applications Rome, 9 February Università di Roma La Sapienza Robust model based clustering: methods and applications Francesco Dotto Introduction

Size: px
Start display at page:

Download "applications Rome, 9 February Università di Roma La Sapienza Robust model based clustering: methods and applications Francesco Dotto Introduction"

Transcription

1 model : fuzzy model : Università di Roma La Sapienza Rome, 9 February

2 Outline of the presentation model : fuzzy 1 General motivation 2 algorithm on trimming and reweigthing. 3 algorithm on trimming and geometric 4 clusterwise fuzzy regression model on trimming 2 and 4 : joint work with Alessio Farcomeni, Luis Angel Garcia Escudero and Agustin Mayo Iscar. 3 : joint work with Alessio Farcomeni

3 General Motivation model : fuzzy The presence of outlying observations may lead to unsatisfactory results like i.e: 1 Hetherogeneus groups artificially joined together 2 Spurious clusters containing only outlying observations may be detected 3 estimation of clusters parameters may be inconsistent To deal with these outlined issues we propose some robust methods on trimming

4 Arising problems model : Two main problems affect the existing robust method (detailed review in [Farcomeni and Greco, 2015] and [Ritter, 2015]): 1 Tuning the parameter establishing the proportion of trimmed observations 2 Choosing a proper constraint on the scatter matrices (required to avoid the effect of spurious maximizers) fuzzy

5 rtclust algorithm model : For issue 1 we propose the usage of the rtclust procedure ([ et al., 2015b]): fuzzy x 2 x 2 x True assignments x Initial x Final x 2 x 2 x True assignments x Initial x Final We start from the output of a robust method (i.e. the tclust [García-Escudero et al., 2008]) with a very high trimming level and then apply reweighting. x x

6 rtclust approach sketch of the algorithm model : fuzzy The reweighting proceeds, for pre-fixed α 1 ą α 2 ą... ą α L for each l 1,..., L as 1 Sort the Mahalanobis distances d p1q,, d pnq and take the sets: A tx i : d i ď d prnp1 αl qsqu and B tx i : d i ď χ 2 p,α L u (1) 2 Fix A X B th 1,, H K u, with " * H j x i P AXB such that d Σ l px i, m l j jq min d Σ q 1,...,k l px q i, mqq l 3 Update the clusters proportions and current contamination level 4 Update clusters centers and scatter matrices (2)

7 rtclust approach 5% contaminated dataset: Estimated location parameter model : Estimated µ p=2 p=4 p=6 rtlcust H&R Iterated H&R tclust MSE µ^ fuzzy 0.0 rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 Figure 1: Model s performance for µ estimation when p 2, 4, 6. Whenever the value exceeds the scale of the plot we put a IJ

8 Simulations results 5% contaminated dataset: Estimated scale parameter model : Estimated Σ p=2 p=4 p=6 rtlcust H&R Iterated H&R tclust MSE Σ^ fuzzy rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 Figure 2: Model s performance for Σ estimation when p 2, 4, 6 Whenever the value exceeds the scale of the plot we put a IJ

9 Simulations results 5% contaminated dataset: Estimated contamination level model : p=2 Estimated α p=4 p=6 rtlcust H&R Iterated H&R tclust α^ fuzzy rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 rtclust33 rtclust20 HR33 HR20 HR_it33 HR_it20 tclust33 tclust20 tclust10 tclust05 Figure 3: Model s performance for Σ estimation when p 2, 4, 6 Whenever the value exceeds the scale of the plot we put a IJ

10 Constraining the obtained solution Target function model : fuzzy Generally speaking a robust procedure aims to maximize the objective function given by: where: ź K ź j ź j f px i ; µ j ; Σ j q g ψi px i q j 1 ipr j irr j 1 f p q stands for the multivariate normal density 2 g ψi p q is the contaminating density with mild probabilistic assumption on it 3 K is the number of groups 4 R Ť K j 1 R j is the set of the clean observation and is such that #R rnp1 αqs (3)

11 Constraining the obtained solution Why? model : fuzzy Equation (3) is unbounded, for that reason the effect of the spurious maximizers must be controlled. Spurious may defined as parameter points having 0 standard deviation for some components and can be generated by any small number of sample points grouped sufficiently close together. Such points make the objective function tend to infinity and thus a spurious solution is returned as output of the algorithm

