Louis Roussos Sports Data

Size: px
Start display at page:

Download "Louis Roussos Sports Data"

Transcription

1 Louis Roussos Sports Data Rank the sports you most like to participate in, 1 = favorite, 7 = least favorite. There are n=130 rank vectors. > sportsranks Baseball Football Basketball Tennis Cycling Swimming Jogging [...]

2 K-means in R Set #Clusters = K = centers. nstart is the number of times it runs the algorithm, each time using a diferent random starting set of means. > kmeans(sportsranks,centers=2,nstart=10) K means clustering with 2 clusters of sizes 62, 68 Cluster means: Baseball Football Basketball Tennis Cycling Swimming Jogging Clustering vector: Within cluster sum of squares by cluster: [1] Available components: [1] cluster centers withinss size

3 Getting clusters of size K=2,..., 10 kms < vector( list,10) for(k in 2:10) { kms[[k]] < kmeans(sportsranks,centers=k,nstart=10) }

4 K = 1 BaseB FootB BsktB Ten Cyc Swim Jog Group K = 2 BaseB FootB BsktB Ten Cyc Swim Jog Group Group K = 3 BaseB FootB BsktB Ten Cyc Swim Jog Group Group Group K = 4 BaseB FootB BsktB Ten Cyc Swim Jog Group Group Group Group K = 2: Group 1 likes swimming and cycling, while group 2 likes the team sports, baseball, football, and basketball. K = 3: Group 1 appears to be about the same is the team sports group from K = 2, while groups 2 and 3 both like swimming and cycling. The difference is that group 3 does not like jogging, while group 2 does. K = 4: The team-sports group has split into one that likes tennis (group 3), and one that doesn t (group 2).

5 Plotting two clusters The idea is to project the observations to the subspace (which is just a line) that goes through the two clusters mean vectors. The z = µ 1 µ 2 µ 1 µ 2, is the unit vector pointing from µ 2 to µ 1. Then using z as an axis, the projections of the observations onto z have coordinates w i = x i z, i = 1,..., N.

6 The histogram K=2 Frequency Basketball Jogging Football Swimming Baseball Cycling Tennis X X W

7 Plot for K=3 If K = 3, then the three means lie in a plane, hence we would like to project the observations onto that plane. One approach is to use principal components on the means: Z = we apply the spectral decomposition to the sample covariance matrix of Z: 1 3 Z H 3 Z = GLG, (1) where G is orthogonal and L is diagonal. The diagonals of L here are 11.77, 4.07, and five zeros. We then rotate the data and the means using G, µ 1 µ 2 µ 3, W = XG and W (means) = ZG, Only the first two columns in each matrix are relevant.

8 The Plot K=3 Var Jogging 2 Baseball Football Tennis Basketball Cycling Swimming Var 1

9 The sums of squares SS K SS K = obj( µ 1,..., µ K ) = K k=1 {i y i =k} x i µ k 2.

10 The reduction of sums of squares 1-SS[k]/SS[k-1] K 1 SS K SS K 1

11 Silhouettes in R The function silhouette.km finds the silhouettes for a given clustering, then sort.silhouette orders them, first by cluster number, then by value. To plot the sillhouettes for k = 2,..., 10: sil.ave < NULL # To collect silhouette s means for each K par(mfrow=c(3,3)) for(k in 2:10) { sil < silhouette.km(sportsranks,kms[[k]]$centers) sil.ave < c(sil.ave,mean(sil)) ssil < sort.silhouette(sil,kms[[k]]$cluster) plot(ssil,type= h,xlab= Observations,ylab= Silhouettes ) title(paste( K =,K)) } The sil.ave calculated above can then be used to obtain the plot of averages: plot(2:10,sil.ave,type= l,xlab= K,ylab= Average silhouette width )

12 Plotting the silhouettes K = 2 K = Ave = K = Ave = K = Ave = Ave = 0.534

13 Plotting the silhouettes averages Average silhouette width K K = 2 seems like a good choice.

14 Model-based clustering Car data The data consists of size measurements on 111 automobiles, the variables include length, wheelbase, width, height, front and rear head room, front leg room, rear seating, front and rear shoulder room, and luggage area. The data are in the file cars. The variables have been normalized to have medians of 0 and median absolute deviations (MAD) of (the MAD for a N(0, 1)).

