ATM 507 Lecture 5. Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation

Size: px
Start display at page:

Download "ATM 507 Lecture 5. Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation"

Transcription

1 ATM 507 Lecture 5 Text reading Chapter 4 Problem Set #2 due Sept. 20 Today s topics Photochemistry and Photostationary State Relation

2 Beer-Lambert Law (for the absorption of light) Used to describe the absorption of light passing through a moderately weak absorber. I(λ) = I 0 (λ) exp{-(abs. coeff.)(conc.)(path length)} Formulation from Chemistry textbooks log 10 (I 0 /I) = ε C l I 0 = incident monochromatic (or narrow) intensity I = transmitted intensity ε = molar extinction coefficient (base 10) = ε(λ, T, C) C = concentration (moles li -1 or M) l = absorption pathlength in cm

3 Beer-Lambert Law (cont.) Gas Phase Absorption (pressure units) I = I 0 exp (-k p l ) or ln(i 0 /I) = k p l k = absorption coefficient in atm -1 cm -1 p = absorber partial pressure in atm Gas Phase Absorption (absolute units) I = I 0 exp (-σ N l ) or ln(i 0 /I) = σ N l σ = absorption cross-section in cm 2 molecule -1 N = absorber density in molecules cm -3 For a mixture of gases I = I 0 exp [-(σ 1 N 1 + σ 2 N 2 + σ 3 N 3 + ) l ]

4 Absorption by a Thin Layer of Gas At one wavelength I absorbed = I 0 I = I 0 { 1 exp(- σ N l ) } Absorption = A = (I o I)/I o = 1 exp(- σ N l ) Look at a Taylor series expansion of 1 exp(- σ N l ) 1 exp(- σ N l ) = σ N l - (σ N l ) 2 /2! +(σ N l ) 3 /3! - For small values of (σ N l) keep only the first term I a I 0 (σ N l ) How much error is introduced by this approximation? Optical Depth (σ N l ) % error

5 Thin Layer Absorption (cont.) The approximate expression links the absorbed light to the incident light and absorption cross-section ( and N and l). If we consider a thin layer, the light absorbed per unit length is (# photons absorbed) cm -3 s -1 = I a / l = I 0 σ N l / l = I 0 (λ) σ(λ) N If we identify I 0 (λ) as the Actinic Flux F λ (this is the flux at one wavelength no dependence on wavelength interval) I abs = F λ σ(λ) N Light absorbed per unit volume per unit time = Spherically Integrated Actinic flux x Absorption Crosssection x Concentration Photons cm -3 s -1 = Photons cm -2 s -1 x cm 2 molecule -1 x molecules cm -3 These absorbed photons are the ones capable of producing the chemical change we are interested in.

6 Photodissociation Reactions described as Rate Expressions A + h (A*) B + C -da/dt = k phot [A] k phot = photolysis or photodissociation rate constant depends on F(λ), σ(λ), Φ(λ), etc. Recall that I abs = F λ σ(λ) [A] at wavelength λ This expression considers all absorbed photons if we restrict our consideration to only the photons effective for a particular process, the quantum yield is added to the equation I abs = F λ σ(λ) Φ(λ) [A]

7 Photolysis Rate Constants If the expression for I abs is integrated over wavelength, the result is a photolysis rate expression (Rate expression) = (Integral of all photons that cause reaction) k phot [A] = F(λ) σ(λ) Φ(λ) d λ [A]; or k phot = F(λ) σ(λ) Φ(λ) d λ If the quantities F, σ, and Φ are not available in functional form, but are from a table, one can approximate the integral by a sum λ k p = (F λ σ(λ) Φ(λ)) {or k p = (F(λ) σ(λ) Φ(λ) Δλ} These are important results the second form is used in Problem set #3 K p is a first order rate constant with units (time) -1. λ

8 Chemical Compounds found in the Troposphere which Absorb Sunlight ( = nm) NO 2 (Fig. 4.16), NO 3, O 3 (Fig. 4.13), SO 2 Nitrites HONO, RONO Aldehydes H 2 CO, Ketones & dicarbonyls acetone, glyoxal, Nitrates HONO 2, RONO 2, (PAN) Peroxides H 2 O 2, ROOH, ROOR, (PAN) Polynuclear Aromatics* Aerosols* For most of these species, at least some absorption events cause dissociation the exceptions are marked with an *.