12 What spurious maximizers actually are??? A graphical representation model : Constrained Variances Uncostrained Variances fuzzy Figure 4: function y y x x Effect of constraint in the maximization of the objective

13 Constraining the obtained solution Some feasible solutions model : fuzzy Many solution to avoid extreme cases like Figure 12 can be used 1 Constraining on the ratio between between the highest eigenvalue and the lowest eigenvalue is one of the possible solutions: max j 1,2...,K max h 1,2...,p λ h pσ j q min j 1,2...,K min h 1,2...,p λ h pσ j q M n m n ď c with c P R Advantages: Interpetability, easy to be implemented. Disadvantages:When constraint the scale invariance of the obtained estimators is lost 2 Inserting on the estimated clusters shapes (4)

14 How to obtain models? model : fuzzy Let us consider the eigenvalue decomposition given by ([Celeux and Govaert, 1995]): where: Σ k λ k D k A k D T k for k 1, 2,... K (5) 1 λ k Σ k 1{d is the volume of the k th cluster 2 A k is an orthogonal matrix with the eigenvalues of Σ k, the shape of each cluster 3 D k is a matrix whose columns are given by the eigenvectors of Σ k and it determines the direction of each cluster.

15 Different Parametrization... models mclust proposal model : fuzzy proposal (work in progress) is to provide a robust version of all the model standing in table Model Name Parametrization ER Invariance EII λi Not required Isometric transformations VII λ k I Not required Isometric transformations EEI λa Not required Scaling VEI λ k A Not required Scaling EVI λa k Required Traslation VVI λ k A k Required Traslation EEE λdad T Not required Linear transformations EEV λd k ADk T Not required Linear transformations VEV λ k D k ADk T Not required Linear transformations VVV λ k D k A k Dk T Required Traslation Table 1: List of possible models obtained imposing shapes to the detected clusters

16 proposal Motivation and State of Art model : fuzzy Motivations: 1 Obtaining invariance properties of the estimators 2 Usage of geometric, interpretable output for the researcher State of art: 1 Good performance in simulation w.r.t existing proposals 2 Evaluating a suitable method to choose the proper model

17 Fuzzy and regression Merging the two approaches model : fuzzy In [ et al., 2015a] - in review for ADAC, many improvements required...crossed fingers!!! - we proposed a robust clusterwise regression model on fuzziness: 1 Trimming allows us to reach robustness 2 Fuzziness allows us to deal with bridge uncertainty around the assignment Generally speaking we aim to maximize the following objective function: nÿ i 1 j 1 kÿ uij m log `p j f py i ; x 1 i b j ` bj 0, sj 2 q (6)

18 Linear model : fuzzy methods are generally on estimating k groups around suitably defined centroids óó Each unit is assigned to each groups minimizing a function of a distance from the centroid. Linear methods are used to search k structure around an explanatory variable óó The assignment of a unit to each group is on the minimization of the regression error.

19 Fuzzy model : fuzzy For a given dataset x px 1,..., x n q with x i P R p, a unit can be assigned to a cluster 1 ď j ď k following two approaches: Crispy assignments where u ij u ij P t0, 1u (7) # 1 if x i P j 0 if x i R j Each observation belong to only one cluster Fuzzy assignments u ij P r0, 1s (8) where # 1 if x i full assignment in j u ij 0 if x i no assignment in j Intermediate assignments are taken in account

20 Sketch of the simulation study MSE of the estimated β model : (a) (b) (c) (d) (e) (f) (g) (h) fuzzy creg EM A creg FTCR creg EM A creg FTCR creg EM A creg FTCR creg EM A creg FTCR

21 I model : fuzzy Celeux, G. and Govaert, G. (1995). Gaussian parsimonious models. Pattern recognition, 28: , F., Farcomeni, A., García-Escudero, L., and Mayo-Iscar, A. (2015a). A fuzzy approach to robust clusterwise regression. In review for Advances in Data Analysis and Classification., F., Farcomeni, A., García-Escudero, L., and Mayo Iscar, A. (2015b). The rtclust procedure for robust. In 10 th Scientific Meeting of the CLassification and Data Analysis Group of the Italian Statstical Sociey. Book of Astract. CUEC.