15 R for model-based clustering The R function we use is in the package mclust. The function is Mclust. The basic command is simple: mcars < Mclust(cars) There are many options for plotting in the package. To see a plot of the BIC s, use plot(mcars,cars,what= BIC ) You have to clicking on the graphics window, or hit enter, to reveal the plot. Not that the BIC s in this function are actually the BIC s. So we want to maximize it.

16 Plotting the BIC s BIC EII VII EEI VEI EVI VVI EEE EEV VEV VVV number of components K = 2, VVV is best.

17 What is VVV? To find the name of the best model: > mcars best model: ellipsoidal, unconstrained with 2 components That K = 2 is easy to see. The assumptions on the covariance matrices are ellipsoidal, which means they have no special structure, and unconstrained, which means they are not assumed equal for the two groups, Σ 1 = Σ 2. To plot variable 1 (length) versus variable 4 (height), use plot(mcars,cars,what= classification,dimens=c(1,4))

18 Plotting the clusters Height FrtLegRoom Length Width Luggage PC RearHd PC1

19 The cars in group 2 Rear Head Rear Seating Rear Shoulder Luggage Chevrolet Corvette Honda Civic CRX Mazda MX5 Miata Mazda RX Nissan 300ZX Chevrolet Astro Chevrolet Lumina APV Dodge Caravan Dodge Grand Caravan Ford Aerostar Mazda MPV Mitsubishi Wagon Nissan Axxess Nissan Van Volkswagen Vanagon

20 Just group 1 Redo on just the group 1 automobiles: cars1 < cars[mcars$classification==1,] mcars1 < Mclust(cars1) mcars1 best model: elliposidal multivariate normal with 1 components The best is one big cluster.

21 The models in mclust Code Description Σ k EII spherical, equal volume σ 2 I p VII spherical, unequal volume σk 2I p EEI diagonal, equal volume and shape Λ VEI diagonal, varying volume, equal shape c k EVI diagonal, equal volume, varying shape c k VVI diagonal, varying volume and shape Λ k EEE ellipsoidal, equal volume, shape, and orientation Σ EEV ellipsoidal, equal volume and equal shape Γ k ΛΓ k VEV ellipsoidal, equal shape c k Γ k Γ k VVV ellipsoidal, varying volume, shape, and orientation arbitrary Here, Λ s are diagonal matrices with positive diagonals, s are diagonal matrices with positive diagonals whose product is 1, Γ s are orthogonal matrices, Σ s are arbitrary nonnegative definite symmetric matrices, and c s are positive scalars. A subscript k on an element means the groups can have different values for that element. No subscript means that element is the same for each group.

22 Hierarchical clustering of the sports plclust(hclust(dist(t(sportsranks)))) Height Baseball Football Basketball Jogging Tennis Cycling Swimming Complete linkage

23 Hierarchical clustering of the individuals par(mfrow=c(2,1)) dxs < dist(sportsranks) # Gets Euclidean distances lbl < rep(,130) # Prefer no labels for the individuals plclust(hclust(dxs),xlab= Complete linkage,sub=,labels=lbl) plclust(hclust(dxs,method= single ),xlab= Single linkage,sub=,labels=lbl) Height Complete linkage Height Single linkage

Solution to Series 7

Solution to Series 7 Prof. r. M. Maathuis Multivariate tatistics 2014 olution to eries 7 1. a) Computing the 2 clusters with the K-means method. > set.seed(10) > kmean.bank

More information

STAT 730 Chapter 14: Multidimensional scaling

STAT 730 Chapter 14: Multidimensional scaling STAT 730 Chapter 14: Multidimensional scaling Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Data Analysis 1 / 16 Basic idea We have n objects and a matrix

More information

Principal Components. Summary. Sample StatFolio: pca.sgp

Principal Components. Summary. Sample StatFolio: pca.sgp Principal Components Summary... 1 Statistical Model... 4 Analysis Summary... 5 Analysis Options... 7 Scree Plot... 8 Component Weights... 9 D and 3D Component Plots... 10 Data Table... 11 D and 3D Component

More information

Factor Analysis. Summary. Sample StatFolio: factor analysis.sgp

Factor Analysis. Summary. Sample StatFolio: factor analysis.sgp Factor Analysis Summary... 1 Data Input... 3 Statistical Model... 4 Analysis Summary... 5 Analysis Options... 7 Scree Plot... 9 Extraction Statistics... 10 Rotation Statistics... 11 D and 3D Scatterplots...