9 Chemical Compounds which are not significant absorbers in the UV-visible ( = nm) NO N 2 H 2 O CO and CO 2 H 2 SO 4 Alkanes (parafins) Alkenes (olefins) Alcohols Organic Acids

10 Absorption Spectrum of NO2

11 Quantum Yield for NO 2 +hv NO + O 400 nm

12 Calculated and Measured kp for NO2

13 Absorption Spectrum of NO3

14 Photochemical Reactions in the Atmosphere Consider perhaps the central reaction cycle for tropospheric chemistry: NO 2 + hv NO + O; k min -1 (depends on sun) O + O 2 + M O 3 + M; k = 6x10-34 cm 6 molecule -2 s -1 NO + O 3 NO 2 + O 2 ; k = 1.9x10-14 cm 3 molecule -1 s -1 (Know these reactions and understand this analysis thoroughly!) NO 2 photolysis is the major source of O 3 production in the troposphere (the other major source is transport from the stratosphere this transported O 3 provides the bulk of the tropospheric background ozone ). The species involved are NO, NO 2, O, O 2, O 3, and M where M is an air molecule, [M] is the air concentration, and [O 2 ] 0.21 [M]

15 Reaction Rates R 1 = k 1 *[NO 2 ] R 2 = k 2 *[O]*[O 2 ]*[M] R 3 = k 3 *[NO]*[O 3 ] NO 2 is produced in reaction 3 and lost in reaction 1 NO is produced in reaction 1 and lost on reaction 3 O 3 is produced in reaction 2 and lost in reaction 3 O is produced in reaction 1 and lost in reaction 2

16 For each species we can write an equation of the form: d[species]/dt = Production Loss = P - L where Production is the combined rate of all production reactions, and Loss is the combined rate of all loss reactions. 1. d[no 2 ]/dt = -k 1 [NO 2 ] + k 3 [NO] [O 3 ] 2. d[no]/dt = k 1 [NO 2 ] - k 3 [NO] [O 3 ] = - d[no 2 ]/dt 3. d[o 3 ]/dt = k 2 [O][O 2 ][M] - k 3 [NO] [O 3 ] 4. d[o]/dt = k 1 [NO 2 ] - k 2 [O][O 2 ][M]

17 Steady State Analysis How do we explore the behavior of this (and other) system(s) of reaction-based equations? A common tool is Steady State Analysis, also called Steady State Approximation, or Stationary State Approximation or SSA for short. Since these equations describe time rates of change, it is quite appropriate to look at the chemical lifetimes (reaction lifetimes) of the species involved and make approximations based on the relative time scales that result. For example, in the above set of reactions (system of equations), the chemical lifetime of the oxygen atom is more than 6 orders of magnitude shorter than the chemical lifetimes of NO, NO 2, and O 3. Therefore, as far as NO, NO 2, and O 3 are concerned, O reacts instantaneously that is, as soon as it is produced it reacts away and is lost. We can write this as P = L; or Production = Loss in the general equation above. (Of course, this is an approximation and only strictly true for times much longer than the O atom lifetime, but in this case that gives us a lot to work with!)

18 Steady State Analysis (cont.) Put another way, O atom is the most reactive species (by a lot), so we invoke SS on it: d[o] ss /dt = 0 = k 1 [NO 2 ] - k 2 [O][O 2 ][M] or k 2 [O][O 2 ][M] = k 1 [NO 2 ] at SS [O] ss = (k 1 [NO 2 ])/ (k 2 [O 2 ][M]) Plug this result into the equation for d[o 3 ]/dt: d[o 3 ] ss /dt = k 2 [O 2 ][M]{k 1 [NO 2 ]/ k 2 [O 2 ][M]} - k 3 [NO] [O 3 ] = k 1 [NO 2 ] - k 3 [NO] [O 3 ] = - d[no 2 ] ss /dt Combined with our earlier result, this yields d[o 3 ] ss /dt = d[no] ss /dt = -d[no 2 ] ss /dt The only way all three time rates of change can be equal is if they are equal to zero, which means that NO, NO 2 and O 3 are all in steady state. (If only these reactions are occurring, this result must stand!)

19 Photostationary State Relation or Since d[o 3 ]/dt =0, Leighton Relation [ O 3 ] SS k 1 k [ NO 3 2 ] [ NO] SS SS Very important result! Covered in Chapter 6 Tropospheric Chemistry Implications [NO 2 ] increases, or light increases [O 3 ] increases

20 Examine the SSA Look at the numerical lifetimes τ NO2 = 1/k 1 1/(0.5 min -1 ) = 2 min = 120 s τ O = 1/(k 2 [O 2 ] [M]) = {(6x10-34 )(.21)(2.45x10 19 ) 2 } 10-5 s τ O <<< τ NO2 and SSA is justified. Guidelines for SSA 1. Invoke SS for most reactive specie (or species) in a reaction set and solve for other species. 2. If there is any doubt, compare chemical lifetimes to justify SSA. As makes sense from τ NO2 above, with regard to ozone production in the troposphere, if τ A << 1 min, SSA is likely to be okay.

