Analysis Methods in Atmospheric and Oceanic Science

Size: px
Start display at page:

Download "Analysis Methods in Atmospheric and Oceanic Science"

Transcription

1 Analysis Methods in Atmospheric and Oceanic Science AOSC 652 Ordinary Differential Equations Week 12, Day 1 1

2 Differential Equations are central to Atmospheric and Ocean Sciences They provide quantitative descriptions of: motions of air and water circulation interaction of light and molecules photolysis frequencies and heating rates abundance of gases and particles biogeochemical cycling of carbon, interaction of all of above: nitrogen, sulfur, etc air quality ozone depletion and recovery clouds, aerosols, and precipitation 2

3 Differential Equations are central to Atmospheric and Ocean Sciences They provide quantitative descriptions of: motions of air and water circulation interaction of light and molecules photolysis frequencies and heating rates abundance of gases and particles biogeochemical cycling of carbon, nitrogen, sulfur, etc air quality ozone depletion and recovery clouds, aerosols, and precipitation interaction of all of above: climate change (impact of human activity on the physical, chemical, and thermodynamic state of the atmosphere and oceans) 3

4 Differential Equation: An equation that defines the relationship between an unknown quantity and one or more of its derivatives What is an ordinary differential equation? 4

5 Differential Equation: An equation that defines the relationship between an unknown quantity and one or more of its derivatives What is an ordinary differential equation? Equation contains functions of only one independent variable and one or more of its derivatives with respect to that variable 5

6 Differential Equation: An equation that defines the relationship between an unknown quantity and one or more of its derivatives What is an ordinary differential equation? Equation contains functions of only one independent variable and one or more of its derivatives with respect to that variable We ll now review examples of ordinary differential equations from classical physics and chemistry 6

7 Carbon- decay: d C 1 dt τ = C 7

8 Carbon- decay: d C 1 dt τ = C What is τ? 8

9 Carbon- decay: d C 1 dt τ = C What is τ? What must be the units of τ? 9

10 Carbon- decay: d C 1 dt τ = C Other ways of writing same equation: C = 1 τ 1 C = τ C C 10

11 Carbon- decay: d C 1 dt τ = C Other ways of writing same equation: C = 1 τ 1 C = τ C C Dot notation often used when independent variable is time 11

12 Newton s Second Law of Motion: F = m a : the net force on an object is equal to the mass of the object multiplied by its acceleration 12

13 Newton s Second Law of Motion: F = m a : the net force on an object is equal to the mass of the object multiplied by its acceleration How do we express this mathematically as a differential eqn? 13

14 Newton s Second Law of Motion: F = m a : the net force on an object is equal to the mass of the object multiplied by its acceleration How do we express this mathematically as a differential eqn? 2 d x F ( t) = m dt 2

15 Carbon- decay: d C 1 dt τ = C First Order Newton s Second Law of Motion: 2 d x F ( t) = m 2??? dt 15

16 Carbon- decay: d C 1 dt τ = C First Order Newton s Second Law of Motion: 2 d x F ( t) = m 2 Second Order dt 16

17 Heat Diffusion Equation: T 1 T = κ t ρ c z z What is T? What is t? What is ρ? What is c? What is κ? What is z? What is κ δt/ δz? 17

18 Heat Diffusion Equation: T 1 T = κ t ρ c z z What is T? Temperature What is t? time What is ρ? density What is c? specific heat What is κ? thermal conductivity What is z? distance conductive heat flux What is κ δt/ δz? 18

19 Heat Diffusion Equation: T 1 T = κ t ρ c z z Units What is T? Temperature (K) What is t? time (sec) What is ρ? density (kg/m 3 ) What is c? specific heat (J kg 1 K 1 ) What is κ? thermal conductivity (J m 1 s 1 K 1 ) What is z? distance (m) What is κ δt/ δz? conductive heat flux (J m 2 s 1 ) 19

20 Heat Diffusion Equation: T 1 T = κ t ρ c z z Sometimes written as: T t 2 T = α 2 z where α is a constant that describes the rate of heat diffusion 20