22 II model : fuzzy Farcomeni, A. and Greco, L. (2015). Methods for Data Reduction. Chapman & Hall/CRC Press. García-Escudero, L., Gordaliza, A., Matrán, C., and Mayo-Iscar, A. (2008). A general trimming approach to robust cluster analysis. Ann Stat, 36: Ritter, G. (2015). Cluster Analysis and Variable Selection. Chapman & Hall/CRC Press.

The power of (extended) monitoring in robust clustering

The power of (extended) monitoring in robust clustering Statistical Methods & Applications manuscript No. (will be inserted by the editor) The power of (extended) monitoring in robust clustering Alessio Farcomeni and Francesco Dotto Received: date / Accepted:

More information

A robust clustering procedure with unknown number of clusters

A robust clustering procedure with unknown number of clusters A robust clustering procedure with unknown number of clusters Una procedura di cluster analysis robusta con un numero di cluster incognito Francesco Dotto and Alessio Farcomeni Abstract A new methodology

More information

Families of Parsimonious Finite Mixtures of Regression Models arxiv: v1 [stat.me] 2 Dec 2013

Families of Parsimonious Finite Mixtures of Regression Models arxiv: v1 [stat.me] 2 Dec 2013 Families of Parsimonious Finite Mixtures of Regression Models arxiv:1312.0518v1 [stat.me] 2 Dec 2013 Utkarsh J. Dang and Paul D. McNicholas Department of Mathematics & Statistics, University of Guelph

More information

Introduction to Robust Statistics. Anthony Atkinson, London School of Economics, UK Marco Riani, Univ. of Parma, Italy

Introduction to Robust Statistics. Anthony Atkinson, London School of Economics, UK Marco Riani, Univ. of Parma, Italy Introduction to Robust Statistics Anthony Atkinson, London School of Economics, UK Marco Riani, Univ. of Parma, Italy Multivariate analysis Multivariate location and scatter Data where the observations

More information

Parsimonious Gaussian Mixture Models

Parsimonious Gaussian Mixture Models Parsimonious Gaussian Mixture Models Brendan Murphy Department of Statistics, Trinity College Dublin, Ireland. East Liguria West Liguria Umbria North Apulia Coast Sardina Inland Sardinia South Apulia Calabria

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron LMC-IMAG & INRIA Rhône-Alpes Joint work with S. Girard and C. Schmid High Dimensional Discriminant Analysis - Lear seminar p.1/43 Introduction High

More information

INRIA Rh^one-Alpes. Abstract. Friedman (1989) has proposed a regularization technique (RDA) of discriminant analysis

INRIA Rh^one-Alpes. Abstract. Friedman (1989) has proposed a regularization technique (RDA) of discriminant analysis Regularized Gaussian Discriminant Analysis through Eigenvalue Decomposition Halima Bensmail Universite Paris 6 Gilles Celeux INRIA Rh^one-Alpes Abstract Friedman (1989) has proposed a regularization technique

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Model-based cluster analysis: a Defence. Gilles Celeux Inria Futurs

Model-based cluster analysis: a Defence. Gilles Celeux Inria Futurs Model-based cluster analysis: a Defence Gilles Celeux Inria Futurs Model-based cluster analysis Model-based clustering (MBC) consists of assuming that the data come from a source with several subpopulations.

More information

EXPLORING THE NUMBER OF GROUPS IN ROBUST MODEL-BASED CLUSTERING

EXPLORING THE NUMBER OF GROUPS IN ROBUST MODEL-BASED CLUSTERING EXPLORING THE NUMBER OF GROUPS IN ROBUST MODEL-BASED CLUSTERING L.A. García-Escudero, A. Gordaliza, C. Matrán and A. Mayo-Iscar Departamento de Estadística e Investigación Operativa Universidad de Valladolid.

More information

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM.