21 SSA Tips and Guidance When faced with a set of equations that have more unknowns than equations, use SSA on the most reactive species: Start by invoking SS for O, OH, HO 2, Cl, etc. (the radical species) If necessary then invoke SS for O 3 and other reactive species like NO 3, etc.

22 The Stratosphere Extends from km to ~ 50 km At 15 km, T K, p 100 mbar [M] 3.4x10 18 molecules cm -3 At 50 km, T K, p 1 mbar [M] 2.64x10 16 molecules cm -3 Positive temperature gradient vertically stable molecules take years to diffuse from bottom to top of the stratosphere Key constituent and focus for our analysis is Ozone

23 Ozone Upper scale Temperature Lower scale

24 Ozone Chemistry Main source region equatorial midstratosphere (Produced by photolysis where the photons are ) Mean transport is poleward and downward greatest concentrations are in the polar lower stratosphere (exclusive of ozone holes, of course!) In the absence of losses, ozone pools in the cold & dark.

25 Ozone source and sink regions; main transport.

26 Dynamical Aspects of Strat-Trop Exchange 2 PVU contour Holton, Reviews of Geophysics, 1995

27 Another Look From Scientific Assessment of Ozone Depletion:1998 (WMO)

28

29 Water Vapor Water vapor is a specie that has a very large change from the troposphere to the stratosphere (i.e., larger than ozone) Troposphere wet (sometimes a percent or more 10,000 + ppmv) Stratosphere dry (a few ppmv) Part of the dryness of the stratosphere has to do with very cold temperatures at the tropopause freeze drying any ascending air.

30 Stratospheric Water Vapor (U2 aircraft- 9/11/1980) Water Vapor Blue Temperature - Red

31 Back to Ozone What do measurements show? Sometimes we want absolute ozone concentrations And sometimes we want to know how much ozone is in the column above a given point

32 Measurement Techniques for Stratospheric O3

33 Zonally Averaged [O 3 ] vs. Altitude

34 hole).

35 Total Ozone Column in Dobson Units

36 Absorption by ozone stops the penetration of potentially harmful UV radiation. Red line corresponds to model calculation of surface radiation if stratospheric ozone was 10% lower.

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept.

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept. ATM 507 Lecture 4 Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review Problem Set 1: due Sept. 11 Temperature Dependence of Rate Constants Reaction rates change

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 10. Stratospheric chemistry Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 The ozone layer Dobson unit: physical thickness (0.01 mm) of ozone layer if compressed to 1 atm, 0 o

More information

Chapman. 4. O + O 3 2 O 2 ; k 4 5. NO + O 3 NO 2 + O 2 ; k 5 6. NO 2 + O NO + O 2 ; k 6 7. NO 2 + hν NO + O; k 7. NO X Catalytic.

Chapman. 4. O + O 3 2 O 2 ; k 4 5. NO + O 3 NO 2 + O 2 ; k 5 6. NO 2 + O NO + O 2 ; k 6 7. NO 2 + hν NO + O; k 7. NO X Catalytic. ATM 507 Lecture 8 Text reading Section 5.7 Problem Set # 2 due Sept. 30 Note: next week class as usual Tuesday, no class on Thursday Today s topics Mid-latitude Stratosphere Lower Stratosphere 1 Let s

More information

CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5)

CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5) CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5) 5.1 Introduction In general, the lifetime of a molecule in the troposphere is governed by a variet of processes.

More information

Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE. see pp in Class Notes

Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE. see pp in Class Notes Topic # 15 OZONE DEPLETION IN THE STRATOSPHERE see pp 81-85 in Class Notes [ The Ozone Treaty is ] the first truly global treaty that offers protection to every single human being. ~ Mostofa K. Tolba,

More information

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 Note Page numbers refer to Daniel Jacob s online textbook: http://acmg.seas.harvard.edu/publications/ jacobbook/index.html Atmos = vapor + sphaira

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals to atmospheric chemical reactions. The stratospheric

More information

f N 2 O* + M N 2 O + M

f N 2 O* + M N 2 O + M CHM 5423 Atmospheric Chemistry Problem Set 2 Due date: Thursday, February 7 th. Do the following problems. Show your work. 1) Before the development of lasers, atomic mercury lamps were a common source

More information

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

On Stationary state, also called steady state. Lifetimes and spatial scales of variability

On Stationary state, also called steady state. Lifetimes and spatial scales of variability On sources and sinks ATOC 3500/CHEM 3151 Week 5-6 Additional Notes February 16/18, 2016 On lifetimes, variability, and models On Stationary state, also called steady state Lifetimes and spatial scales

More information

Introduction to Atmospheric Photochemistry AOSC 433/633 & CHEM 433 Ross Salawitch

Introduction to Atmospheric Photochemistry AOSC 433/633 & CHEM 433 Ross Salawitch Introduction to Atmospheric Photochemistry AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015 Lecture 9 9 March 2015 1 Chapman Chemistry Production of stratospheric