21 Solutions of Ordinary Differential Equations Carbon- Decay: d C 1 dt τ = C 21

22 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ 22

23 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ What is this called? 23

24 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ Initial Condition If the independent variable were spatial rather than temporal, what would this term be called? 24

25 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ What is this called? 25

26 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ Half-life How much has the amount of C decayed, relative to the initial condition, when t = τ? 26

27 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ Half-life How much has the amount of C decayed, relative to the initial condition, when t = τ? Times of t = τ, t = 2 τ, etc are often called one e-folding time, two e-folding time, etc. 27

28 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ What is the half life of C? 28

29 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ What is the half life of C? Given this half life and the fact that all C measurable in a paleo-climatic biological sample reflects the amount of C initially present in the sample at the time it was last living, minus isotopic decay, over what time horizon range can carbon- dating be applied? 29

30 Solutions of Ordinary Differential Equations d C 1 Carbon- Decay: = C dt τ Clearly, this equation can be rearranged and integrated to yield: C ( t) = C ( t = 0) e t / τ 30

31 Beer-Lambert Law: F(z,λ) = F TOA (λ) e τ(z, λ) (TOA : Top of Atmosphere) where: τ(z, λ) = m z σ λ [C] dz F : solar irradiance (photons/cm 2 /sec) σ λ : absorption cross section (cm 2 ) C : concentration of absorbing gas (molecules/cm 3 ) m : airmass: ratio of slant path to vertical path, equal to 1/cos(θ) for θ < 75 θ : solar zenith angle 31

32 Beer-Lambert Law: F(z,λ) = F TOA (λ) e τ(z, λ) (TOA : Top of Atmosphere) where: τ(z, λ) = m z σ λ [C] dz What is this τ called? F : solar irradiance (photons/cm 2 /sec) σ λ : absorption cross section (cm 2 ) C : concentration of absorbing gas (molecules/cm 3 ) m : airmass: ratio of slant path to vertical path, equal to 1/cos(θ) for θ < 75 θ : solar zenith angle 32

33 Beer-Lambert Law: F(z,λ) = F TOA (λ) e τ(z, λ) (TOA : Top of Atmosphere) where: τ(z, λ) = m z σ λ [C] dz If the absorbing species has a near constant mixing ratio wrt to altitude, we can write: [C] m.r. [Density] = m.r. [Density_surface] e z/h 33

34 Beer-Lambert Law: F(z,λ) = F TOA (λ) e τ(z, λ) (TOA : Top of Atmosphere) where: τ(z, λ) = m z σ λ [C] dz If the absorbing species has a near constant mixing ratio wrt to altitude, we can write: [C] m.r. [Density] = m.r. [Density_surface] e z/h What is H called? 34

35 Beer-Lambert Law: F(z,λ) = F TOA (λ) e τ(z, λ) (TOA : Top of Atmosphere) where: τ(z, λ) = m z σ λ [C] dz If the absorbing species has a near constant mixing ratio wrt to altitude, we can write: [C] m.r. [Density] = m.r. [Density_surface] e z/h What is H called? What does H equal? 35

36 Beer-Lambert Law: F(z,λ) = F TOA (λ) e τ(z, λ) (TOA : Top of Atmosphere) where: τ(z, λ) = m z σ λ [C] dz If the absorbing species has a near constant mixing ratio wrt to altitude, we can write: [C] m.r. [Density] = m.r. [Density_surface] e z/h What is H called? What does H equal? What approximation can we make that will allow this equation to be solved analytically? 36

37 F(z,λ) = F TOA (λ) e τ(z, λ) (TOA where: τ(z, λ) = m z σ λ : Top of Atmosphere) [C] dz Controls how atmosphere goes from this to this! to this? Top of Atmosphere From DeMore et al., Chemical Kinetics and Photochemical From Seinfeld and Pandis, Atmospheric Chemistry and Physics, Data for Use in Stratospheric Modeling, Evaluation No. 11, Copyright 20 University of Maryland. 37