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM. Université du Sud Toulon - Var Master Informatique Probabilistic Learning and Data Analysis TD: Model-based clustering by Faicel CHAMROUKHI Solution The aim of this practical wor is to show how the Classification

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Forecasting Wind Ramps

Forecasting Wind Ramps Forecasting Wind Ramps Erin Summers and Anand Subramanian Jan 5, 20 Introduction The recent increase in the number of wind power producers has necessitated changes in the methods power system operators

More information

Reduction of Random Variables in Structural Reliability Analysis

Reduction of Random Variables in Structural Reliability Analysis Reduction of Random Variables in Structural Reliability Analysis S. Adhikari and R. S. Langley Department of Engineering University of Cambridge Trumpington Street Cambridge CB2 1PZ (U.K.) February 21,

More information

Motivating the Covariance Matrix

Motivating the Covariance Matrix Motivating the Covariance Matrix Raúl Rojas Computer Science Department Freie Universität Berlin January 2009 Abstract This note reviews some interesting properties of the covariance matrix and its role

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Model-Based Clustering of High-Dimensional Data: A review

Model-Based Clustering of High-Dimensional Data: A review Model-Based Clustering of High-Dimensional Data: A review Charles Bouveyron, Camille Brunet To cite this version: Charles Bouveyron, Camille Brunet. Model-Based Clustering of High-Dimensional Data: A review.

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron LMC-IMAG & INRIA Rhône-Alpes Joint work with S. Girard and C. Schmid ASMDA Brest May 2005 Introduction Modern data are high dimensional: Imagery:

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information

Linear vector spaces and subspaces.

Linear vector spaces and subspaces. Math 2051 W2008 Margo Kondratieva Week 1 Linear vector spaces and subspaces. Section 1.1 The notion of a linear vector space. For the purpose of these notes we regard (m 1)-matrices as m-dimensional vectors,

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software January 2012, Volume 46, Issue 6. http://www.jstatsoft.org/ HDclassif: An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data Laurent

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Degenerate Expectation-Maximization Algorithm for Local Dimension Reduction

Degenerate Expectation-Maximization Algorithm for Local Dimension Reduction Degenerate Expectation-Maximization Algorithm for Local Dimension Reduction Xiaodong Lin 1 and Yu Zhu 2 1 Statistical and Applied Mathematical Science Institute, RTP, NC, 27709 USA University of Cincinnati,

More information

MULTICHANNEL SIGNAL PROCESSING USING SPATIAL RANK COVARIANCE MATRICES

MULTICHANNEL SIGNAL PROCESSING USING SPATIAL RANK COVARIANCE MATRICES MULTICHANNEL SIGNAL PROCESSING USING SPATIAL RANK COVARIANCE MATRICES S. Visuri 1 H. Oja V. Koivunen 1 1 Signal Processing Lab. Dept. of Statistics Tampere Univ. of Technology University of Jyväskylä P.O.

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

Machine Learning for Data Science (CS4786) Lecture 12

Machine Learning for Data Science (CS4786) Lecture 12 Machine Learning for Data Science (CS4786) Lecture 12 Gaussian Mixture Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Back to K-means Single link is sensitive to outliners We

More information

Model selection criteria in Classification contexts. Gilles Celeux INRIA Futurs (orsay)

Model selection criteria in Classification contexts. Gilles Celeux INRIA Futurs (orsay) Model selection criteria in Classification contexts Gilles Celeux INRIA Futurs (orsay) Cluster analysis Exploratory data analysis tools which aim is to find clusters in a large set of data (many observations

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

arxiv: v1 [stat.me] 7 Aug 2015

arxiv: v1 [stat.me] 7 Aug 2015 Dimension reduction for model-based clustering Luca Scrucca Università degli Studi di Perugia August 0, 05 arxiv:508.07v [stat.me] 7 Aug 05 Abstract We introduce a dimension reduction method for visualizing

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Lecture 5. Gaussian Models - Part 1. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. November 29, 2016

Lecture 5. Gaussian Models - Part 1. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. November 29, 2016 Lecture 5 Gaussian Models - Part 1 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza November 29, 2016 Luigi Freda ( La Sapienza University) Lecture 5 November 29, 2016 1 / 42 Outline 1 Basics

More information

Louis Roussos Sports Data

Louis Roussos Sports Data Louis Roussos Sports Data Rank the sports you most like to participate in, 1 = favorite, 7 = least favorite. There are n=130 rank vectors. > sportsranks Baseball Football Basketball Tennis Cycling Swimming

More information

Lecture 7. Logistic Regression. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 11, 2016