More information

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010 The Atmosphere All of it. In one hour. Mikael Witte 10/27/2010 Outline Structure Dynamics - heat transport Composition Trace constituent compounds Some Atmospheric Processes Ozone destruction in stratosphere

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Meteorology Clouds Photochemistry Atmospheric Escape EAS 4803/8803 - CP 20:1 Cloud formation Saturated Vapor Pressure: Maximum amount of water vapor partial

More information

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion Chemistry 471/671 Atmospheric Chemistry III: Stratospheric Ozone Depletion 2 The Chapman Mechanism O 2 + hn 2 O( 1 D) O( 1 D) + O 2 + M O 3 + M Exothermic O( 1 D) + O 3 2 O 2 O 3 + hn O( 1 D) + O 2 ( 1

More information

Tropospheric OH chemistry

Tropospheric OH chemistry Tropospheric OH chemistry CO Oxidation mechanism: CO + OH CO 2 + H, H + O 2 + M HO 2 + M, HO 2 + NO OH + NO 2 NO 2 + hν (+O 2 ) NO + O 3 Initiation step Propagation Net: CO + 2 O 2 CO 2 + O 3 HO 2 + HO

More information

Spectroscopy & Photochemistry I

Spectroscopy & Photochemistry I Spectroscopy & Photochemistry I Required Reading: FP Chapter 3B, 3C, 4 Required Reading: Jacob Chapter 7 Atmospheric Chemistry CHEM-5151 / ATOC-5151 Spring 2013 Jose-Luis Jimenez Importance of Spectroscopy

More information

Outline. Chemical lifetime. Photochemistry. Ozone chemistry Chapman model Catalytic cycles Ozone hole. Institute of Applied Physics University of Bern

Outline. Chemical lifetime. Photochemistry. Ozone chemistry Chapman model Catalytic cycles Ozone hole. Institute of Applied Physics University of Bern Institute of Applied Physics University of Bern Outline Introduction Chemical reactions between stable molecules are quite slow in planetary s Absorption of solar UV-radiation leads to the production of

More information

Unique nature of Earth s atmosphere: O 2 present photosynthesis

Unique nature of Earth s atmosphere: O 2 present photosynthesis Atmospheric composition Major components N 2 78% O 2 21% Ar ~1% Medium components CO 2 370 ppmv (rising about 1.5 ppmv/year) CH 4 1700 ppbv H 2 O variable Trace components H 2 600 ppbv N 2 O 310 ppbv CO

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2 Lecture 36. Stratospheric ozone chemistry. Part2: Threats against ozone. Objectives: 1. Chlorine chemistry. 2. Volcanic stratospheric aerosols. 3. Polar stratospheric clouds (PSCs). Readings: Turco: p.

More information

Topic # 14 OZONE DEPLETION IN THE STRATOSPHERE

Topic # 14 OZONE DEPLETION IN THE STRATOSPHERE Topic # 14 OZONE DEPLETION IN THE STRATOSPHERE A Story of Anthropogenic Disruption of a Natural Steady State p 77 in Class Notes AN OZONE-RELATED CARTOON: MISCONCEPTION! Q1 Is the depletion of STRATOSPHERIC

More information

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION 1 CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION The objective of atmospheric chemistry is to understand the factors that control the concentrations of chemical species in the atmosphere. In this book

More information

TEST 1 APCH 211 (2012) Review, Solutions & Feedback

TEST 1 APCH 211 (2012) Review, Solutions & Feedback TEST 1 APCH 11 (01) Review, Solutions & Feedback Question 1 What is the concentration of nitrogen in the atmosphere (0 C and 1 atm) in g/l? N in the atmosphere ~ 78% Gas concentration unit s means that

More information

Beer-Lambert (cont.)

Beer-Lambert (cont.) The Beer-Lambert Law: Optical Depth Consider the following process: F(x) Absorbed flux df abs F(x + dx) Scattered flux df scat x x + dx The absorption or scattering of radiation by an optically active

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 17:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

[16] Planetary Meteorology (10/24/17)

[16] Planetary Meteorology (10/24/17) 1 [16] Planetary Meteorology (10/24/17) Upcoming Items 1. Homework #7 due now. 2. Homework #8 due in one week. 3. Midterm #2 on Nov 7 4. Read pages 239-240 (magnetic fields) and Ch. 10.6 by next class

More information

0. Introduction 0.1 Concept The air / environment (geosphere): Is it a reactor? It s a matter of reactions and transports and mixing!

