1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions

Size: px
Start display at page:

Download "1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions"

Transcription

1 1. Radiative Transfer Virtually all the exchanges of energy between the earth-atmosphere system and the rest of the universe take place by radiative transfer. The earth and its atmosphere are constantly absorbing solar radiation and emitting their own radiation to space. Over a long period of time, the rates of absorption and emission are very nearly equal, thus the earth-atmosphere system is very nearly in equilibrium with the sun. Radiative transfer also serves as a mechanism for exchanging energy between the atmosphere and the underlying surface, and among different layers of the atmosphere. Radiative transfer plays an important role in a number of chemical reactions in the upper atmosphere and in the formation of photochemical smogs. The transfer properties of visible radiation determine the visibility, the color of the sky and the appearance of clouds. Radiation emitted by the earth and atmosphere and intercepted by satellites is the basis for remote sensing of the atmospheric temperature structure, water vapor amounts, ozone and other trace gases. 2. Spectrum of Radiation Electromagnetic radiation may be viewed as an ensemble of waves propagating at the speed of light (c = m/s through vacum). We characterize radiation in terms of: frequency ν = c /λ wavelength λ = c /ν Radiative transfer in planetary atmosphere involves an ensemble of waves with a continuum of wavelengths and frequencies. We partition them into bands : shortwave (λ < 4µm) carries most of the energy associated with solar radiation or longwave (λ > 4µm) which refers to the band that encompasses most of the terrestrial. The visible region µm is defined by the range of wavelengths that the human eye is capable of sensing, and subranges of the visible are discernible as colors. 3. Definitions Solid Angle ω Consider a cone with its vertex at the origin of a concentric spherical surface. The solid angle is defined as the ratio of the area of the sphere 1

2 Figure 1: Ahrens, Chapter 2 2

3 intercepted by the cone to the square of the radius. ω = A r 2 (1) In spherical coordinates dω = da r 2 (2) da = r 2 sinθdθdφ (3) The unit of the solid angle is the steradian. The area cut out of a sphere by one steradian is equal to the square of the radius. Integration over the entire spherical surface then gives ω = 4πsteradians Flux density F Amount of radiant energy passing through a unit area per unit time. Expressed in [W m 2 ]. This flux includes energy contributions from all wavelengths between some specified limits λ 1 and λ 2 (the range cannot be zero). F = λ 2 λ 1 F λ dλ = ν 2 ν 1 F ν dν. We define monochromatic flux density F λ as F λ = lim λ 0 F (λ, λ + λ) λ (4) If you mark an area on the ground, the amount of daylight falling on it can be measured in watts per square meter. This is the incident flux of solar radiation - and it would decrease with an obstruction, like a cloud or as the evening comes. The flux makes no distinction concerning where the radiation is coming from, so in order to completely characterize the radiance field at a given location, we must know not only the flux but also the direction from which the radiation is comingthis is the radiant intensity Intensity I Radiant energy per unit time coming from a specific direction and passing through a unit area perpendicular to that direction. Total intensity is calculated as the integral over all wavelengths within given limits I = λ2 λ 1 I λ dλ = ν 2 ν 1 I ν dν. The intensity I tells you in detail both the strength and direction of various sources contributing to the incident flux on a surface. If 3

4 you are looking at the sky, some regions have higher radiant intensity (when you look at the sun for example) The units are [W m 2 sr 1 ].The monochromatic intensity I λ and flux density F λ are related by I λ = df (5) dωcosθ We can integrate over the solid angle subtended by a hemisphere to determine the monochromatic flux density coming from all directions F λ = 2πsr 0 I λ cosθdω = 4. Blackbody Radiation 2π 0 dφ π/2 A blackbody is a surface that absorbs all incident radiation. 0 I λ cosθsinθdφ (6) The Planck Function Determined experimentally, the intensity of radiation emitted by a blackbody is c 1 λ 5 B λ = (7) π(e c 2/λT 1) where c 1 = W m 2 and c 2 = mk. Theoretical justification of this empirical relationship led to the development of the theory of quantum physics. Wien s Displacement Law Differentiating Equation 7 and setting the derivative equal to zero, gives the wavelength of peak emission for a blackbody at temperature T (HW6). λ m = 2897 (8) T where T in K and λ m in µm. An important consequence of Wien displacement law is the fact that solar radiation is concentrated in the visible and near-infrared parts of the spectrum, while radiation emitted by the planets and their atmospheres is largely confined to the infrared. The nearly complete absence of overlap between the curves justifies dealing with solar and planetary radiation separately in many problems of radiative transfer. Stefan-Boltzmann Law The black body flux density obtained by integrating the 4