38 Solar Thermal Curves of black-body energy versus wavelength for 5750 K (Sun s approximate temperature) and for 245 K (Earth s mean temperature). The curves are drawn with equal area since, to this? integrated over the entire Earth at the top of the atmosphere, the solar (downwelling) and terrestrial (upwelling) fluxes must be must be equal. From Houghton, Physics of Atmospheres,

39 Solar Thermal Curves of black-body energy versus wavelength for 5750 K (Sun s approximate temperature) and for 245 K (Earth s mean temperature). The curves are drawn with equal area since, to this? integrated over the entire Earth at the top of the atmosphere, the solar (downwelling) and terrestrial (upwelling) fluxes must be must be equal. From Houghton, Physics of Atmospheres, 1991 How do we model the thermal curve at the top of the atmosphere? 39

40 Solar Thermal Curves of black-body energy versus wavelength for 5750 K (Sun s approximate temperature) and for 245 K (Earth s mean temperature). The curves are drawn with equal area since, to this? integrated over the entire Earth at the top of the atmosphere, the solar (downwelling) and terrestrial (upwelling) fluxes must be must be equal. From Houghton, Physics of Atmospheres, 1991 How do we model the thermal curve at the top of the atmosphere? 40

41 Solutions of Ordinary Differential Equations Many simple equations simply can not be integrated to yield an analytic solution. For instance, the simple equation: dy y = 2 dt 1 + y can be rearranged and integrated to yield: 2 y ln y+ = t + C 2 which can be used to describe the evolution of y(t) as a function of t and C : i.e., can generate a family of plots of y versus t, for various values of C. 41

42 Solutions of Ordinary Differential Equations 2 Solution: y ln y+ = t + C 2 represented by a family of curves: 42

43 Solutions of Ordinary Differential Equations Many simple equations simply can not be integrated to yield an analytic solution. For instance, the simple equation: dy y = 2 dt 1 + y can be rearranged and integrated to yield: 2 y ln y+ = t + C 2 which can be used to describe the evolution of y(t) as a function of t and C : i.e., can generate a family of plots of y versus t, for various values of C. These plots, together with a measurement of y at particular time t, provide the solution. This type of solution is called an implicit solution 43

44 Solutions of Ordinary Differential Equations 2 Solution: y ln y+ = t + C 2 represented by a family of curves: One rather important solution is not yet represented 44

45 Solutions of Ordinary Differential Equations 2 Solution: y ln y+ = t + C 2 represented by a family of curves: The equilibrium solution, y = 0, is not represented by this figure 45

46 Readings for Wednesday: 25 pages from Storey 7 pages from Press 46

Beer-Lambert (cont.)

Beer-Lambert (cont.) The Beer-Lambert Law: Optical Depth Consider the following process: F(x) Absorbed flux df abs F(x + dx) Scattered flux df scat x x + dx The absorption or scattering of radiation by an optically active

More information

Ross Salawitch. Class Web Site: 4) Geostrophy (balance of pressure force & Coriolis Force storms)

Ross Salawitch. Class Web Site:  4) Geostrophy (balance of pressure force & Coriolis Force storms) Fundamentals of Earth s Atmosphere AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017 Goals: 1) Tie up loose ends from last lecture 2) Barometric law (pressure

More information

Atmospheric Sciences 321. Science of Climate. Lecture 6: Radiation Transfer

Atmospheric Sciences 321. Science of Climate. Lecture 6: Radiation Transfer Atmospheric Sciences 321 Science of Climate Lecture 6: Radiation Transfer Community Business Check the assignments Moving on to Chapter 3 of book HW #2 due next Wednesday Brief quiz at the end of class

More information

Relationship Between UV and Column Ozone

Relationship Between UV and Column Ozone Review of Lectures 9 to 13 AOSC 433/633 & CHEM 433/633 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2013 Today: Health affects: i.e., why it is that so much research is funded

More information

Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433. Ross Salawitch

Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433. Ross Salawitch Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015 Review of Problem Set #4 will be held Mon, 13 April 6:30 pm Unfortunately the

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Overview of fundamental atmospheric concepts

Overview of fundamental atmospheric concepts Fundamentals of Earth s Atmosphere AOSC 433/633 & CHEM 433/633 Tim Canty Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2013 Notes: Ross, Tim, & Allison co-teach this class; please include all

More information

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept.