0. Introduction 0.1 Concept The air / environment (geosphere): Is it a reactor? It s a matter of reactions and transports and mixing! 0. Introduction 0.1 Concept The air / environment (geosphere): Is it a reactor? It s a matter of reactions and transports and mixing! mixing times: vertically lower few kilometers (boundary layer) 1h-1d,

More information

Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II

Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II A Story of Anthropogenic Disruption of a Natural Steady State p 77-79 in Class Notes REVIEW... Q Is the depletion of STRATOSPHERIC OZONE (in

More information

Stratospheric Chemistry Part 1 (Chapter 4, p , , , )

Stratospheric Chemistry Part 1 (Chapter 4, p , , , ) Stratospheric Chemistry Part 1 (Chapter 4, p 155-169, 174-176, 198-222, 231-238) zone Discovery and History The Stratosphere and circulation Chapman Chemistry Catalysts The Controversy The zone Hole International

More information

AT 350 EXAM #1 February 21, 2008

AT 350 EXAM #1 February 21, 2008 This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

CHEM/ENVS 380 S14, Midterm Exam ANSWERS 1 Apr 2014

CHEM/ENVS 380 S14, Midterm Exam ANSWERS 1 Apr 2014 PART- A. Multiple Choice Questions (5 points each): Each question may have more than one correct answer. You must select ALL correct answers, and correct answers only, to receive full credit. 1. Which

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

NAME Student ID No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Term Test I February 4, 2011

NAME Student ID No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Term Test I February 4, 2011 NAME Student ID No. Section (circle one): A01 (Dr. Lipson) A02 (Dr. Briggs) A03 (Dr. Brolo) UNIVERSITY OF VICTORIA Version A CHEMISTRY 102 Term Test I February 4, 2011 Version A This test has two parts:

More information

CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY

CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY Photochemical processes play a key role in the chemistry of the Earth s atmosphere. Most important atmospheric reactions begin with molecular photodissiciation,

More information

Fundamentals of Atmospheric Radiation and its Parameterization

Fundamentals of Atmospheric Radiation and its Parameterization Source Materials Fundamentals of Atmospheric Radiation and its Parameterization The following notes draw extensively from Fundamentals of Atmospheric Physics by Murry Salby and Chapter 8 of Parameterization

More information

Experimental Methods for the Detection of Atmospheric Trace Gases

Experimental Methods for the Detection of Atmospheric Trace Gases Experimental Methods for the Detection of Atmospheric Trace Gases Andreas Hofzumahaus Forschungszentrum Jülich, IEK-8 Literature: D.E. Heard, Analytical Techniques for Atmospheric Measurement, Blackwell

More information

The Planck Blackbody Equation and Atmospheric Radiative Transfer

The Planck Blackbody Equation and Atmospheric Radiative Transfer The Planck Blackbody Equation and Atmospheric Radiative Transfer Roy Clark Ventura Photonics There appears to be a lot of confusion over the use of the terms blackbody absorption and equilibrium in the

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433. Ross Salawitch

Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433. Ross Salawitch Review of Lectures 9 to 16 AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015 Review of Problem Set #4 will be held Mon, 13 April 6:30 pm Unfortunately the

More information

1. Composition and Structure

1. Composition and Structure Atmospheric sciences focuses on understanding the atmosphere of the earth and other planets. The motivations for studying atmospheric sciences are largely: weather forecasting, climate studies, atmospheric

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 11:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer Some perspective The British Antarctic Survey The Ozone Hole International Regulations Rowland (1974): The work is going very well, but it may mean the

More information

Science 1206 Unit 2: Weather Dynamics Worksheet 8: Layers of the Atmosphere

Science 1206 Unit 2: Weather Dynamics Worksheet 8: Layers of the Atmosphere Science 1206 Unit 2: Weather Dynamics Worksheet 8: Layers of the Atmosphere The atmosphere has a definite impact upon weather patterns and changes. At one time the atmosphere was once considered to be

More information

Lecture 3. Composition and structure of the atmosphere. Absorption and emission by atmospheric gases.

Lecture 3. Composition and structure of the atmosphere. Absorption and emission by atmospheric gases. Lecture 3. Composition and structure of the atmosphere. Absorption and emission by atmospheric gases. 1. Structure and composition of the Earth s atmosphere. 2. Properties of atmospheric gases. 3. Basic

More information

THE EXOSPHERIC HEAT BUDGET

THE EXOSPHERIC HEAT BUDGET E&ES 359, 2008, p.1 THE EXOSPHERIC HEAT BUDGET What determines the temperature on earth? In this course we are interested in quantitative aspects of the fundamental processes that drive the earth machine.