5 5

6 Planck function B λ over all wavelengths. F = σt 4 (9) Where σ is the Stefan-Boltzmann constant equal to W m 2 K 4 6

7 5. Radiative properties of Nonblack materials Unlike blackbodies, which absorb all incident radiation, nonblack bodies such as gaseous media can also reflect and transmit radiation. We will give a brief description of the radiative processes in nonblack bodies. The fate of radiation depends on wavelength. 1. Transmitted Radiation passes undisturbed. We define the monochromatic fractional transmissivity as T λ = I λ(transmitted) I λ (incident) 2. Reflected Radiation. Reflectivity is depicted by albedo. Albedo usually represents all wavelengths and refers to the earth-atmosphere reflection. We define the monochromatic fractional reflectivity as R λ = I λ(reflected) I λ (incident) 3. Absorbed Increase in internal energy of the object. We define the monochromatic fractional absorptivity as α λ = I λ(absorbed) I λ (incident) (a) Ionization-Dissociation Interactions. In these interactions, an electron is stripped from an atom or molecule, or a molecule is torn apart. These interactions occur primarily at ultraviolet and shorter wavelengths. All solar radiation shorter than about 0.1 µm in wavelength is absorbed in the upper atmosphere by ionizing atmospheric gases, particularly atomic oxygen. Between 0.1 and 0.2 µm molecular oxygen dissociates into atomic oxygen. Radiation between 0.2 and 0.3 µm is absorbed by dissociation of ozone. These bands are important for preventing the radiation from reaching the ground and in satellite meteorology for measuring ozone concentrations. (b) Electronic Transitions Orbital electron jumps between quantized energy levels. These occur mostly in the UV and visible. Ozone, and molecular oxygen. (c) Vibrational transitions A molecule changes vibrational energy states. These transitions occur mostly in the infrared portion of the spectrum and are extremely important for satellite meteorology. The two chief absorbers in the infrared region of the spectrum are carbon dioxide and water vapor. Symmetric stretching has neither a static or dynamic electric dipole moment because the symmetry of the molecule is maintained. If a molecule has no electric dipole moment, the electric field of incident radiation cannot interact with the molecule. (This is why 7

8 N 2 and O 2, the two most abundant gases in the atmosphere, are transparent in the infrared. (d) Rotational transitions a molecule changes rotational states. These occur in the far infrared and microwave portion of the spectrum. They can occur at the same time as vibrational transitions. Figure 4.7. The three are related by α λ + R λ + T λ = 1. For a black body α λ = We can also define the Monochromatic Emissivity ɛ λ as the ratio of the monochromatic intensity of the radiation emitted by the body to the corresponding blackbody radiation: ɛ λ = I λ(emitted) B λ (T ) 8

9 9

10 5a. Kirchoff s Law It can be shown that the radiation emitted by a given material is a function of temperature and wavelength only. Consider an opaque, hollow enclosure with zero transmissivity into which is placed a slab of finite thickness. In general, this slab will reflect, absorb and transmit parts of the incident radiation. In addition, it will emit radiation itself. We now allow the enclosure and the slab to reach thermodynamic equilibrium, such that the slab and the enclosure walls are the same temperature. Under this condition, the flow of energy in all directions must be the same. In thermodynamic equilibrium, the amount entering the slab must exactly equal the amount leaving, or there would be a net flow of heat to or from the walls, into or out of the slab. Since the slab and the walls are in thermodynamic equilibrium, this would constitute a violation of the Second Law of Thermodynamics. Therefore, the balance equation is: I λ R λ I λ = T λ I λ + E λ (10) Where E λ is the emitted radiance in the same direction as I λ. But T λ I λ = I λ (1 α λ R λ ) since α λ + R λ + T λ = 1. Therefore, I λ (1 R λ ) = I λ (1 α λ R λ ) + E λ (11) Thus, E λ α λ I λ = 0 or E λ = α λ I λ Thus, inside of an opaque, hollow enclosure in thermodynamic equilibrium, the amount emitted by the slab equals the amount absorbed by the slab. We now imagine our enclosure to be replaced by a different one, constructed from a different material, and again allow it to come into thermodynamic equilibrium with the same slab and at the same temperature as before. Consequently, the slab emission will be the same as before, since it depends only on temperature and wavelength, neither of which has been changed. Similarly, the slab absorption will not change because the slab material is the same. Thus we have: E λ = α λ I λ (12) Where I λ is the incident radiation on the slab in the new enclosure, thus it follows that I λ = I λ.thus, the radiation within an opaque, hollow enclosure is independent of the material from which the walls are made. Re-writing the above E equation we see λ = I α l ambda λb = f(t, λ) only and I λb is the radiance inside an opaque hollow enclosure at temperature T and wavelength λ. 10