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept. ATM 507 Lecture 4 Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review Problem Set 1: due Sept. 11 Temperature Dependence of Rate Constants Reaction rates change

More information

Planetary Temperatures

Planetary Temperatures Planetary Temperatures How does Sunlight heat a planet with no atmosphere? This is similar to our dust grain heating problem First pass: Consider a planet of radius a at a distance R from a star of luminosity

More information

Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium. Goal: Develop a 1D description of the [tropical] atmosphere

Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium. Goal: Develop a 1D description of the [tropical] atmosphere Radiative equilibrium Some thermodynamics review Radiative-convective equilibrium Goal: Develop a 1D description of the [tropical] atmosphere Vertical temperature profile Total atmospheric mass: ~5.15x10

More information

Fundamentals of Atmospheric Radiation and its Parameterization

Fundamentals of Atmospheric Radiation and its Parameterization Source Materials Fundamentals of Atmospheric Radiation and its Parameterization The following notes draw extensively from Fundamentals of Atmospheric Physics by Murry Salby and Chapter 8 of Parameterization

More information

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5 G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1 Time allowed 50 mins. Total possible points: 40 number of pages: 5 Part A: Short Answer & Problems (12), Fill in the Blanks (6).

More information

P607 Climate and Energy (Dr. H. Coe)

P607 Climate and Energy (Dr. H. Coe) P607 Climate and Energy (Dr. H. Coe) Syllabus: The composition of the atmosphere and the atmospheric energy balance; Radiative balance in the atmosphere; Energy flow in the biosphere, atmosphere and ocean;

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

MAPH & & & & & & 02 LECTURE

MAPH & & & & & & 02 LECTURE Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

Lecture 3a: Surface Energy Balance

Lecture 3a: Surface Energy Balance Lecture 3a: Surface Energy Balance Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Total: 50 pts Absorption of IR radiation O 3 band ~ 9.6 µm Vibration-rotation interaction of CO 2 ~

More information

Solar radiation / radiative transfer

Solar radiation / radiative transfer Solar radiation / radiative transfer The sun as a source of energy The sun is the main source of energy for the climate system, exceeding the next importat source (geothermal energy) by 4 orders of magnitude!

More information

Data and formulas at the end. Exam would be Weds. May 8, 2008

Data and formulas at the end. Exam would be Weds. May 8, 2008 ATMS 321: Science of Climate Practice Mid Term Exam - Spring 2008 page 1 Atmospheric Sciences 321 Science of Climate Practice Mid-Term Examination: Would be Closed Book Data and formulas at the end. Exam

More information

1. The vertical structure of the atmosphere. Temperature profile.

1. The vertical structure of the atmosphere. Temperature profile. Lecture 4. The structure of the atmosphere. Air in motion. Objectives: 1. The vertical structure of the atmosphere. Temperature profile. 2. Temperature in the lower atmosphere: dry adiabatic lapse rate.

More information

Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE. see pp in Class Notes

Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE. see pp in Class Notes Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE see pp 81-85 in Class Notes [ The Ozone Treaty is ] the first truly global treaty that offers protection to every single human being. ~ Mostofa K. Tolba,

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

1. Composition and Structure

1. Composition and Structure Atmospheric sciences focuses on understanding the atmosphere of the earth and other planets. The motivations for studying atmospheric sciences are largely: weather forecasting, climate studies, atmospheric

More information

exp ( κh/ cos θ) whereas as that of the diffuse source is never zero (expect as h ).