More information

Chemical kinetics in the gas phase

Chemical kinetics in the gas phase Chemical kinetics in the gas phase Chemical kinetics is the study of the rates of transformation of chemical compounds from reactant species into products. The rate of a reaction is defined to be the rate

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions 1. Radiative Transfer Virtually all the exchanges of energy between the earth-atmosphere system and the rest of the universe take place by radiative transfer. The earth and its atmosphere are constantly

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Introduction to Electromagnetic Radiation and Radiative Transfer

Introduction to Electromagnetic Radiation and Radiative Transfer Introduction to Electromagnetic Radiation and Radiative Transfer Temperature Dice Results Visible light, infrared (IR), ultraviolet (UV), X-rays, γ-rays, microwaves, and radio are all forms of electromagnetic

More information

PHYSICS OF THE SPACE ENVIRONMENT

PHYSICS OF THE SPACE ENVIRONMENT PHYSICS OF THE SPACE ENVIRONMENT PHYS/EATS 380 Winter 006 Notes Set 6 Ionospheric Electron Densities The D, E, F1 and F Layers With the advent of radio communication in the early part of the last century

More information

EVALUATION OF ATMOSPHERIC PROCESSES FOR OZONE FORMATION FROM VEHICLE EMISSIONS

EVALUATION OF ATMOSPHERIC PROCESSES FOR OZONE FORMATION FROM VEHICLE EMISSIONS EVALUATION OF ATMOSPHERIC PROCESSES FOR OZONE FORMATION FROM VEHICLE EMISSIONS by WILLIAM P. L. CARTER STATEWIDE AIR POLLUTION RESEARCH CENTER, and COLLEGE OF ENGINEERING CENTER FOR ENVIRONMENTAL RESEARCH

More information

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

ATOC 3500/CHEM 3152 Week 9, March 8, 2016 ATOC 3500/CHEM 3152 Week 9, March 8, 2016 Hand back Midterm Exams (average = 84) Interaction of atmospheric constituents with light Haze and Visibility Aerosol formation processes (more detail) Haze and

More information

1. The vertical structure of the atmosphere. Temperature profile.

1. The vertical structure of the atmosphere. Temperature profile. Lecture 4. The structure of the atmosphere. Air in motion. Objectives: 1. The vertical structure of the atmosphere. Temperature profile. 2. Temperature in the lower atmosphere: dry adiabatic lapse rate.

More information

Stratospheric Ozone Depletion, Regional Ozone, Aerosols: Connections to Climate Change

Stratospheric Ozone Depletion, Regional Ozone, Aerosols: Connections to Climate Change Stratospheric Ozone Depletion, Regional Ozone, Aerosols: Connections to Climate Change Jeff Gaffney Chemistry Department University of Arkansas at Little Rock DOE Biological and Environmental Science Climate

More information

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 16 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Planetary Temperatures

Planetary Temperatures Planetary Temperatures How does Sunlight heat a planet with no atmosphere? This is similar to our dust grain heating problem First pass: Consider a planet of radius a at a distance R from a star of luminosity

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score NAME Student No. Section (circle one): A01 (Lipson) A02 (Briggs) A03 (Cartwright) UNIVERSITY OF VICTORIA Version B CHEMISTRY 102 Mid-Term Test I February 3, 2012 Version B This test has two parts: (A Data

More information

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score

NAME Student No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Mid-Term Test I February 3, Part II Score Exam results Score NAME Student No. Section (circle one): A01 (Lipson) A02 (Briggs) A03 (Cartwright) UNIVERSITY OF VICTORIA Version A CHEMISTRY 102 Mid-Term Test I February 3, 2012 Version A This test has two parts: (A Data

More information

DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW UNIVERSITY OF VICTORIA. CHEMISTRY 102 Midterm Test 1 February 1, pm (60 minutes)

DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW UNIVERSITY OF VICTORIA. CHEMISTRY 102 Midterm Test 1 February 1, pm (60 minutes) SECTION: (circle one): A01 MR (Dr. Lipson) A02 (Dr. Briggs) A03 MWR (Dr. Brolo) NAME Student No. V0 (Please print clearly.) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Version A UNIVERSITY

More information

An Interpretation of Natural Healing of Ozone Holes

An Interpretation of Natural Healing of Ozone Holes ISSN 2278 0211 (Online) An Interpretation of Natural Healing of Ozone Holes Vasudevan Tachoth Nirvan Industries, Private Industrial Estate, Post Sidco Near Railway Gate, Kuruchi Coimbatore, India Abstract:

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

Emission Temperature of Planets. Emission Temperature of Earth

Emission Temperature of Planets. Emission Temperature of Earth Emission Temperature of Planets The emission temperature of a planet, T e, is the temperature with which it needs to emit in order to achieve energy balance (assuming the average temperature is not decreasing

More information

Excited State Processes

Excited State Processes Excited State Processes Photophysics Fluorescence (singlet state emission) Phosphorescence (triplet state emission) Internal conversion (transition to singlet gr. state) Intersystem crossing (transition

More information

Composition and structure of the atmosphere. Absorption and emission by atmospheric gases.