More information

Chapter 24: Comparing means

Chapter 24: Comparing means Chapter 4: Comparing means Example: Consumer Reports annually conducts a survey of automobile reliability Approximately 4 million households are surveyed by mail, The 990 survey is summarized in the Figure

More information

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models Bare minimum on matrix algebra Psychology 588: Covariance structure and factor models Matrix multiplication 2 Consider three notations for linear combinations y11 y1 m x11 x 1p b11 b 1m y y x x b b n1

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 6: Cluster Analysis Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2017/2018 Master in Mathematical Engineering

More information

Linear Algebra, Summer 2011, pt. 3

Linear Algebra, Summer 2011, pt. 3 Linear Algebra, Summer 011, pt. 3 September 0, 011 Contents 1 Orthogonality. 1 1.1 The length of a vector....................... 1. Orthogonal vectors......................... 3 1.3 Orthogonal Subspaces.......................

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Data Exploration and Unsupervised Learning with Clustering

Data Exploration and Unsupervised Learning with Clustering Data Exploration and Unsupervised Learning with Clustering Paul F Rodriguez,PhD San Diego Supercomputer Center Predictive Analytic Center of Excellence Clustering Idea Given a set of data can we find a

More information

COMPLEX PRINCIPAL COMPONENT SPECTRA EXTRACTION

COMPLEX PRINCIPAL COMPONENT SPECTRA EXTRACTION COMPLEX PRINCIPAL COMPONEN SPECRA EXRACION PROGRAM complex_pca_spectra Computing principal components o begin, click the Formation attributes tab in the AASPI-UIL window and select program complex_pca_spectra:

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

applications Rome, 9 February Università di Roma La Sapienza Robust model based clustering: methods and applications Francesco Dotto Introduction

applications Rome, 9 February Università di Roma La Sapienza Robust model based clustering: methods and applications Francesco Dotto Introduction model : fuzzy model : Università di Roma La Sapienza Rome, 9 February Outline of the presentation model : fuzzy 1 General motivation 2 algorithm on trimming and reweigthing. 3 algorithm on trimming and

More information

The mclust Package. January 18, Author C. Fraley and A.E. Raftery, Dept. of Statistics, University of Washington.

The mclust Package. January 18, Author C. Fraley and A.E. Raftery, Dept. of Statistics, University of Washington. The mclust Package January 18, 2005 Version 2.1-8 Author C. Fraley and A.E. Raftery, Dept. of Statistics, University of Washington. Title Model-based cluster analysis Model-based cluster analysis: the

More information

Principal Component Analysis. Applied Multivariate Statistics Spring 2012

Principal Component Analysis. Applied Multivariate Statistics Spring 2012 Principal Component Analysis Applied Multivariate Statistics Spring 2012 Overview Intuition Four definitions Practical examples Mathematical example Case study 2 PCA: Goals Goal 1: Dimension reduction

More information

Multiple Variable Analysis

Multiple Variable Analysis Multiple Variable Analysis Revised: 10/11/2017 Summary... 1 Data Input... 3 Analysis Summary... 3 Analysis Options... 4 Scatterplot Matrix... 4 Summary Statistics... 6 Confidence Intervals... 7 Correlations...

