Chapter 2 Solar and Infrared Radiation

Size: px
Start display at page:

Download "Chapter 2 Solar and Infrared Radiation"

Transcription

1 Chapter 2 Solar and Infrared Radiation Chapter overview: Fluxes Energy transfer Seasonal and daily changes in radiation Surface radiation budget Fluxes Flux (F): The transfer of a quantity per unit area per unit time (sometimes called flux density). A flux can be thought of as the inflow or outflow of a quantity through the side of a fixed volume. Fluxes can occur in all three directions - F x, F y, and F z What is the convention for the sign of a flux?

2 We can consider fluxes of mass or of heat. What are the units for a mass flux or a heat flux? The amount of a quantity transferred through a given area (A) in a given time (Δt) can be calculated as: Amount = F A Δt For a heat flux, the amount of heat transferred is represented by ΔQ H. Note: The textbook discusses kinematic fluxes, but we will not discuss fluxes in these terms in ATOC Unlike the textbook, we will use the symbol F to represent fluxes, not kinematic fluxes. What processes can cause a heat flux? Radiant flux: The radiant energy per unit area per unit time. Radiant energy: Energy transferred by electromagnetic waves (radiation).

3 Radiation emitted by the sun is referred to as solar or shortwave radiation. Shortwave radiation refers to the wavelength band (< 4 µm) that carries most of the energy associated with solar radiation Solar constant (or total solar irradiance) (S 0 ): The solar radiative flux, perpendicular to the solar beam, that enters the top of the atmosphere S 0 = 1366 W m -2 Radiation emitted by the earth is referred to as longwave, terrestrial, or infrared radiation. Longwave radiation refers to the wavelength band (> 4 µm) that carries most of the energy emitted by the Earth What wavelengths correspond to the peak shortwave emission from the Sun and longwave emission from the Earth? Advective flux: Caused by wind blowing through an area and carrying colder or warmer air with it. What are two ways that you could get a positive advective flux in the meridional direction? Turbulent flux: Caused by transport of warm or cold air by turbulent eddies. Both the advective and turbulent fluxes are caused by the movement of air. The advective flux is caused by the mean wind and the turbulent flux is caused by turbulent fluctuations of the wind.

4 Conductive flux: Flux caused by energy transfer due to molecules bouncing into each other. Conduction: The transfer of energy due to physical contact between objects. Energy transferred by conduction always goes from the warmer to the colder object. Which of the fluxes discussed above can occur in a vacuum? Seasonal and Daily Changes in Solar Radiation What role does solar radiation play in driving the Earth s weather? Atmospheric circulation Daily changes Seasonal changes What is the ultimate reason that the Earth has seasons? The ultimate cause of seasons is a change in the amount of solar energy received at the Earth s surface. The amount of solar energy received at the earth s surface depends on: Angle that sunlight enters the atmosphere and strikes surface Length of daylight

5 What causes these factors to vary throughout the year? Does the Earth s distance from the sun cause the seasons? Note: The textbook discusses orbital factors that affect the amount of solar radiation in additional detail. Earth tilt angle (Φ r ): The tilt of the Earth s axis relative to a line perpendicular to the ecliptic (orbital) plane of the Earth around the Sun. Currently Φ r = This angle determines the latitude of the Tropics of Cancer and Capricorn and of the Arctic and Antarctic circles. How is the Earth tilt angle related to these geographic locations?

6 Solar declination angle (δ s ): The angle between the ecliptic and the plane of the Earth s equator. When is the solar declination angle at its maximum, minimum, and zero? How can we describe the position of the sun relative to a location on Earth? Local elevation angle (Ψ): The angle of the sun above the local horizon Azimuth angle (α): The angle of the sun clockwise from north See the textbook for additional information on changes in the sun s position throughout the daily and annual cycles. Equations are provided to calculate the solar declination angle, the local elevation angle of the sun, and the azimuth angle of the sun. Average daily insolation: The average incoming solar radiation over an entire day. This accounts for the solar elevation angle (which varies seasonally and diurnally) and the length of day. During which season does the average daily insolation vary most between the pole and equator? Remember: The ultimate cause of seasons is a change in the amount of solar energy received at the Earth s surface.