Composition and structure of the atmosphere. Absorption and emission by atmospheric gases. Lecture 3. Composition and structure of the atmosphere. Absorption and emission by atmospheric gases. 1. Structure and composition of the Earth s atmosphere. 2. Properties of atmospheric gases. 3. Basic

More information

Today s AZ Daily Star has 2 interesting articles: one on our solar future & the other on an issue re: our state-mandated energy-efficiency plan

Today s AZ Daily Star has 2 interesting articles: one on our solar future & the other on an issue re: our state-mandated energy-efficiency plan REMINDER Water topic film Today s AZ Daily Star has 2 interesting articles: one on our solar future & the other on an issue re: our state-mandated energy-efficiency plan Find out all about solar in Arizona

More information

ENVIRONMENTAL STRUCTURE AND FUNCTION: EARTH SYSTEM - Chemistry Of The Atmosphere - I.L. Karol and A.A. Kiselev

ENVIRONMENTAL STRUCTURE AND FUNCTION: EARTH SYSTEM - Chemistry Of The Atmosphere - I.L. Karol and A.A. Kiselev CHEMISTRY OF THE ATMOSPHERE I.L. Karol and A.A. Main Geophysical Observatory, St. Petersburg, Russia Keywords: Atmospheric composition, gas phase reactions, heterogeneous reactions, catalytic cycles, lifetime

More information

Section 2: The Atmosphere

Section 2: The Atmosphere Section 2: The Atmosphere Preview Classroom Catalyst Objectives The Atmosphere Composition of the Atmosphere Air Pressure Layers of the Atmosphere The Troposphere Section 2: The Atmosphere Preview, continued

More information

The Atmosphere. Atmospheric structure

The Atmosphere. Atmospheric structure The Atmosphere Atmospheric structure Atmospheric layers defined by changes in temperature Troposphere contains 75% of atmospheric gases; temperature decreases with height Tropopause boundary between troposphere

More information

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface.

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface. CHAPTER 11 LESSON 2 Earth s Atmosphere Energy Transfer in the Atmosphere Key Concepts How does energy transfer from the Sun to Earth and to the atmosphere? How are air circulation patterns within the atmosphere

More information

Thermosphere Part-3. EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets

Thermosphere Part-3. EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets Thermosphere Part-3 EUV absorption Thermal Conductivity Mesopause Thermospheric Structure Temperature Structure on other planets Thermosphere Absorbs EUV Absorption: Solar Spectrum 0.2 0.6 1.0 1.4 1.8

More information

Spring 2011: ATM S 558. Course Goals. Course Related Activities. Atmospheric Chemistry MW 9 10:20 in 611 ATG

Spring 2011: ATM S 558. Course Goals. Course Related Activities. Atmospheric Chemistry MW 9 10:20 in 611 ATG Spring 2011: ATM S 558 Atmospheric Chemistry MW 9 10:20 in 611 ATG Course Goals This class will provide an overview of atmospheric chemistry and the fundamental underpinnings so that you will be able to:

More information

The Atmosphere. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left.

The Atmosphere. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left. The Atmosphere Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. Which of the following describes an example of the atmosphere acting as a system? a. its

More information

2. Illustration of Atmospheric Greenhouse Effect with Simple Models

2. Illustration of Atmospheric Greenhouse Effect with Simple Models 2. Illustration of Atmospheric Greenhouse Effect with Simple Models In the first lecture, I introduced the concept of global energy balance and talked about the greenhouse effect. Today we will address

More information

Atmospheric Sciences 321. Science of Climate. Lecture 6: Radiation Transfer

Atmospheric Sciences 321. Science of Climate. Lecture 6: Radiation Transfer Atmospheric Sciences 321 Science of Climate Lecture 6: Radiation Transfer Community Business Check the assignments Moving on to Chapter 3 of book HW #2 due next Wednesday Brief quiz at the end of class

More information

P T = P A + P B + P C..P i Boyle's Law The volume of a given quantity of gas varies inversely with the pressure of the gas, at a constant temperature.