11 This result is known as Kirchhoff s Law, which states that The ratio of the emission to the fractional absorptivity of a slab of any material in a state of thermodynamic equilibrium and at wavelength λ is equal to a constant. We may now define the fractional emissivity ɛ λ as the ratio of the radiation emitted at the wavelength λ to that within a hollow enclosure at the same temperature or: ɛ λ = E λ I λb (13) From this definition, we see that E λ = ɛ λ I λb. But from Kirchoff s Law it then follows: ɛ λ = α λ (14) Or the fractional emissivity equals the fractional absorptivity Kirchoff s Law is fundamental to further development of the subject of radiative transfer, and is frequently applied in a variety of applications. Recalling that it is strictly valid only under conditions of thermodynamic equilibrium, it is nevertheless generally assumed to be valid for atmospheric problems even though the atmosphere is not strictly in thermodynamic equilibrium. We may now carry this thought experiment one step further. Let s replace this slab by an ideal black body such that, by definition, it completely absorbs all radiation falling on it. Inside the hollow enclosure then, the radiation leaving the black body slab consists entirely of radiation emitted by the slab. The equilibrium condition becomes I λb = E λ (15) leading to the important conclusion that the radiation flowing in any direction within the hollow enclosure in thermodynamic equilibrium is equal to the energy emitted in the same direction as an ideal black body. Such radiation is called black body radiation, and from our earlier arguments is isotropic or equal in all directions. 11

12 6. Examples 1. Prove that the intensity I of solar radiation is independent of distance from the sun, provided that the distance is large and that radiation emitted from each elemental area on the sun is independent of the zenith angle. 2. The average flux density F e of solar radiation reaching the earth s orbit is 1368W m 2. Nearly all the radiation is emitted from the outermost visible layer of the sun, which has a mean radius of m. Calculate the equivalent blackbody temperature or effective temperature of this layer. The mean distance between the earth and sun is m. 3. Calculate the equivalent blackbody temperature of the earth assuming a planetary albedo α p = 0.3 where α p is the fraction of the total incident solar radiation that is reflected and scattered back to space. Assume that the earth is in radiative equilibrium. 4. A completely gray flat surface on the moon with an absorptivity of 0.9 is exposed to direct overhead solar radiation. What is the radiative equilibrium temperature of the surface? If the actual temperature is 300K, what is the net flux density above the surface? 5. A flat surface is subject to overhead solar radiation as in the previous example. The absorptivity is 0.1 for solar radiation and 0.8 in the infrared part of the spectrum, where most of the emission takes place. Compute the radiative equilibrium temperature. 6. Calculate the radiative equilibrium temperature of the earth s surface and atmosphere assuming that the atmosphere can be regarded as a thin layer with absorptivity of 0.1 for solar radiation and 0.8 for terrestrial radiation. Assume that the earth s surface radiates as a black body. 7. Radiative-Convective Equilibrium Temperature Profiles (from Global Physical Climatology by Hartman) One can solve the radiative transfer equation for global mean terrestrial conditions. This involves construction of appropriate models for the transmission of 12