7 Surface Radiation Budget Why doesn t the maximum daily temperature occur at noon, when the sun is highest in the sky and the surface is receiving the maximum amount of solar radiation? When during the day does the temperature begin to decrease? Net radiative flux (F * ): The sum of the incoming and outgoing radiative fluxes F * = K +K +I +I Downwelling solar radiation ( K ): solar radiation that enters the top of the atmosphere and passes through the atmosphere to the surface What factors influence the amount of downwelling solar radiation that reaches the surface of the Earth?

8 Reflected upwelling solar radiation ( K ): Solar radiation reflected from the surface K = A K Albedo (A): The ratio of the total reflected solar radiation to the total incoming solar radiation. A = E reflected E incomin g What is the average global albedo of the Earth? Downwelling longwave radiation ( I ): Radiation emitted from the atmosphere What factors influence the amount of downwelling longwave radiation? Upwelling longwave radiation ( I ): Radiation emitted from the Earth I = e IR σ SB T 4 e IR emissivity in the IR (longwave) portion of the radiative spectrum (typically 0.9 to 0.99 for most surfaces) σ SB - Stefan-Boltzman constant (=5.67x10-8 W m -2 K -4 )

9 In the tropics more radiant energy is gained than lost and in the polar regions more radiant energy is lost than gained. If the tropics and polar regions are not in energy balance why don t their temperatures either continually warm (tropics) or cool (polar regions)?

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun Radiation and the Planetary Energy Balance Electromagnetic Radiation Solar radiation warms the planet Conversion of solar energy at the surface Absorption and emission by the atmosphere The greenhouse

More information

Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Earth is tilted (oblique) on its Axis!

Earth is tilted (oblique) on its Axis! MONDAY AM Radiation, Atmospheric Greenhouse Effect Earth's orbit around the Sun is slightly elliptical (not circular) Seasons & Days Why do we have seasons? Why aren't seasonal temperatures highest at

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

ATMOS 5140 Lecture 1 Chapter 1

ATMOS 5140 Lecture 1 Chapter 1 ATMOS 5140 Lecture 1 Chapter 1 Atmospheric Radiation Relevance for Weather and Climate Solar Radiation Thermal Infrared Radiation Global Heat Engine Components of the Earth s Energy Budget Relevance for

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

4-1 The Role of Climate

4-1 The Role of Climate 4-1 The Role of Climate 1 of 26 What Is Climate? What Is Climate? Weather is the day-to-day condition of Earth's atmosphere at a particular time and place. Climate refers to the average year-after-year

More information

4-1 The Role of Climate

4-1 The Role of Climate biology 1 of 26 2 of 26 What Is Climate? What Is Climate? Weather is the day-to-day condition of Earth's atmosphere at a particular time and place. Climate refers to the average year-after-year conditions

More information

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun Insolation and Temperature variation Atmosphere: blanket of air surrounding earth Without our atmosphere: cold, quiet, cratered place Dynamic: currents and circulation cells June 23, 2008 Atmosphere important

More information

4-1 The Role of Climate. Copyright Pearson Prentice Hall

4-1 The Role of Climate. Copyright Pearson Prentice Hall 4-1 The Role of Climate Copyright Pearson Prentice Hall What Is Climate? Weather is the day-to-day condition of Earth's atmosphere at a particular time and place. Climate refers to the average year-after-year

More information

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3 Seasonal & Diurnal Temp Variations ATS351 Lecture 3 Earth-Sun Distance Change in distance has only a minimal effect on seasonal temperature. Note that during the N. hemisphere winter, we are CLOSER to

More information

Meteorology Pretest on Chapter 2

Meteorology Pretest on Chapter 2 Meteorology Pretest on Chapter 2 MULTIPLE CHOICE 1. The earth emits terrestrial radiation a) only at night b) all the time c) only during winter d) only over the continents 2. If an imbalance occurs between

More information

Chapter 2: The global ledger of radiation and heat

Chapter 2: The global ledger of radiation and heat Chapter 2: The global ledger of radiation and heat PROPERTIES OF RADIATION Everything radiates at all wavelengths! This includes the Sun, Earth, a candy bar, even us Fortunately, most objects don t radiate