P T = P A + P B + P C..P i Boyle's Law The volume of a given quantity of gas varies inversely with the pressure of the gas, at a constant temperature. CHEM/TOX 336 Winter 2004 Lecture 2 Review Atmospheric Chemistry Gas Chemistry Review The Gaseous State: our atmosphere consists of gases Confined only by gravity force of gas on a unit area is due to the

More information

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems The Atmosphere 1 How big is the atmosphere? Why is it cold in Geneva? Why do mountaineers need oxygen on Everest? 2 A relatively thin layer of gas over the Earths surface Earth s radius ~ 6400km Atmospheric

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Version A UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) Version A DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

CHE 230S ENVIRONMENTAL CHEMISTRY PROBLEM SET 8 Full Solutions

CHE 230S ENVIRONMENTAL CHEMISTRY PROBLEM SET 8 Full Solutions CHE 230S ENVIRONMENTAL CHEMISTRY PROBLEM SET 8 Full Solutions Easier problems 1) Calculate the maximum wavelength of radiation required to promote dissociation of a) a dinitrogen molecule (127nm) b) a

More information

The Atmosphere. Composition of the Atmosphere. Section 2

The Atmosphere. Composition of the Atmosphere. Section 2 The Atmosphere Earth is surrounded by a mixture of gases known as the Nitrogen, oxygen, carbon dioxide, and other gases are all parts of this mixture. Earth s atmosphere changes constantly as these gases

More information

It is often given in units of cm -1 : watch out for those unit conversions! (1 cm -1 = 100 m -1, not 0.01 m -1 ).

It is often given in units of cm -1 : watch out for those unit conversions! (1 cm -1 = 100 m -1, not 0.01 m -1 ). 1 Energy of one quantum of radiation (photon) E = hv h = Planckʼs constant, 6.626 10-34 Js v = frequency of radiation Wave equation: vλ = c c = speed of light, 299 792 485 m/s in vacuum, less in other

More information

Stratosphere and Ozone

Stratosphere and Ozone Stratosphere and Ozone Ozone (Greek, ozein, to smell) O 3 Chapman Mechanism O 2 + hv O + O O + O 3 2O 2 O 3 + hv O 2 + O O + O 2 + M O 3 + M third-body. anything What units are used to report the amount

More information

Wednesday, September 8, 2010 Infrared Trapping the Greenhouse Effect

Wednesday, September 8, 2010 Infrared Trapping the Greenhouse Effect Wednesday, September 8, 2010 Infrared Trapping the Greenhouse Effect Goals to look at the properties of materials that make them interact with thermal (i.e., infrared, or IR) radiation (absorbing and reemitting

More information

Common Elements: Nitrogen, 78%

Common Elements: Nitrogen, 78% Chapter 23 Notes Name: Period: 23.1 CHARACTERISTICS OF THE ATMOSPHERE The atmosphere is a layer of that surrounds the earth and influences all living things. Meteorology is the study of the. WHAT S IN

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science AOSC 652 Ordinary Differential Equations Week 12, Day 1 1 Differential Equations are central to Atmospheric and Ocean Sciences They provide quantitative

More information

Monday 9 September, :30-11:30 Class#03

Monday 9 September, :30-11:30 Class#03 Monday 9 September, 2013 10:30-11:30 Class#03 Topics for the hour Solar zenith angle & relationship to albedo Blackbody spectra Stefan-Boltzman Relationship Layer model of atmosphere OLR, Outgoing longwave

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Organic Compounds - Formation Fate and Impact on Troposphere

Organic Compounds - Formation Fate and Impact on Troposphere Organic Compounds - Formation Fate and Impact on Troposphere i.gensch@fz-juelich.de 2 / 20 Organic Compounds - Formation Fate and Impact on Troposphere i.gensch@fz-juelich.de 2 / 20 Definitions VOC: organic

More information

Math 19a - Reading 8.1 outline for discussion section

Math 19a - Reading 8.1 outline for discussion section Math 9a - Reading 8. outline for discussion section due Monday, February 25, 28. How do you, guys, feel about vectors and matrices? Have you seen such things before? What did you think of the lecture on

More information

Lecture 25: Atmosphere & environment

Lecture 25: Atmosphere & environment Lecture 25: Atmosphere & environment Read: BLB 18.1 4 HW: BLB 18:9,11,15,29,69 Sup 18:1 3 Know: ozone chemistry chemistry of the lower atmosphere sulfer compounds & acid rain nitrogen oxides & smog check

More information

Maria Kanakidou. Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece

Maria Kanakidou. Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece Maria Kanakidou Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece mariak@chemistry.uoc.gr Why ocean should care for atmospheric chemistry? Impact

More information

CH-442. Photochemistry I. Prof. Jacques-E. Moser.

CH-442. Photochemistry I. Prof. Jacques-E. Moser. CH-442 Photochemistry I Prof. Jacques-E. Moser http://photochemistry.epfl.ch/pc.html Content PHOTOCHEMISTRY I 1. Basic principles 1.1 Introduction 1.2 Laws of light absorption 1.3 Radiation and molecular

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

Chapter 11 Lecture Outline. Heating the Atmosphere

Chapter 11 Lecture Outline. Heating the Atmosphere Chapter 11 Lecture Outline Heating the Atmosphere They are still here! Focus on the Atmosphere Weather Occurs over a short period of time Constantly changing Climate Averaged over a long period of time

More information