Lecture 7. Logistic Regression. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 11, 2016 Lecture 7 Logistic Regression Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza December 11, 2016 Luigi Freda ( La Sapienza University) Lecture 7 December 11, 2016 1 / 39 Outline 1 Intro Logistic

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Accurate and Powerful Multivariate Outlier Detection

Accurate and Powerful Multivariate Outlier Detection Int. Statistical Inst.: Proc. 58th World Statistical Congress, 11, Dublin (Session CPS66) p.568 Accurate and Powerful Multivariate Outlier Detection Cerioli, Andrea Università di Parma, Dipartimento di

More information

Finite Mixture Models and Clustering

Finite Mixture Models and Clustering Finite Mixture Models and Clustering Mohamed Nadif LIPADE, Université Paris Descartes, France Nadif (LIPADE) EPAT, May, 2010 Course 3 1 / 40 Introduction Outline 1 Introduction Mixture Approach 2 Finite

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis .. December 20, 2013 Todays lecture. (PCA) (PLS-R) (LDA) . (PCA) is a method often used to reduce the dimension of a large dataset to one of a more manageble size. The new dataset can then be used to make

More information

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi Signal Modeling Techniques in Speech Recognition Hassan A. Kingravi Outline Introduction Spectral Shaping Spectral Analysis Parameter Transforms Statistical Modeling Discussion Conclusions 1: Introduction

More information

More on Unsupervised Learning

More on Unsupervised Learning More on Unsupervised Learning Two types of problems are to find association rules for occurrences in common in observations (market basket analysis), and finding the groups of values of observational data

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

Independent Component (IC) Models: New Extensions of the Multinormal Model

Independent Component (IC) Models: New Extensions of the Multinormal Model Independent Component (IC) Models: New Extensions of the Multinormal Model Davy Paindaveine (joint with Klaus Nordhausen, Hannu Oja, and Sara Taskinen) School of Public Health, ULB, April 2008 My research

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Learning sets and subspaces: a spectral approach

Learning sets and subspaces: a spectral approach Learning sets and subspaces: a spectral approach Alessandro Rudi DIBRIS, Università di Genova Optimization and dynamical processes in Statistical learning and inverse problems Sept 8-12, 2014 A world of

More information

A Bayesian Treatment of Linear Gaussian Regression

A Bayesian Treatment of Linear Gaussian Regression A Bayesian Treatment of Linear Gaussian Regression Frank Wood December 3, 2009 Bayesian Approach to Classical Linear Regression In classical linear regression we have the following model y β, σ 2, X N(Xβ,

More information

Table of Contents. Multivariate methods. Introduction II. Introduction I

Table of Contents. Multivariate methods. Introduction II. Introduction I Table of Contents Introduction Antti Penttilä Department of Physics University of Helsinki Exactum summer school, 04 Construction of multinormal distribution Test of multinormality with 3 Interpretation

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Detection of outliers in multivariate data:

Detection of outliers in multivariate data: 1 Detection of outliers in multivariate data: a method based on clustering and robust estimators Carla M. Santos-Pereira 1 and Ana M. Pires 2 1 Universidade Portucalense Infante D. Henrique, Oporto, Portugal

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

MATHEMATICS. Units Topics Marks I Relations and Functions 10

MATHEMATICS. Units Topics Marks I Relations and Functions 10 MATHEMATICS Course Structure Units Topics Marks I Relations and Functions 10 II Algebra 13 III Calculus 44 IV Vectors and 3-D Geometry 17 V Linear Programming 6 VI Probability 10 Total 100 Course Syllabus

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 6: Cluster Analysis Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2017/2018 Master in Mathematical Engineering

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

Clustering Oligarchies

Clustering Oligarchies Margareta Ackerman Shai Ben-David David Loker Sivan Sabato Caltech University of Waterloo University of Waterloo Microsoft Research Abstract We investigate the extent to which clustering algorithms are

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Principal Component Analysis and Linear Discriminant Analysis

Principal Component Analysis and Linear Discriminant Analysis Principal Component Analysis and Linear Discriminant Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/29

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Solution to Series 7

Solution to Series 7 Prof. r. M. Maathuis Multivariate tatistics 2014 olution to eries 7 1. a) Computing the 2 clusters with the K-means method. > set.seed(10) > kmean.bank

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Classification Methods II: Linear and Quadratic Discrimminant Analysis