More information

arxiv: v1 [stat.me] 7 Aug 2015

arxiv: v1 [stat.me] 7 Aug 2015 Dimension reduction for model-based clustering Luca Scrucca Università degli Studi di Perugia August 0, 05 arxiv:508.07v [stat.me] 7 Aug 05 Abstract We introduce a dimension reduction method for visualizing

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

GEOMETRY OF MATRICES x 1

GEOMETRY OF MATRICES x 1 GEOMETRY OF MATRICES. SPACES OF VECTORS.. Definition of R n. The space R n consists of all column vectors with n components. The components are real numbers... Representation of Vectors in R n.... R. The

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis .. December 20, 2013 Todays lecture. (PCA) (PLS-R) (LDA) . (PCA) is a method often used to reduce the dimension of a large dataset to one of a more manageble size. The new dataset can then be used to make

More information

Clustering: K-means. -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD

Clustering: K-means. -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD Clustering: K-means -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 Clustering Introduction When clustering, we seek to simplify the data via a small(er) number of summarizing variables

More information

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces Singular Value Decomposition This handout is a review of some basic concepts in linear algebra For a detailed introduction, consult a linear algebra text Linear lgebra and its pplications by Gilbert Strang

More information

Chapter 5: Exploring Data: Distributions Lesson Plan

Chapter 5: Exploring Data: Distributions Lesson Plan Lesson Plan Exploring Data Displaying Distributions: Histograms For All Practical Purposes Mathematical Literacy in Today s World, 7th ed. Interpreting Histograms Displaying Distributions: Stemplots Describing

More information

8 Eigenvectors and the Anisotropic Multivariate Gaussian Distribution

8 Eigenvectors and the Anisotropic Multivariate Gaussian Distribution Eigenvectors and the Anisotropic Multivariate Gaussian Distribution Eigenvectors and the Anisotropic Multivariate Gaussian Distribution EIGENVECTORS [I don t know if you were properly taught about eigenvectors

More information

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis: Uses one group of variables (we will call this X) In

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Multivariate analysis of genetic data: exploring groups diversity

Multivariate analysis of genetic data: exploring groups diversity Multivariate analysis of genetic data: exploring groups diversity T. Jombart Imperial College London Bogota 01-12-2010 1/42 Outline Introduction Clustering algorithms Hierarchical clustering K-means Multivariate

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software January 2012, Volume 46, Issue 6. http://www.jstatsoft.org/ HDclassif: An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data Laurent

More information

STAT 151A: Lab 1. 1 Logistics. 2 Reference. 3 Playing with R: graphics and lm() 4 Random vectors. Billy Fang. 2 September 2017

STAT 151A: Lab 1. 1 Logistics. 2 Reference. 3 Playing with R: graphics and lm() 4 Random vectors. Billy Fang. 2 September 2017 STAT 151A: Lab 1 Billy Fang 2 September 2017 1 Logistics Billy Fang (blfang@berkeley.edu) Office hours: Monday 9am-11am, Wednesday 10am-12pm, Evans 428 (room changes will be written on the chalkboard)

More information

Figure T1: Consumer Segments with No Adverse Selection. Now, the discounted utility, V, of a segment 1 consumer is: Segment 1 (Buy New)

Figure T1: Consumer Segments with No Adverse Selection. Now, the discounted utility, V, of a segment 1 consumer is: Segment 1 (Buy New) Online Technical Companion to Accompany Trade-ins in Durable Goods Markets: Theory and Evidence This appendix is divided into six main sections which are ordered in a sequence corresponding to their appearance

More information

Assignment #10: Diagonalization of Symmetric Matrices, Quadratic Forms, Optimization, Singular Value Decomposition. Name:

Assignment #10: Diagonalization of Symmetric Matrices, Quadratic Forms, Optimization, Singular Value Decomposition. Name: Assignment #10: Diagonalization of Symmetric Matrices, Quadratic Forms, Optimization, Singular Value Decomposition Due date: Friday, May 4, 2018 (1:35pm) Name: Section Number Assignment #10: Diagonalization

More information

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where:

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where: VAR Model (k-variate VAR(p model (in the Reduced Form: where: Y t = A + B 1 Y t-1 + B 2 Y t-2 + + B p Y t-p + ε t Y t = (y 1t, y 2t,, y kt : a (k x 1 vector of time series variables A: a (k x 1 vector

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Motivating the Covariance Matrix

Motivating the Covariance Matrix Motivating the Covariance Matrix Raúl Rojas Computer Science Department Freie Universität Berlin January 2009 Abstract This note reviews some interesting properties of the covariance matrix and its role

More information

Short Answer Questions: Answer on your separate blank paper. Points are given in parentheses.

