Toback Lectures 13 & 14 1 Was Due for Today L14 Reading: (BBBHNM Unit 2) Pre-Lecture Reading Questions: Let us know if you were misgraded on any submissions End-of-Chapter Quizzes

More information

10 Dimensional Analysis

10 Dimensional Analysis 18.354/12.207 Spring 2014 10 Dimensional Analysis Before moving on to more sophisticated things, we pause to think a little about dimensional analysis and scaling. On the one hand these are trivial, and

More information

Today in Astronomy 328

Today in Astronomy 328 The Sun as a typical star: Central density, temperature, pressure The spectrum of the surface (atmosphere) of the Sun The structure of the sun s outer layers: convection, rotation, magnetism and sunspots

More information

isocurvature modes Since there are two degrees of freedom in

isocurvature modes Since there are two degrees of freedom in isocurvature modes Since there are two degrees of freedom in the matter-radiation perturbation, there must be a second independent perturbation mode to complement the adiabatic solution. This clearly must

More information

Math Problem Set #3 Solution 19 February 2001

Math Problem Set #3 Solution 19 February 2001 Math 203-04 Problem Set #3 Solution 19 February 2001 Exercises: 1. B & D, Section 2.3, problem #3. In your answer, give both exact values and decimal approximations for the amount of salt in the tank at

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Decoherence and the Classical Limit

Decoherence and the Classical Limit Chapter 26 Decoherence and the Classical Limit 26.1 Introduction Classical mechanics deals with objects which have a precise location and move in a deterministic way as a function of time. By contrast,

More information

The greenhouse effect

The greenhouse effect 16 Waves of amplitude of 1 m roll onto a beach at a rate of one every 12 s. If the wavelength of the waves is 120 m, calculate (a) the velocity of the waves (b) how much power there is per metre along

More information

Introduction to the Sun

Introduction to the Sun Lecture 15 Introduction to the Sun Jiong Qiu, MSU Physics Department Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum and line emissions;

More information

= m H 2. The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e << m p, the mean mass of hydrogen is close to 1/2 the mass of a proton.

= m H 2. The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e << m p, the mean mass of hydrogen is close to 1/2 the mass of a proton. From Last Time: Mean mass m m = m e + m p 2 = m H 2 The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e

More information

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature: The Sun Basic Properties Radius: Mass: 5 R Sun = 6.96 km 9 R M Sun 5 30 = 1.99 kg 3.33 M ρ Sun = 1.41g cm 3 Luminosity: L Sun = 3.86 26 W Effective Temperature: L Sun 2 4 = 4πRSunσTe Te 5770 K The Sun

More information

Probability. Kenneth A. Ribet. Math 10A After Election Day, 2016

Probability. Kenneth A. Ribet. Math 10A After Election Day, 2016 Math 10A After Election Day, 2016 Today s breakfast Breakfast next Monday (November 17) at 9AM. Friday is a UC holiday but I ll be at Blue Bottle Coffee at 8AM. Both remaining quiz dates are Wednesdays:

More information

Next quiz: Monday, October 24

Next quiz: Monday, October 24 No homework for Wednesday Read Chapter 8! Next quiz: Monday, October 24 1 Chapter 7 Atoms and Starlight Types of Spectra: Pictorial Some light sources are comprised of all colors (white light). Other light

More information

Astronomy in the news? GOCE crash?

Astronomy in the news? GOCE crash? Monday, November 11, 2013 Exam 4 Friday. Review sheet posted. Review session Thursday, 5 6 PM, WRW 102 Reading: Chapter 9: all except 9.6.3, 9.6.4 Chapter 10, Sections 10.1-10.6, 10.9 Astronomy in the

More information

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn.

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn. ATM 10 Severe and Unusual Weather Prof. Richard Grotjahn http://atm.ucdavis.edu/~grotjahn/course/atm10/index.html Lecture topics: Units Pressure and density Temperature Ideal Gas Law Forms of energy and

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward the end of the discussion of what happens for post-main

More information

PH104 Lab 1 Light and Matter Pre-lab

PH104 Lab 1 Light and Matter Pre-lab Name: Lab Time: PH04 Lab Light and Matter Pre-lab. Goals Since this is the first lab, we don t want to try to do things that are too complex. We would like to get used to the lab room and some of the steps

More information

Last Time... We discussed energy sources to a shell of stellar material:

Last Time... We discussed energy sources to a shell of stellar material: Energy Sources We are straying a bit from HKT Ch 6 initially, but it is still a good read, and we'll use it for the summary of rates at the end. Clayton is a great source Last Time... We discussed energy

More information

Math Week 1 notes

Math Week 1 notes Math 2270-004 Week notes We will not necessarily finish the material from a given day's notes on that day. Or on an amazing day we may get farther than I've predicted. We may also add or subtract some

More information

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise:

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise: Math 2250-004 Week 4 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

PHY 452/562 Lasers and Modern Optics. Prof. Eden Figueroa. Lecture 2: Electromagnetic waves I

PHY 452/562 Lasers and Modern Optics. Prof. Eden Figueroa. Lecture 2: Electromagnetic waves I Lasers and Modern Optics Prof. Eden Figueroa Lecture 2: Electromagnetic waves I August 29 th 2013 Organizational issues. Waves and light. A reminder on electromagnetic theory. Propagation of light. PHY

More information

Exam 2. Study Question. Conclusion. Question. Question. study question continued

Exam 2. Study Question. Conclusion. Question. Question. study question continued PS 110A-Hatch-Exam 2 Review - 1 Exam 2 Take exam in Grant Bldg. starting Friday, 13 th, through Monday, 16 th (by 4:00 pm). No late fee associated with Monday, before 4:00. Allow at least 1 hour for exam.

More information

The Sun: A Star of Our Own ASTR 2110 Sarazin

The Sun: A Star of Our Own ASTR 2110 Sarazin The Sun: A Star of Our Own ASTR 2110 Sarazin Sarazin Travel Wednesday, September 19 afternoon Friday, September 21 Will miss class Friday, September 21 TA Molly Finn will be guest lecturer Cancel Office

More information

Signal Processing With Wavelets

Signal Processing With Wavelets Signal Processing With Wavelets JAMES MONK Niels Bohr Institute, University of Copenhagen. Self-Similarity Benoît B.* Mandlebrot: Clouds are not spheres, mountains are not cones, coastlines are not circles,

More information