Classification Methods II: Linear and Quadratic Discrimminant Analysis Classification Methods II: Linear and Quadratic Discrimminant Analysis Rebecca C. Steorts, Duke University STA 325, Chapter 4 ISL Agenda Linear Discrimminant Analysis (LDA) Classification Recall that linear

More information

Computational Connections Between Robust Multivariate Analysis and Clustering

Computational Connections Between Robust Multivariate Analysis and Clustering 1 Computational Connections Between Robust Multivariate Analysis and Clustering David M. Rocke 1 and David L. Woodruff 2 1 Department of Applied Science, University of California at Davis, Davis, CA 95616,

More information

Machine Learning 11. week

Machine Learning 11. week Machine Learning 11. week Feature Extraction-Selection Dimension reduction PCA LDA 1 Feature Extraction Any problem can be solved by machine learning methods in case of that the system must be appropriately

More information

Bubble Clustering: Set Covering via Union of Ellipses

Bubble Clustering: Set Covering via Union of Ellipses Bubble Clustering: Set Covering via Union of Ellipses Matt Kraning, Arezou Keshavarz, Lei Zhao CS229, Stanford University Email: {mkraning,arezou,leiz}@stanford.edu Abstract We develop an algorithm called

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment 1 Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013. (Problems 1 and

More information

Unsupervised Learning: Dimensionality Reduction

Unsupervised Learning: Dimensionality Reduction Unsupervised Learning: Dimensionality Reduction CMPSCI 689 Fall 2015 Sridhar Mahadevan Lecture 3 Outline In this lecture, we set about to solve the problem posed in the previous lecture Given a dataset,

More information

Minimum Hellinger Distance Estimation in a. Semiparametric Mixture Model

Minimum Hellinger Distance Estimation in a. Semiparametric Mixture Model Minimum Hellinger Distance Estimation in a Semiparametric Mixture Model Sijia Xiang 1, Weixin Yao 1, and Jingjing Wu 2 1 Department of Statistics, Kansas State University, Manhattan, Kansas, USA 66506-0802.

More information

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran 1. Let A m n be a matrix of real numbers. The matrix AA T has an eigenvector x with eigenvalue b. Then the eigenvector y of A T A

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Pattern Classification

Pattern Classification Pattern Classification Introduction Parametric classifiers Semi-parametric classifiers Dimensionality reduction Significance testing 6345 Automatic Speech Recognition Semi-Parametric Classifiers 1 Semi-Parametric

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Dimension Reduction for Model-based Clustering via Mixtures of Multivariate t-distributions

Dimension Reduction for Model-based Clustering via Mixtures of Multivariate t-distributions Dimension Reduction for Model-based Clustering via Mixtures of Multivariate t-distributions by Katherine Morris A Thesis presented to The University of Guelph In partial fulfilment of requirements for

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Computational Statistics and Data Analysis

Computational Statistics and Data Analysis Computational Statistics and Data Analysis 65 (2013) 29 45 Contents lists available at SciVerse ScienceDirect Computational Statistics and Data Analysis journal homepage: www.elsevier.com/locate/csda Robust

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Goal (Lecture): To present Probabilistic Principal Component Analysis (PPCA) using both Maximum Likelihood (ML) and Expectation Maximization

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Robust estimation of principal components from depth-based multivariate rank covariance matrix

Robust estimation of principal components from depth-based multivariate rank covariance matrix Robust estimation of principal components from depth-based multivariate rank covariance matrix Subho Majumdar Snigdhansu Chatterjee University of Minnesota, School of Statistics Table of contents Summary

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Data Exploration and Unsupervised Learning with Clustering

Data Exploration and Unsupervised Learning with Clustering Data Exploration and Unsupervised Learning with Clustering Paul F Rodriguez,PhD San Diego Supercomputer Center Predictive Analytic Center of Excellence Clustering Idea Given a set of data can we find a

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Xiuming Zhang zhangxiuming@u.nus.edu A*STAR-NUS Clinical Imaging Research Center October, 015 Summary This report derives

More information

Least Squares Optimization

Least Squares Optimization Least Squares Optimization The following is a brief review of least squares optimization and constrained optimization techniques, which are widely used to analyze and visualize data. Least squares (LS)

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information