Short Answer Questions: Answer on your separate blank paper. Points are given in parentheses. ISQS 6348 Final exam solutions. Name: Open book and notes, but no electronic devices. Answer short answer questions on separate blank paper. Answer multiple choice on this exam sheet. Put your name on

More information

Clusters. Unsupervised Learning. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Clusters. Unsupervised Learning. Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Clusters Unsupervised Learning Luc Anselin http://spatial.uchicago.edu 1 curse of dimensionality principal components multidimensional scaling classical clustering methods 2 Curse of Dimensionality 3 Curse

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Parsimonious Gaussian Mixture Models

Parsimonious Gaussian Mixture Models Parsimonious Gaussian Mixture Models Brendan Murphy Department of Statistics, Trinity College Dublin, Ireland. East Liguria West Liguria Umbria North Apulia Coast Sardina Inland Sardinia South Apulia Calabria

More information

FINM 331: MULTIVARIATE DATA ANALYSIS FALL 2017 PROBLEM SET 3

FINM 331: MULTIVARIATE DATA ANALYSIS FALL 2017 PROBLEM SET 3 FINM 331: MULTIVARIATE DATA ANALYSIS FALL 2017 PROBLEM SET 3 The required files for all problems can be found in: http://www.stat.uchicago.edu/~lekheng/courses/331/hw3/ The file name indicates which problem

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

Families of Parsimonious Finite Mixtures of Regression Models arxiv: v1 [stat.me] 2 Dec 2013

Families of Parsimonious Finite Mixtures of Regression Models arxiv: v1 [stat.me] 2 Dec 2013 Families of Parsimonious Finite Mixtures of Regression Models arxiv:1312.0518v1 [stat.me] 2 Dec 2013 Utkarsh J. Dang and Paul D. McNicholas Department of Mathematics & Statistics, University of Guelph

More information

Robustness of Principal Components

Robustness of Principal Components PCA for Clustering An objective of principal components analysis is to identify linear combinations of the original variables that are useful in accounting for the variation in those original variables.

More information

O.E. Alloy Wheel Weight Applications

O.E. Alloy Wheel Weight Applications O.E. Alloy Wheel Weight Applications Passenger Cars Vehicle Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 n Acura n AUDI 1 All EN EN EN EN EN EN EN EN EN EN EN n BMW 1 All IAWbo IAWbo IAWbo

More information

(b) Find the constituent matrices of A. For this, we need the eigenvalues of A, which we can find by using the Maple command "eigenvals":

(b) Find the constituent matrices of A. For this, we need the eigenvalues of A, which we can find by using the Maple command eigenvals: Problem 5 : The card deal problem First solution: using the linalg package (a) Defining the matrix A. First define B = 13A: (1) (b) Find the constituent matrices of A. For this, we need the eigenvalues

More information

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each

Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each Repeated-Measures ANOVA in SPSS Correct data formatting for a repeated-measures ANOVA in SPSS involves having a single line of data for each participant, with the repeated measures entered as separate

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

This appendix provides a very basic introduction to linear algebra concepts.

This appendix provides a very basic introduction to linear algebra concepts. APPENDIX Basic Linear Algebra Concepts This appendix provides a very basic introduction to linear algebra concepts. Some of these concepts are intentionally presented here in a somewhat simplified (not

More information

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Name: Section: Question Points

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

Unsupervised Learning: Dimensionality Reduction

Unsupervised Learning: Dimensionality Reduction Unsupervised Learning: Dimensionality Reduction CMPSCI 689 Fall 2015 Sridhar Mahadevan Lecture 3 Outline In this lecture, we set about to solve the problem posed in the previous lecture Given a dataset,

More information

Package sgpca. R topics documented: July 6, Type Package. Title Sparse Generalized Principal Component Analysis. Version 1.0.