More information

Chapter 3. Multiple Choice Questions

Chapter 3. Multiple Choice Questions Chapter 3 Multiple Choice Questions 1. In the case of electromagnetic energy, an object that is hot: a. radiates much more energy than a cool object b. radiates much less energy than a cool object c. radiates

More information

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out

More information

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 2: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Luminosity (L) the constant flux of energy put out

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

L.O: THE ANGLE OF INSOLATION ANGLE INSOLATION: THE ANGLE SUNLIGHT HITS THE EARTH

L.O: THE ANGLE OF INSOLATION ANGLE INSOLATION: THE ANGLE SUNLIGHT HITS THE EARTH L.O: THE ANGLE OF INSOLATION ANGLE INSOLATION: THE ANGLE SUNLIGHT HITS THE EARTH 1. The graph below shows air temperatures on a clear summer day from 7 a.m. to 12 noon at two locations, one in Florida

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy. Fluid Circulation Review Vocabulary Absorption - taking in energy as in radiation. For example, the ground will absorb the sun s radiation faster than the ocean water. Air pressure Albedo - Dark colored

More information

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody.

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody. Blackbody Radiation A substance that absorbs all incident wavelengths completely is called a blackbody. What's the absorption spectrum of a blackbody? Absorption (%) 100 50 0 UV Visible IR Wavelength Blackbody

More information

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance (1 of 12) Further Reading: Chapter 04 of the text book Outline - matter-energy interactions - shortwave radiation balance - longwave radiation balance - global radiation balance (2 of 12) Previously, we

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the primary reason New York State is warmer in July than in February? A) The altitude of the noon Sun is greater in February. B) The insolation in New York is greater in July. C) The Earth

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

9/1/14. Chapter 2: Heating Earth s Surface and Atmosphere. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck

9/1/14. Chapter 2: Heating Earth s Surface and Atmosphere. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck Chapter 2: Heating Earth s Surface and Atmosphere The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University! Earth s two principal

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

Topic # 12 Natural Climate Processes

Topic # 12 Natural Climate Processes Topic # 12 Natural Climate Processes A Primer on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes pp 63-68 in Class Notes RADIATION / ENERGY BALANCE Radiation

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Learning goals. Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature

Learning goals. Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature Greenhouse effect Learning goals Good absorbers are good emitters Albedo, and energy absorbed, changes equilibrium temperature Wavelength (color) and temperature related: Wein s displacement law Sun/Hot:

More information

- global radiative energy balance

- global radiative energy balance (1 of 14) Further Reading: Chapter 04 of the text book Outline - global radiative energy balance - insolation and climatic regimes - composition of the atmosphere (2 of 14) Introduction Last time we discussed

More information

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES Physical Geography (Geog. 300) Prof. Hugh Howard American River College RADIATION FROM the SUN SOLAR RADIATION Primarily shortwave (UV-SIR) Insolation Incoming

More information

Friday 8 September, :00-4:00 Class#05

Friday 8 September, :00-4:00 Class#05 Friday 8 September, 2017 3:00-4:00 Class#05 Topics for the hour Global Energy Budget, schematic view Solar Radiation Blackbody Radiation http://www2.gi.alaska.edu/~bhatt/teaching/atm694.fall2017/ notes.html

More information

Course Outline. About Me. Today s Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2.

Course Outline. About Me. Today s Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER 5. Human impacts 6.

More information

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1.

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1. Climate Chap. 2 Introduction I. Forces that drive climate and their global patterns A. Solar Input Earth s energy budget B. Seasonal cycles C. Atmospheric circulation D. Oceanic circulation E. Landform

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

Chapter 02 Energy and Matter in the Atmosphere

Chapter 02 Energy and Matter in the Atmosphere Chapter 02 Energy and Matter in the Atmosphere Multiple Choice Questions 1. The most common gas in the atmosphere is. A. oxygen (O2). B. carbon dioxide (CO2). C. nitrogen (N2). D. methane (CH4). Section:

More information

Earth Systems Science Chapter 3

Earth Systems Science Chapter 3 Earth Systems Science Chapter 3 ELECTROMAGNETIC RADIATION: WAVES I. Global Energy Balance and the Greenhouse Effect: The Physics of the Radiation Balance of the Earth 1. Electromagnetic Radiation: waves,