exp ( κh/ cos θ) whereas as that of the diffuse source is never zero (expect as h ). Homework 3: Due Feb 4 1. 2.11 Solution done in class 2. 2.8 The transmissivity along any dection is exp ( κh/ cos θ) where h is the slab thickness and θ is the angle between that dection and the normal

More information

Fundamentals of Earth s Atmosphere. AOSC 434/658R & CHEM 434/678A Tim Canty

Fundamentals of Earth s Atmosphere. AOSC 434/658R & CHEM 434/678A Tim Canty Fundamentals of Earth s Atmosphere AOSC 434/658R & CHEM 434/678A Tim Canty Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2011 Notes: Please include both Ross and Tim on any class related email

More information

Radiation Quantities in the ECMWF model and MARS

Radiation Quantities in the ECMWF model and MARS Radiation Quantities in the ECMWF model and MARS Contact: Robin Hogan (r.j.hogan@ecmwf.int) This document is correct until at least model cycle 40R3 (October 2014) Abstract Radiation quantities are frequently

More information

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

1 CHAPTER 5 ABSORPTION, SCATTERING, EXTINCTION AND THE EQUATION OF TRANSFER

1 CHAPTER 5 ABSORPTION, SCATTERING, EXTINCTION AND THE EQUATION OF TRANSFER 1 CHAPTER 5 ABSORPTION, SCATTERING, EXTINCTION AND THE EQUATION OF TRANSFER 5.1 Introduction As radiation struggles to make its way upwards through a stellar atmosphere, it may be weakened by absorption

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION 1 CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION The objective of atmospheric chemistry is to understand the factors that control the concentrations of chemical species in the atmosphere. In this book

More information

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed York University Department of Earth and Space Science and Engineering ESSE 3030 Department of Physics and Astronomy PHYS 3080 Atmospheric Radiation and Thermodynamics Final Examination 2:00 PM 11 December

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

2. Illustration of Atmospheric Greenhouse Effect with Simple Models

2. Illustration of Atmospheric Greenhouse Effect with Simple Models 2. Illustration of Atmospheric Greenhouse Effect with Simple Models In the first lecture, I introduced the concept of global energy balance and talked about the greenhouse effect. Today we will address

More information

The gases: gases: H2O O and What What are The two two most most abundant gases The The two two most most abundant abundant Greenhouse

The gases: gases: H2O O and What What are The two two most most abundant gases The The two two most most abundant abundant Greenhouse This gas is NOT a Greenhouse Gas. 1. O 2 2. O 3 CH 4 3. CH 4. Freon 11 (a CFC) What are The gases: H 2 O and CO 2. 1. The two most abundant gases. 2. The two most abundant Greenhouse gases. 3. The two

More information

The mathematics of scattering and absorption and emission

The mathematics of scattering and absorption and emission The mathematics of scattering and absorption and emission The transmittance of an layer depends on its optical depth, which in turn depends on how much of the substance the radiation has to pass through,

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017 Goals for today: Loose ends from last lecture Overview of Chemical Kinetics

More information

Radiative Transfer Chapter 3, Hartmann

Radiative Transfer Chapter 3, Hartmann Radiative Transfer Chapter 3, Hartmann Shortwave Absorption: Clouds, H 2 0, O 3, some CO 2 Shortwave Reflection: Clouds, surface, atmosphere Longwave Absorption: Clouds, H 2 0, CO 2, CH 4, N 2 O Planck

More information

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal nomenclature Sun Earth Y-axis: Spectral radiance, aka monochromatic intensity units: watts/(m^2*ster*wavelength) Blackbody curves provide

More information

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion Introduction to Climatology GEOGRAPHY 300 Tom Giambelluca University of Hawai i at Mānoa Solar Radiation and the Seasons Energy Energy: The ability to do work Energy: Force applied over a distance kg m