Package sgpca. R topics documented: July 6, Type Package. Title Sparse Generalized Principal Component Analysis. Version 1.0. Package sgpca July 6, 2013 Type Package Title Sparse Generalized Principal Component Analysis Version 1.0 Date 2012-07-05 Author Frederick Campbell Maintainer Frederick Campbell

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Keystone Exam Review: Module 2. Linear Functions and Data Organizations

Keystone Exam Review: Module 2. Linear Functions and Data Organizations Algebra Keystone Review: M2 Name: Date: Period: Part : Multiple Choice Questions. ) Which graph shows y as a function of x. Keystone Exam Review: Module 2 Linear Functions and Data Organizations A) B)

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lecture 18, Friday 18 th November 2016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Mathematics

More information

series. Utilize the methods of calculus to solve applied problems that require computational or algebraic techniques..

series. Utilize the methods of calculus to solve applied problems that require computational or algebraic techniques.. 1 Use computational techniques and algebraic skills essential for success in an academic, personal, or workplace setting. (Computational and Algebraic Skills) MAT 203 MAT 204 MAT 205 MAT 206 Calculus I

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Classification 2: Linear discriminant analysis (continued); logistic regression

Classification 2: Linear discriminant analysis (continued); logistic regression Classification 2: Linear discriminant analysis (continued); logistic regression Ryan Tibshirani Data Mining: 36-462/36-662 April 4 2013 Optional reading: ISL 4.4, ESL 4.3; ISL 4.3, ESL 4.4 1 Reminder:

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Introduction to Independent Component Analysis. Jingmei Lu and Xixi Lu. Abstract

Introduction to Independent Component Analysis. Jingmei Lu and Xixi Lu. Abstract Final Project 2//25 Introduction to Independent Component Analysis Abstract Independent Component Analysis (ICA) can be used to solve blind signal separation problem. In this article, we introduce definition

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

Regularized Discriminant Analysis and Reduced-Rank LDA

Regularized Discriminant Analysis and Reduced-Rank LDA Regularized Discriminant Analysis and Reduced-Rank LDA Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Regularized Discriminant Analysis A compromise between LDA and

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works CS68: The Modern Algorithmic Toolbox Lecture #8: How PCA Works Tim Roughgarden & Gregory Valiant April 20, 206 Introduction Last lecture introduced the idea of principal components analysis (PCA). The

More information

Principal component analysis (PCA) for clustering gene expression data

Principal component analysis (PCA) for clustering gene expression data Principal component analysis (PCA) for clustering gene expression data Ka Yee Yeung Walter L. Ruzzo Bioinformatics, v17 #9 (2001) pp 763-774 1 Outline of talk Background and motivation Design of our empirical

More information

REVIEW SET MIDTERM 1

REVIEW SET MIDTERM 1 Physics 010 Fall 01 Orest Symko REVIEW SET MIDTERM 1 1. On April 15, 1991, Dr. Rudolph completed the Boston Marathon (6 miles, 385 yards) in a time of 3 hours, minutes, 30 seconds. Later in the summer

More information

Matrix Vector Products

Matrix Vector Products We covered these notes in the tutorial sessions I strongly recommend that you further read the presented materials in classical books on linear algebra Please make sure that you understand the proofs and

More information

Dimensionality Reduction and Principle Components

Dimensionality Reduction and Principle Components Dimensionality Reduction and Principle Components Ken Kreutz-Delgado (Nuno Vasconcelos) UCSD ECE Department Winter 2012 Motivation Recall, in Bayesian decision theory we have: World: States Y in {1,...,

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS PRINCIPAL COMPONENTS ANALYSIS Iris Data Let s find Principal Components using the iris dataset. This is a well known dataset, often used to demonstrate the effect of clustering algorithms. It contains

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1

Nature Biotechnology: doi: /nbt Supplementary Figure 1 Supplementary Figure 1 MNN corrects nonconstant batch effects. By using locally linear corrections, MNN can handle non-constant batch effects, here simulated as a small angle rotation of data on twodimensional

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Computational functional genomics

Computational functional genomics Computational functional genomics (Spring 2005: Lecture 8) David K. Gifford (Adapted from a lecture by Tommi S. Jaakkola) MIT CSAIL Basic clustering methods hierarchical k means mixture models Multi variate

More information

c 4, < y 2, 1 0, otherwise,

c 4, < y 2, 1 0, otherwise, Fundamentals of Big Data Analytics Univ.-Prof. Dr. rer. nat. Rudolf Mathar Problem. Probability theory: The outcome of an experiment is described by three events A, B and C. The probabilities Pr(A) =,