More information

Topic # 12 How Climate Works

Topic # 12 How Climate Works Topic # 12 How Climate Works A Primer on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes pp 63-68 in Class Notes How do we get energy from this........ to drive

More information

Topic # 11 HOW CLIMATE WORKS continued (Part II) pp in Class Notes

Topic # 11 HOW CLIMATE WORKS continued (Part II) pp in Class Notes Topic # 11 HOW CLIMATE WORKS continued (Part II) pp 61-67 in Class Notes To drive the circulation, the initial source of energy is from the Sun: Not to scale! EARTH- SUN Relationships 4 Things to Know

More information

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion Introduction to Climatology GEOGRAPHY 300 Tom Giambelluca University of Hawai i at Mānoa Solar Radiation and the Seasons Energy Energy: The ability to do work Energy: Force applied over a distance kg m

More information

Atmospheric "greenhouse effect" - How the presence of an atmosphere makes Earth's surface warmer

Atmospheric greenhouse effect - How the presence of an atmosphere makes Earth's surface warmer Atmospheric "greenhouse effect" - How the presence of an atmosphere makes Earth's surface warmer Some relevant parameters and facts (see previous slide sets) (So/) 32 W m -2 is the average incoming solar

More information

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Or, what happens to the energy received from the sun? First We Need to Understand The Ways in Which Heat Can be Transferred in the Atmosphere

More information

Lecture 11: Meridonal structure of the atmosphere

Lecture 11: Meridonal structure of the atmosphere Lecture 11: Meridonal structure of the atmosphere September 28, 2003 1 Meridional structure of the atmosphere In previous lectures we have focussed on the vertical structure of the atmosphere. Today, we

More information

P607 Climate and Energy (Dr. H. Coe)

P607 Climate and Energy (Dr. H. Coe) P607 Climate and Energy (Dr. H. Coe) Syllabus: The composition of the atmosphere and the atmospheric energy balance; Radiative balance in the atmosphere; Energy flow in the biosphere, atmosphere and ocean;

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

NATS 101 Section 13: Lecture 7. The Seasons

NATS 101 Section 13: Lecture 7. The Seasons NATS 101 Section 13: Lecture 7 The Seasons The Importance of Seasons The seasons govern both natural and human patterns of behavior. Some big and small examples: Planting and harvesting of crops Migratory

More information

(1) How does the annual average sun angle at solar noon (that is, the sun angle at noon averaged over a full year) depend on latitude?

(1) How does the annual average sun angle at solar noon (that is, the sun angle at noon averaged over a full year) depend on latitude? (1) How does the annual average sun angle at solar noon (that is, the sun angle at noon averaged over a full year) depend on latitude? (A) * As latitude increases, average sun angle at solar noon decreases.

More information

Temperature AOSC 200 Tim Canty

Temperature AOSC 200 Tim Canty Temperature AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Daily Temperatures Role of clouds, latitude, land/water Lecture 09 Feb 26 2019 1 Today s Weather

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Understanding the Greenhouse Effect

Understanding the Greenhouse Effect EESC V2100 The Climate System spring 200 Understanding the Greenhouse Effect Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 1096, USA kushnir@ldeo.columbia.edu Equilibrium

More information

CLASSICS. Handbook of Solar Radiation Data for India

CLASSICS. Handbook of Solar Radiation Data for India Solar radiation data is necessary for calculating cooling load for buildings, prediction of local air temperature and for the estimating power that can be generated from photovoltaic cells. Solar radiation

More information

Lesson Overview. Climate. Lesson Overview. 4.1 Climate

Lesson Overview. Climate. Lesson Overview. 4.1 Climate Lesson Overview 4.1 THINK ABOUT IT When you think about climate, you might think of dramatic headlines: Hurricane Katrina floods New Orleans! or Drought parches the Southeast! But big storms and seasonal

More information

MAPH & & & & & & 02 LECTURE

MAPH & & & & & & 02 LECTURE Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Atmospheric Radiation

Atmospheric Radiation Atmospheric Radiation NASA photo gallery Introduction The major source of earth is the sun. The sun transfer energy through the earth by radiated electromagnetic wave. In vacuum, electromagnetic waves

More information

Modeling of Environmental Systems

Modeling of Environmental Systems Modeling of Environmental Systems While the modeling of predator-prey dynamics is certainly simulating an environmental system, there is more to the environment than just organisms Recall our definition

More information

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere?