More information

Physical Basics of Remote-Sensing with Satellites

Physical Basics of Remote-Sensing with Satellites - Physical Basics of Remote-Sensing with Satellites Dr. K. Dieter Klaes EUMETSAT Meteorological Division Am Kavalleriesand 31 D-64295 Darmstadt dieter.klaes@eumetsat.int Slide: 1 EUM/MET/VWG/09/0162 MET/DK

More information

Maria Kanakidou. Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece

Maria Kanakidou. Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece Maria Kanakidou Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece mariak@chemistry.uoc.gr Why ocean should care for atmospheric chemistry? Impact

More information

UV-Vis Nadir Retrievals

UV-Vis Nadir Retrievals SCIAMACHY book UV-Vis Nadir Retrievals Michel Van Roozendael, BIRA-IASB ATC14, 27-31 October, Jülich, Germany Introduction Content Fundamentals of the DOAS method UV-Vis retrievals: from simplified to

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Radiative Balance and the Faint Young Sun Paradox

Radiative Balance and the Faint Young Sun Paradox Radiative Balance and the Faint Young Sun Paradox Solar Irradiance Inverse Square Law Faint Young Sun Early Atmosphere Earth, Water, and Life 1. Water - essential medium for life. 2. Water - essential

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

ATMS 321: Sci. of Climate Final Examination Study Guide Page 1 of 4

ATMS 321: Sci. of Climate Final Examination Study Guide Page 1 of 4 ATMS 321: Sci. of Climate Final Examination Study Guide Page 1 of 4 Atmospheric Sciences 321: Final Examination Study Guide The final examination will consist of similar questions Science of Climate Multiple

More information

2. Energy Balance. 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids

2. Energy Balance. 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids I. Radiation 2. Energy Balance 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids radiate at many Click frequencies, to edit

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Meteorology Clouds Photochemistry Atmospheric Escape EAS 4803/8803 - CP 20:1 Cloud formation Saturated Vapor Pressure: Maximum amount of water vapor partial

More information

, analogous to an absorption coefficient k a

, analogous to an absorption coefficient k a Light Scattering When light passes through a medium some of it is directed away from its direction of travel. Any photons that are diverted from their direction of propagation are scattered. In the atmosphere

More information

Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II. (MICROTOPS II) sun-photometer

Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II. (MICROTOPS II) sun-photometer Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II (MICROTOPS II) sun-photometer Agossa Segla, Antonio Aguirre, and VivianaVladutescu Office of Educational Program (FAST Program)

More information

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance (1 of 12) Further Reading: Chapter 04 of the text book Outline - matter-energy interactions - shortwave radiation balance - longwave radiation balance - global radiation balance (2 of 12) Previously, we

More information

The flux density of solar radiation at the Earth s surface, on a horizontal plane, is comprised of a fraction of direct beam and diffuse radiation

The flux density of solar radiation at the Earth s surface, on a horizontal plane, is comprised of a fraction of direct beam and diffuse radiation Instructor: Dennis Baldocchi Professor of Biometeorology Ecosystem Science Division Department of Environmental Science, Policy and Management 35 Hilgard Hall University of California, Berkeley Berkeley,

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation Lecture 6: Radiation Transfer Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere Vertical and latitudinal energy distributions Absorption, Reflection,

More information

Lecture 6: Radiation Transfer

Lecture 6: Radiation Transfer Lecture 6: Radiation Transfer Vertical and latitudinal energy distributions Absorption, Reflection, and Transmission Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature

More information

Thermosphere Part-3. EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets

Thermosphere Part-3. EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets Thermosphere Part-3 EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets Thermosphere Absorbs EUV Absorption: Solar Spectrum 0.2 0.6 1.0 1.4 1.8

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute Facts about the atmosphere The atmosphere is kept in place on Earth by gravity The Earth-Atmosphere system

More information

Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414) NCEA Level 3 Earth and Space Science (91414) 2017 page 1 of 6 Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414) Evidence Statement

More information

PHYSICS OF THE SPACE ENVIRONMENT

PHYSICS OF THE SPACE ENVIRONMENT PHYSICS OF THE SPACE ENVIRONMENT PHYS/EATS 380 Winter 006 Notes Set 6 Ionospheric Electron Densities The D, E, F1 and F Layers With the advent of radio communication in the early part of the last century