More information

Dimensionality Reduction and Principal Components

Dimensionality Reduction and Principal Components Dimensionality Reduction and Principal Components Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Motivation Recall, in Bayesian decision theory we have: World: States Y in {1,..., M} and observations of X

More information

Operators and the Formula Argument in lm

Operators and the Formula Argument in lm Operators and the Formula Argument in lm Recall that the first argument of lm (the formula argument) took the form y. or y x (recall that the term on the left of the told lm what the response variable

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Polynomial Regression

Polynomial Regression Polynomial Regression Summary... 1 Analysis Summary... 3 Plot of Fitted Model... 4 Analysis Options... 6 Conditional Sums of Squares... 7 Lack-of-Fit Test... 7 Observed versus Predicted... 8 Residual Plots...

More information

Principal Component Analysis

Principal Component Analysis Machine Learning Michaelmas 2017 James Worrell Principal Component Analysis 1 Introduction 1.1 Goals of PCA Principal components analysis (PCA) is a dimensionality reduction technique that can be used

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform KLT JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform Has many names cited in literature: Karhunen-Loève Transform (KLT); Karhunen-Loève Decomposition

More information

L3: Review of linear algebra and MATLAB

L3: Review of linear algebra and MATLAB L3: Review of linear algebra and MATLAB Vector and matrix notation Vectors Matrices Vector spaces Linear transformations Eigenvalues and eigenvectors MATLAB primer CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

More information

Dimension Reduction and Iterative Consensus Clustering

Dimension Reduction and Iterative Consensus Clustering Dimension Reduction and Iterative Consensus Clustering Southeastern Clustering and Ranking Workshop August 24, 2009 Dimension Reduction and Iterative 1 Document Clustering Geometry of the SVD Centered

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity GALILEAN RELATIVITY Projectile motion The Principle of Relativity When we think of the term relativity, the person who comes immediately to mind is of course Einstein. Galileo actually understood what

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

The Pennsylvania State University The Graduate School Eberly College of Science VISUAL ANALYTICS THROUGH GAUSSIAN MIXTURE MODELS WITH

The Pennsylvania State University The Graduate School Eberly College of Science VISUAL ANALYTICS THROUGH GAUSSIAN MIXTURE MODELS WITH The Pennsylvania State University The Graduate School Eberly College of Science VISUAL ANALYTICS THROUGH GAUSSIAN MIXTURE MODELS WITH SUBSPACE CONSTRAINED COMPONENT MEANS A Thesis in Statistics by Mu Qiao

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Problem 1. CS205 Homework #2 Solutions. Solution

Problem 1. CS205 Homework #2 Solutions. Solution CS205 Homework #2 s Problem 1 [Heath 3.29, page 152] Let v be a nonzero n-vector. The hyperplane normal to v is the (n-1)-dimensional subspace of all vectors z such that v T z = 0. A reflector is a linear

More information

Basic Concepts in Matrix Algebra

Basic Concepts in Matrix Algebra Basic Concepts in Matrix Algebra An column array of p elements is called a vector of dimension p and is written as x p 1 = x 1 x 2. x p. The transpose of the column vector x p 1 is row vector x = [x 1

More information

Physics February 2, Hand-In 10.6 Energy Problems

Physics February 2, Hand-In 10.6 Energy Problems Physics February 2, 2018 Hand-In 10.6 Energy Problems Momentum and Impulse Momentum and Impulse Momentum A team is said to have Momentum if they are on a roll, or hard to stop. In Physics, momentum is

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

LAB 2: Orthogonal Projections, the Four Fundamental Subspaces, QR Factorization, and Inconsistent Linear Systems

LAB 2: Orthogonal Projections, the Four Fundamental Subspaces, QR Factorization, and Inconsistent Linear Systems Math 550A MATLAB Assignment #2 1 Revised 8/14/10 LAB 2: Orthogonal Projections, the Four Fundamental Subspaces, QR Factorization, and Inconsistent Linear Systems In this lab you will use Matlab to study

More information