13 13

14 14

15 15

16 the various band systems of importance in the atmosphere, insertion of these into a computational model of the radiative transfer equation and iteration to obtain a steady balance solution. The variables that determine the fluxes of radiant energy in the atmosphere include the atmospheric gaseous components, aerosols and cloud characteristics, surface albedo and insolation. In a global mean model, the temperature only depends on altitude. We need to specify: H 2 O Most important gas for radiative transfer. Water vapor has a rotation band near 6.3µm and a rotation continuum at wavelengths longer than 12 µm. It also absorbs solar in the troposphere. CO 2 Important because of increased concentrations. Mixing ration can be assumed constant with latitude and altitude up to 100km. Strong vibrationrotation band of CO 2 at 15µm makes it important for long wave radiative transfer. Also absorbs significant amount of solar. O 3 Ozone has fast sources and sinks in the stratosphere. In the surface it is related to photochemical smog. Ozone has a vibration-rotation band near 9.6 µm that is important for long wave energy, and has a dissociation continuum that absorbs solar between 200 and 300 nm. Absorption heats the middle atmosphere and causes the temperature increase with height that defines the stratosphere and troposphere. Aerosols Affect transmission of both solar and terrestrial radiation. Sulfate aerosols in the troposphere are raditively important. Surf ace Albedo Highly variable from location to location depending on type and condition of surface material and vegetation. When the surface is snow covered, its albedo is generally much higher. Clouds Clouds vary considerably in amount and type one the globe. They have try important effects on long wave and solar energy transfer in the atmosphere. The optical properties of the clouds must also be specified. Water clouds have weak solar absorption, but they seatter solar very effectively. Thick clouds can be assumed to be black bodies for long wave radiation. A simple approach is to specify the properties of three types of clouds. Looking at Figure 3.17 we see that with only water vapor present, a reasonable approximation to the observed profile is obtained except that the stratosphere 16

17 is absent. Carbon dioxide with a mixing ratio of 300 ppm raises the temperature by 10 K above the equilibrium obtained with only water vapor present. A sharp tropopause and the increase of temperature with height that characterizes the stratosphere appear only when solar absorption by ozone is included in the model. Figure 3.16 shows a calculated temperature profile that is in radiative equilibrium. Atmospheric temperatures in radiative equilibrium decrease rapidly with altitude near the surface. In the troposphere, radiative equilibrium temperature profiles are hydrostatically unstable in the sense that parcels of air that are elevated slightly will become buoyant and continue to rise. In the real atmosphere, atmospheric motions move heat away from the surface and mix it through the 17

18 troposphere. 60% by latent and sensible heat and 40% by net long wave radiation emission. The global mean temperature profile of the earth is not in radiative equilibrium, but rather in radiative-convective equilibrium. To obtain a realistic global-mean vertical energy balance, the vertical flux of energy by atmospheric motions must be included. The simplest artifice by which the effect of vertical energy transports by motions can be included in a global-mean radiative transfer model is a procedure called convective adjustment. Under this constraint the lapse rate is not allowed to exceed a critical value (6.5Kkm 1. Where radiative processes would make the lapse rate greater, a non radiative upward heat transfer is assumed to occur that maintains the specified lapse rate while conserving energy. This adjusted layer extends from the surface to the tropopause. A temperature profile that is in energy balance when radiative transfer and convective adjustment are taken into account may be called a radiative-convective equilibrium or thermal equilibrium profile.the thermal equilibrium profile obtained with a lapse rate of 6.5 Kkm 1 is close to the observed global mean temperature profile. 18

19 19

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Monday 9 September, :30-11:30 Class#03

Monday 9 September, :30-11:30 Class#03 Monday 9 September, 2013 10:30-11:30 Class#03 Topics for the hour Solar zenith angle & relationship to albedo Blackbody spectra Stefan-Boltzman Relationship Layer model of atmosphere OLR, Outgoing longwave

More information

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Energy and Radiation GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2 Last lecture: the Atmosphere! Mainly nitrogen (78%) and oxygen (21%)! T, P and ρ! The Ideal Gas Law! Temperature profiles Lecture outline!

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Problem Solving 10: The Greenhouse Effect Section Table and Group Names Hand in one copy per group at the end of the Friday Problem Solving

More information

Fundamentals of Atmospheric Radiation and its Parameterization

Fundamentals of Atmospheric Radiation and its Parameterization Source Materials Fundamentals of Atmospheric Radiation and its Parameterization The following notes draw extensively from Fundamentals of Atmospheric Physics by Murry Salby and Chapter 8 of Parameterization

More information

2. Energy Balance. 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids

2. Energy Balance. 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids I. Radiation 2. Energy Balance 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids radiate at many Click frequencies, to edit

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

ATMOS 5140 Lecture 7 Chapter 6

ATMOS 5140 Lecture 7 Chapter 6 ATMOS 5140 Lecture 7 Chapter 6 Thermal Emission Blackbody Radiation Planck s Function Wien s Displacement Law Stefan-Bolzmann Law Emissivity Greybody Approximation Kirchhoff s Law Brightness Temperature

More information

Let s make a simple climate model for Earth.