More information

The Effect of Wavelength Binning on Solar Irradiance Extinction Altitude by Atmospheric Ozone Absorption

The Effect of Wavelength Binning on Solar Irradiance Extinction Altitude by Atmospheric Ozone Absorption The Effect of Wavelength Binning on Solar Irradiance Extinction Altitude LASP 2007 REU Research By: Jonathan C. Ruel Mentor: Martin Snow Outline Introduction Basic Atmospheric Model SSI Data Optical Depth

More information

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433/633 Ross Salawitch

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433/633 Ross Salawitch Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433/633 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2013 Goals for today: Overview of Chemical Kinetics in the context of

More information

TEST 1 APCH 211 (2012) Review, Solutions & Feedback

TEST 1 APCH 211 (2012) Review, Solutions & Feedback TEST 1 APCH 11 (01) Review, Solutions & Feedback Question 1 What is the concentration of nitrogen in the atmosphere (0 C and 1 atm) in g/l? N in the atmosphere ~ 78% Gas concentration unit s means that

More information

The Radiative Transfer Equation

The Radiative Transfer Equation The Radiative Transfer Equation R. Wordsworth April 11, 215 1 Objectives Derive the general RTE equation Derive the atmospheric 1D horizontally homogenous RTE equation Look at heating/cooling rates in

More information

1 The Earth s Energy Budget and Climate Change

1 The Earth s Energy Budget and Climate Change 1 1 The Earth s Energy Budget and Climate Change 1.1 Introduction The scattering and absorption of sunlight and the absorption and emission of infrared radiation by the atmosphere, land, and ocean determine

More information

Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors

Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors Aerosol Radiative Forcing DEPARTMENT OF PHYSICS The AeroCom Prescribed Experiment: Towards the Quantification of Host Model Errors AeroCom Meeting, Reykjavik, Island 10/10/2008 Philip Stier Atmospheric,

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out

More information

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 2: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Luminosity (L) the constant flux of energy put out

More information

- global radiative energy balance

- global radiative energy balance (1 of 14) Further Reading: Chapter 04 of the text book Outline - global radiative energy balance - insolation and climatic regimes - composition of the atmosphere (2 of 14) Introduction Last time we discussed

More information

Lecture 3a: Surface Energy Balance

Lecture 3a: Surface Energy Balance Lecture 3a: Surface Energy Balance Instructor: Prof. Johnny Luo http://www.sci.ccny.cuny.edu/~luo Surface Energy Balance 1. Factors affecting surface energy balance 2. Surface heat storage 3. Surface

More information

Ionospheres of the Terrestrial Planets

Ionospheres of the Terrestrial Planets Ionospheres of the Terrestrial Planets Stan Solomon High Altitude Observatory National Center for Atmospheric Research stans@ucar.edu Heliophysics Summer School Boulder, Colorado 28 July 2009 1 Outline

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation (WAPE: General Circulation of the Atmosphere and Variability) François Lott, flott@lmd.ens.fr http://web.lmd.jussieu.fr/~flott 1) Mean climatologies and equations of motion a)thermal,

More information

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 Note Page numbers refer to Daniel Jacob s online textbook: http://acmg.seas.harvard.edu/publications/ jacobbook/index.html Atmos = vapor + sphaira

More information

ATM 507 Lecture 5. Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation

ATM 507 Lecture 5. Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation ATM 507 Lecture 5 Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation Beer-Lambert Law (for the absorption of light) Used to describe the

More information

[16] Planetary Meteorology (10/24/17)

[16] Planetary Meteorology (10/24/17) 1 [16] Planetary Meteorology (10/24/17) Upcoming Items 1. Homework #7 due now. 2. Homework #8 due in one week. 3. Midterm #2 on Nov 7 4. Read pages 239-240 (magnetic fields) and Ch. 10.6 by next class