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere? The Atmosphere Introduction to atmosphere, weather, and climate Where is the atmosphere? Everywhere! Completely surrounds Earth February 20, 2010 What makes up the atmosphere? Argon Inert gas 1% Variable

More information

Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3.

Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3. Overview of the Earth s Atmosphere Composition 99% of the atmosphere is within 30km of the Earth s surface. N 2 78% and O 2 21% The percentages represent a constant amount of gas but cycles of destruction

More information

The Ocean-Atmosphere System II: Oceanic Heat Budget

The Ocean-Atmosphere System II: Oceanic Heat Budget The Ocean-Atmosphere System II: Oceanic Heat Budget C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth MAR 555 Lecture 2: The Oceanic Heat Budget Q

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Topic # 12 HOW CLIMATE WORKS

Topic # 12 HOW CLIMATE WORKS Topic # 12 HOW CLIMATE WORKS A Primer on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes Starts on p 67 in Class Notes Evidently, not scary enough. How do we

More information

Energy and the Earth AOSC 200 Tim Canty

Energy and the Earth AOSC 200 Tim Canty Energy and the Earth AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Energy absorption Radiative Equilibirum Lecture 08 Feb 21 2019 1 Today s Weather Map http://www.wpc.ncep.noaa.gov/sfc/namussfcwbg.gif

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

Chapter 11 Lecture Outline. Heating the Atmosphere

Chapter 11 Lecture Outline. Heating the Atmosphere Chapter 11 Lecture Outline Heating the Atmosphere They are still here! Focus on the Atmosphere Weather Occurs over a short period of time Constantly changing Climate Averaged over a long period of time

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

AT350 EXAM #1 September 23, 2003

AT350 EXAM #1 September 23, 2003 AT350 EXAM #1 September 23, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the questions by using a No. 2 pencil to completely fill

More information

The Atmosphere: Structure and Temperature

The Atmosphere: Structure and Temperature Chapter The Atmosphere: Structure and Temperature Geologists have uncovered evidence of when Earth was first able to support oxygenrich atmosphere similar to what we experience today and more so, take

More information

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown 1 Time allowed 50 mins. Answer ALL questions Total possible points;50 Number of pages:8 Part A: Multiple Choice (1 point each) [total 24] Answer all Questions by marking the corresponding number on the

More information

Global Climate Change

Global Climate Change Global Climate Change Definition of Climate According to Webster dictionary Climate: the average condition of the weather at a place over a period of years exhibited by temperature, wind velocity, and

More information

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson. Lesson 211: EARTH'S SEASONS Students learn the complex geometry and planetary motions that cause Earth to have four distinct seasons. Fundamental Questions Attempting to give thorough and reasonable answers

More information

In the News:

In the News: In the News: http://www.nytimes.com/2009/09/04/science/earth/04arctic.html?hp In the News: Reversal in Arctic cooling trend Kaufman et al. 2009, Science http://www.nytimes.com/2009/09/0 4/science/earth/04arctic.html?hp

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz

Sunlight and its Properties Part I. EE 446/646 Y. Baghzouz Sunlight and its Properties Part I EE 446/646 Y. Baghzouz The Sun a Thermonuclear Furnace The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction

More information

Photovoltaic Systems Solar Radiation

Photovoltaic Systems Solar Radiation PowerPoint Presentation Photovoltaic Systems Solar Radiation The Sun Solar Radiation Sun- Earth Relationships Array Orientation Solar Radiation Data Sets Estimating Array Performance Arizona Solar Power

More information

Topic # 11 HOW CLIMATE WORKS PART II

Topic # 11 HOW CLIMATE WORKS PART II Topic # 11 HOW CLIMATE WORKS PART II The next chapter in the story: How differences in INSOLATION between low and high latitudes drive atmospheric circulation! pp 64 in Class Notes THE RADIATION BALANCE

More information

Solar Radiation and the Seasons. LAST TIME in GEOG 1001! Chapter 1. 8/29/2010. Objectives