Let s make a simple climate model for Earth. Let s make a simple climate model for Earth. What is the energy balance of the Earth? How is it controlled? ó How is it affected by humans? Energy balance (radiant energy) Greenhouse Effect (absorption

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

Friday 8 September, :00-4:00 Class#05

Friday 8 September, :00-4:00 Class#05 Friday 8 September, 2017 3:00-4:00 Class#05 Topics for the hour Global Energy Budget, schematic view Solar Radiation Blackbody Radiation http://www2.gi.alaska.edu/~bhatt/teaching/atm694.fall2017/ notes.html

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out

More information

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 2: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Luminosity (L) the constant flux of energy put out

More information

Solar radiation / radiative transfer

Solar radiation / radiative transfer Solar radiation / radiative transfer The sun as a source of energy The sun is the main source of energy for the climate system, exceeding the next importat source (geothermal energy) by 4 orders of magnitude!

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

Lecture 2: principles of electromagnetic radiation

Lecture 2: principles of electromagnetic radiation Remote sensing for agricultural applications: principles and methods Lecture 2: principles of electromagnetic radiation Instructed by Prof. Tao Cheng Nanjing Agricultural University March Crop 11, Circles

More information

Exercises. Exercises 145

Exercises. Exercises 145 Exercises 145 cations for the global energy balance, as discussed in Section 10.1. It is notable that over some of the world s hottest desert regions, the outgoing longwave radiation exceeds absorbed solar

More information

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun Radiation and the Planetary Energy Balance Electromagnetic Radiation Solar radiation warms the planet Conversion of solar energy at the surface Absorption and emission by the atmosphere The greenhouse

More information

Atmospheric Radiation

Atmospheric Radiation Atmospheric Radiation NASA photo gallery Introduction The major source of earth is the sun. The sun transfer energy through the earth by radiated electromagnetic wave. In vacuum, electromagnetic waves

More information

THE EXOSPHERIC HEAT BUDGET

THE EXOSPHERIC HEAT BUDGET E&ES 359, 2008, p.1 THE EXOSPHERIC HEAT BUDGET What determines the temperature on earth? In this course we are interested in quantitative aspects of the fundamental processes that drive the earth machine.

More information

Temperature Scales

Temperature Scales TEMPERATURE is a measure of the internal heat energy of a substance. The molecules that make up all matter are in constant motion. By internal heat energy, we really mean this random molecular motion.

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009 Composition, Structure and Energy ATS 351 Lecture 2 September 14, 2009 Composition of the Atmosphere Atmospheric Properties Temperature Pressure Wind Moisture (i.e. water vapor) Density Temperature A measure

More information

Mon April 17 Announcements: bring calculator to class from now on (in-class activities, tests) HW#2 due Thursday

Mon April 17 Announcements: bring calculator to class from now on (in-class activities, tests) HW#2 due Thursday Mon April 17 Announcements: bring calculator to class from now on (in-class activities, tests) HW#2 due Thursday Today: Fundamentals of Planetary Energy Balance Incoming = Outgoing (at equilibrium) Incoming

More information

Lecture 4: Global Energy Balance

Lecture 4: Global Energy Balance Lecture : Global Energy Balance S/ * (1-A) T A T S T A Blackbody Radiation Layer Model Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance (1 of 12) Further Reading: Chapter 04 of the text book Outline - matter-energy interactions - shortwave radiation balance - longwave radiation balance - global radiation balance (2 of 12) Previously, we

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Radiation Conduction Convection

Radiation Conduction Convection Lecture Ch. 3a Types of transfers Radiative transfer and quantum mechanics Kirchoff s law (for gases) Blackbody radiation (simplification for planet/star) Planck s radiation law (fundamental behavior)

More information

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth I. The arth as a Whole (Atmosphere and Surface Treated as One Layer) Longwave infrared (LWIR) radiation earth to space by the earth back to space Incoming solar radiation Top of the Solar radiation absorbed

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Radiation and the atmosphere