More information

Stochastic modeling of Extinction coefficients for solar power applications

Stochastic modeling of Extinction coefficients for solar power applications 1(77) Stochastic modeling of Extinction coefficients for solar power applications Ingemar Mathiasson January 2007 Department for Energy and Environment Division of Electric Power Engineering Chalmers University

More information

Effect of solar zenith angle specification on mean shortwave fluxes and stratospheric temperatures

Effect of solar zenith angle specification on mean shortwave fluxes and stratospheric temperatures 758 Effect of solar zenith angle specification on mean shortwave fluxes and stratospheric temperatures Robin J. Hogan and Shoji Hirahara Research Department August 215 Series: ECMWF Technical Memoranda

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals to atmospheric chemical reactions. The stratospheric

More information

Climate models. René D. Garreaud. Departement of Geophysics Universidad de Chile

Climate models. René D. Garreaud. Departement of Geophysics Universidad de Chile Climate models René D. Garreaud Departement of Geophysics Universidad de Chile www.dgf.uchile.cl/rene My first toy model A system of coupled, non-linear algebraic equations X (t) = A X (t-1) Y (t) B Z

More information

Chapter 2 Available Solar Radiation

Chapter 2 Available Solar Radiation Chapter 2 Available Solar Radiation DEFINITIONS Figure shows the primary radiation fluxes on a surface at or near the ground that are important in connection with solar thermal processes. DEFINITIONS It

More information

Impact of Solar and Sulfate Geoengineering on Surface Ozone

Impact of Solar and Sulfate Geoengineering on Surface Ozone Impact of Solar and Sulfate Geoengineering on Surface Ozone Lili Xia 1, Peer J. Nowack 2, Simone Tilmes 3 and Alan Robock 1 1 Department of Environmental Sciences, Rutgers University, New Brunswick, NJ

More information

In the News: &id= &m=

In the News:  &id= &m= In the News: http://www.npr.org/templates/player/mediaplayer.html?action=1&t=1&islist=false &id=112755481&m=112805055 1 In the News: http://www.economist.com/scien cetechnology/displaystory.cfm?st ory_id=14302001

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007)

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007) The Earth s Hydrosphere Oceans The volatile component of rocky planets (hydrospheres and atmospheres) Planets and Astrobiology (2017-2018) G. Vladilo The Earth is the only planet of the Solar System with

More information

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009 Composition, Structure and Energy ATS 351 Lecture 2 September 14, 2009 Composition of the Atmosphere Atmospheric Properties Temperature Pressure Wind Moisture (i.e. water vapor) Density Temperature A measure

More information

Chapter 2 Solar and Infrared Radiation

Chapter 2 Solar and Infrared Radiation Chapter 2 Solar and Infrared Radiation Chapter overview: Fluxes Energy transfer Seasonal and daily changes in radiation Surface radiation budget Fluxes Flux (F): The transfer of a quantity per unit area

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Let s make a simple climate model for Earth.

Let s make a simple climate model for Earth. Let s make a simple climate model for Earth. What is the energy balance of the Earth? How is it controlled? ó How is it affected by humans? Energy balance (radiant energy) Greenhouse Effect (absorption

More information

Energy and the Earth AOSC 200 Tim Canty

Energy and the Earth AOSC 200 Tim Canty Energy and the Earth AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Energy absorption Radiative Equilibirum Lecture 08 Feb 21 2019 1 Today s Weather Map http://www.wpc.ncep.noaa.gov/sfc/namussfcwbg.gif

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun Radiation and the Planetary Energy Balance Electromagnetic Radiation Solar radiation warms the planet Conversion of solar energy at the surface Absorption and emission by the atmosphere The greenhouse

More information

Atmospheric Thermodynamics

Atmospheric Thermodynamics Atmospheric Thermodynamics R. Wordsworth February 12, 2015 1 Objectives Derive hydrostatic equation Derive dry and moist adiabats Understand how the theory relates to observed properties of real atmospheres

More information