Solar Radiation and the Seasons. LAST TIME in GEOG 1001! Chapter 1.  8/29/2010. Objectives Solar Radiation and the Seasons GE G 1001 Professor Holly Barnard August 26, 2010 LAST TIME in GEOG 1001! Introductions Social contract No audible ringing or answering of cell phones Please text responsibly

More information

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves Skills Worksheet Directed Reading Section: Solar Energy and the Atmosphere 1. How is Earth s atmosphere heated? 2. Name the two primary sources of heat in the atmosphere. RADIATION In the space provided,

More information

ATS150 Global Climate Change Spring 2019 Candidate Questions for Exam #1

ATS150 Global Climate Change Spring 2019 Candidate Questions for Exam #1 1. How old is the Earth? About how long ago did it form? 2. What are the two most common gases in the atmosphere? What percentage of the atmosphere s molecules are made of each gas? 3. About what fraction

More information

Let s Think for a Second

Let s Think for a Second Weather and Climate Let s Think for a Second Why is weather important in Ohio? Is climate important in Ohio? Spend 2 minutes sharing your thoughts with 1 partner. First, Let s Watch This. http://video.nationalgeographic.com/video/science/earthsci/climate-weather-sci/

More information

Lecture 2: Light And Air

Lecture 2: Light And Air Lecture 2: Light And Air Earth s Climate System Earth, Mars, and Venus Compared Solar Radiation Greenhouse Effect Thermal Structure of the Atmosphere Atmosphere Ocean Solid Earth Solar forcing Land Energy,

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

atmospheric influences on insolation & the fate of solar radiation interaction of terrestrial radiation with atmospheric gases

atmospheric influences on insolation & the fate of solar radiation interaction of terrestrial radiation with atmospheric gases Goals for today: 19 Sept., 2011 Finish Ch 2 Solar Radiation & the Seasons Start Ch 3 Energy Balance & Temperature Ch 3 will take us through: atmospheric influences on insolation & the fate of solar radiation

More information

Radiation and the atmosphere

Radiation and the atmosphere Radiation and the atmosphere Of great importance is the difference between how the atmosphere transmits, absorbs, and scatters solar and terrestrial radiation streams. The most important statement that

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

Climate System. Sophie Zechmeister-Boltenstern

Climate System. Sophie Zechmeister-Boltenstern Climate System Sophie Zechmeister-Boltenstern Reference: Chapin F. St., Matson P., Mooney Harold A. 2002 Principles of Terrestrial Ecosystem Ecology. Springer, Berlin, 490 p. Structure of this lecture

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

Global Energy Balance. GEOG/ENST 2331: Lecture 4 Ahrens: Chapter 2

Global Energy Balance. GEOG/ENST 2331: Lecture 4 Ahrens: Chapter 2 Global Energy Balance GEOG/ENST 2331: Lecture 4 Ahrens: Chapter 2 Solstices and Equinoxes Winter Solstice was on December 21 last year 8 hours 22 minutes of daylight March (Vernal) Equinox: March 20 this

More information

Why the Earth has seasons. Why the Earth has seasons 1/20/11

Why the Earth has seasons. Why the Earth has seasons 1/20/11 Chapter 3 Earth revolves in elliptical path around sun every 365 days. Earth rotates counterclockwise or eastward every 24 hours. Earth closest to Sun (147 million km) in January, farthest from Sun (152

More information

Natural Causes of Climate. 3B Day 2

Natural Causes of Climate. 3B Day 2 Natural Causes of Climate 3B Day 2 Critical Content 3B: Investigate how daily weather over time determines climate patterns in a given region 2C: Recall the difference between weather and climate Describe

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1 Lecture 3. Changes in planetary albedo. Is there a clear signal caused by aerosols and clouds? Outline: 1. Background materials. 2. Papers for class discussion: Palle et al., Changes in Earth s reflectance

More information

Solar Insolation and Earth Radiation Budget Measurements

Solar Insolation and Earth Radiation Budget Measurements Week 13: November 19-23 Solar Insolation and Earth Radiation Budget Measurements Topics: 1. Daily solar insolation calculations 2. Orbital variations effect on insolation 3. Total solar irradiance measurements

More information