Radiation and the atmosphere Radiation and the atmosphere Of great importance is the difference between how the atmosphere transmits, absorbs, and scatters solar and terrestrial radiation streams. The most important statement that

More information

2. Illustration of Atmospheric Greenhouse Effect with Simple Models

2. Illustration of Atmospheric Greenhouse Effect with Simple Models 2. Illustration of Atmospheric Greenhouse Effect with Simple Models In the first lecture, I introduced the concept of global energy balance and talked about the greenhouse effect. Today we will address

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

Understanding the Greenhouse Effect

Understanding the Greenhouse Effect EESC V2100 The Climate System spring 200 Understanding the Greenhouse Effect Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 1096, USA kushnir@ldeo.columbia.edu Equilibrium

More information

CLASSICS. Handbook of Solar Radiation Data for India

CLASSICS. Handbook of Solar Radiation Data for India Solar radiation data is necessary for calculating cooling load for buildings, prediction of local air temperature and for the estimating power that can be generated from photovoltaic cells. Solar radiation

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed York University Department of Earth and Space Science and Engineering ESSE 3030 Department of Physics and Astronomy PHYS 3080 Atmospheric Radiation and Thermodynamics Final Examination 2:00 PM 11 December

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Chapter 3. Multiple Choice Questions

Chapter 3. Multiple Choice Questions Chapter 3 Multiple Choice Questions 1. In the case of electromagnetic energy, an object that is hot: a. radiates much more energy than a cool object b. radiates much less energy than a cool object c. radiates

More information

P607 Climate and Energy (Dr. H. Coe)

P607 Climate and Energy (Dr. H. Coe) P607 Climate and Energy (Dr. H. Coe) Syllabus: The composition of the atmosphere and the atmospheric energy balance; Radiative balance in the atmosphere; Energy flow in the biosphere, atmosphere and ocean;

More information

Chapter 11 Lecture Outline. Heating the Atmosphere

Chapter 11 Lecture Outline. Heating the Atmosphere Chapter 11 Lecture Outline Heating the Atmosphere They are still here! Focus on the Atmosphere Weather Occurs over a short period of time Constantly changing Climate Averaged over a long period of time

More information

Modeling of Environmental Systems

Modeling of Environmental Systems Modeling of Environmental Systems While the modeling of predator-prey dynamics is certainly simulating an environmental system, there is more to the environment than just organisms Recall our definition

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 17:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

AT 350 EXAM #1 February 21, 2008

AT 350 EXAM #1 February 21, 2008 This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

Introduction to Electromagnetic Radiation and Radiative Transfer

Introduction to Electromagnetic Radiation and Radiative Transfer Introduction to Electromagnetic Radiation and Radiative Transfer Temperature Dice Results Visible light, infrared (IR), ultraviolet (UV), X-rays, γ-rays, microwaves, and radio are all forms of electromagnetic

More information

Emission Temperature of Planets. Emission Temperature of Earth

Emission Temperature of Planets. Emission Temperature of Earth Emission Temperature of Planets The emission temperature of a planet, T e, is the temperature with which it needs to emit in order to achieve energy balance (assuming the average temperature is not decreasing

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

Chapter 02 Energy and Matter in the Atmosphere

Chapter 02 Energy and Matter in the Atmosphere Chapter 02 Energy and Matter in the Atmosphere Multiple Choice Questions 1. The most common gas in the atmosphere is. A. oxygen (O2). B. carbon dioxide (CO2). C. nitrogen (N2). D. methane (CH4). Section:

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 11:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Mon Oct 20. Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of climate change Tues:

Mon Oct 20. Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of climate change Tues: Mon Oct 20 Announcements: bring calculator to class from now on > in-class activities > midterm and final Today: radiation and temperature (cont) sun-earth geometry energy balance >> conceptual model of

More information

AT622 Section 3 Basic Laws

AT622 Section 3 Basic Laws AT6 Section 3 Basic Laws There are three stages in the life of a photon that interest us: first it is created, then it propagates through space, and finally it can be destroyed. The creation and destruction

More information

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 Jensen, Jensen, Ways of of Energy Transfer Energy is is the the ability to to do do work. In In the the process of of doing work, energy

More information

Radiative Balance and the Faint Young Sun Paradox

Radiative Balance and the Faint Young Sun Paradox Radiative Balance and the Faint Young Sun Paradox Solar Irradiance Inverse Square Law Faint Young Sun Early Atmosphere Earth, Water, and Life 1. Water - essential medium for life. 2. Water - essential

More information

Radiation Heat Transfer. Introduction. Blackbody Radiation. Definitions ,

Radiation Heat Transfer. Introduction. Blackbody Radiation. Definitions , Radiation Heat Transfer Reading Problems 5-5-7 5-27, 5-33, 5-50, 5-57, 5-77, 5-79, 5-96, 5-07, 5-08 Introduction A narrower band inside the thermal radiation spectrum is denoted as the visible spectrum,

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

MAPH & & & & & & 02 LECTURE

MAPH & & & & & & 02 LECTURE Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Earth: A Dynamic Planet A. Solar and terrestrial radiation

Earth: A Dynamic Planet A. Solar and terrestrial radiation Earth: A Dynamic Planet A Aims To understand the basic energy forms and principles of energy transfer To understand the differences between short wave and long wave radiation. To appreciate that the wavelength

More information

Oppgavesett kap. 4 (1 av 2) GEF2200

Oppgavesett kap. 4 (1 av 2) GEF2200 Oppgavesett kap. 4 (1 av 2) GEF2200 hans.brenna@geo.uio.no Exercise 1: Wavelengths and wavenumbers (We will NOT go through this in the group session) What's the relation between wavelength and wavenumber?

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation Review of Remote Sensing Fundamentals Allen Huang Cooperative Institute for Meteorological Satellite Studies Space Science & Engineering Center University of Wisconsin-Madison, USA Topics: Visible & Infrared

More information

Questions you should be able to answer after reading the material

Questions you should be able to answer after reading the material Module 4 Radiation Energy of the Sun is of large importance in the Earth System, it is the external driving force of the processes in the atmosphere. Without Solar radiation processes in the atmosphere

More information

1. Runaway Greenhouse

1. Runaway Greenhouse 1. Runaway Greenhouse Making the simple complicated is commonplace; making the complicated simple, awesomely simple, that s creativity. - Charlie Mingus (Jazz Musician) Initially we assume that the radiative

More information

AT350 EXAM #1 September 23, 2003

AT350 EXAM #1 September 23, 2003 AT350 EXAM #1 September 23, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the questions by using a No. 2 pencil to completely fill

More information

The last 2 million years.

The last 2 million years. Lecture 5: Earth Climate History - Continued Ice core records from both Greenland and Antarctica have produced a remarkable record of climate during the last 450,000 years. Trapped air bubbles provide

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information

The greenhouse effect

The greenhouse effect 16 Waves of amplitude of 1 m roll onto a beach at a rate of one every 12 s. If the wavelength of the waves is 120 m, calculate (a) the velocity of the waves (b) how much power there is per metre along

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion Introduction to Climatology GEOGRAPHY 300 Tom Giambelluca University of Hawai i at Mānoa Solar Radiation and the Seasons Energy Energy: The ability to do work Energy: Force applied over a distance kg m

More information

Meteorology Pretest on Chapter 2

Meteorology Pretest on Chapter 2 Meteorology Pretest on Chapter 2 MULTIPLE CHOICE 1. The earth emits terrestrial radiation a) only at night b) all the time c) only during winter d) only over the continents 2. If an imbalance occurs between

More information

Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3

Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3 Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 1 Sections 1.1 through 1.3 1.1 Fundamental Concepts Attention is focused on thermal radiation, whose origins are associated

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

1. Composition and Structure

1. Composition and Structure Atmospheric sciences focuses on understanding the atmosphere of the earth and other planets. The motivations for studying atmospheric sciences are largely: weather forecasting, climate studies, atmospheric

More information

Dr. Linlin Ge The University of New South Wales

Dr. Linlin Ge  The University of New South Wales GMAT 9600 Principles of Remote Sensing Week2 Electromagnetic Radiation: Definition & Physics Dr. Linlin Ge www.gmat.unsw.edu.au/linlinge Basic radiation quantities Outline Wave and quantum properties Polarization

More information

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody.

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody. Blackbody Radiation A substance that absorbs all incident wavelengths completely is called a blackbody. What's the absorption spectrum of a blackbody? Absorption (%) 100 50 0 UV Visible IR Wavelength Blackbody

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

More information