High Dimensional Discriminant Analysis

Size: px
Start display at page:

Download "High Dimensional Discriminant Analysis"

Transcription

1 High Dimensional Discriminant Analysis Charles Bouveyron LMC-IMAG & INRIA Rhône-Alpes Joint work with S. Girard and C. Schmid ASMDA Brest May 2005

2 Introduction Modern data are high dimensional: Imagery: MRI, Computer vision, Biology: DNA micro-array. Classication is very dicult in high dimensional spaces: many learning methods suer from the curse of dimensionality [Bel61], the empty space phenomenum [ST83] allows to assume that data live in low-dimensional subspaces.

3 Outline 1 Framework of discriminant analysis 2 New model for high-dimensional data 3 High Dimensional Discriminant Analysis 4 Estimators and intrinsic dimension estimation 5 Numerical results 6 Conclusion & work in progress

4 Classication Classication: supervised classication (discriminant analysis), unsupervised classication (clustering). 2 main classication methods family: generative methods: QDA, LDA, discriminative methods: logistic regression, SVM. Generative models can be both used in supervised and unsupervised classication.

5 Discrimination problem The basic problem: assign an observation x = (x 1,..., x p ) R p with unknown class membership to one of k classes C 1,..., C k known a priori. We dispose of a learning dataset A: A = {(x 1, y 1 ),..., (x n, y n )/x j R p and y j {1,..., k}}, where the vector x j contains p explanatory variables and y j indicates the index of the class of x j. We have to construct a decision rule δ: δ : R p {1,..., k} x y.

6 Bayes decision rule The optimal decision rule δ is : δ : x C i, if i = argmax{p(c i x)}, i=1,...,k δ : x C i, if i = argmin{ 2 log(π i f i (x))}, i=1,...,k where π i is the a priori probability of class C i and f i (x) denotes the class conditional density of x. We consider only generative methods which assume that distributions of classes are Gaussian N (µ i, Σ i ).

7 Classical methods Quadratic discriminant analysis (QDA): i = argmin{(x µ i ) t Σ 1 i (x µ i ) + log(det Σ i ) 2 log(π i )}. i=1,...,k Linear discriminant analysis (LDA): with the assumption that i, Σ i = Σ i = argmin{µ t iσ 1 µ i 2µ t iσ 1 x 2 log(π i )}. i=1,...,k QDA and LDA have disappointing behavior when n p.

8 Regularizations Dimension reduction: PCA, feature selection, Fisher Discriminant Analysis (FDA). Parsimonious models: Regularized discriminant analysis [Fri89], Eigenvalue decomposition discriminant analysis [BC96].

9 Classication of high-dimensional data Correct classification FDA classification (48.8% correct) SVM classification (46.4% correct) HDDA classification (95.3% correct) Three Gaussian densities in R 100 with intrinsic dimensions equal to 2. For visualization, data are projected on the 2 discriminant axes.

10 The idea of new model The main idea: data of the same class live in a specic low-dimensional subspace, data of dierent classes live in dierent subspaces, For each class, we split R p into two subspaces: the subspace where the data live, and its orthogonal complementary, We use a parsimonious model: we model each class as spherical density in the 2 subspaces.

11 The new model We assume that class conditional densities are Gaussian N (µ i, Σ i ) with means µ i and covariance matrices Σ i. Let Q i be the orthogonal matrix of eigenvectors of the covariance matrix Σ i, Let B i be the basis of R p made of the eigenvectors of Σ i. The class conditional covariance matrix i is dened in the basis B i by: i = Q t i Σ i Q i.

12 The new model We assume in addition that i contains only two dierent eigenvalues a i > b i. Let E i be the ane space generated by eigenvectors associated to the eigenvalue a i and such that µ i E i. We dene also E i such that E i E i = R p and µ i E i. Let P i and P i be the projection operators on E i and E i.

13 The new model Thus, we assume that i has the following form: 0 i = a i a i 0 0 b i C A 9 = ; 9 >= >; d i (p d i ) 0 b i

14 High Dimensional Discriminant Analysis Under the preceding assumptions, the Bayes decision rule yields a new decision rule δ + : Theorem The new decision rule δ + consists in classifying x to the class C i if: { 1 i = argmin µ i P i (x) x P i (x) 2 i=1,...,k a i b i } +d i log(a i ) + (p d i ) log(b i ) 2 log(π i ).

15 HDDA: illustration The subspace E i and its supplementary E i. K i(x) = 1 a i µ i P i(x) b i x P i(x) 2 +d i log(a i)+(p d i) log(b i) 2 log(π i)

16 HDDA: particular rules By allowing some but not all of HDDA parameters to vary, we obtain 24 particular models: which correspond to dierent regularizations, which some ones are easily geometrically interpretable, which 9 have explicit formulations. Notations: a i = σ2 i α i with α i ]0, 1[, and b i = σ2 i (1 α i) with σ i > 0. HDDA can be interpreted as classical discriminant analysis in particular cases: if i, α i = 1 2 : δ+ is QDA with spherical classes, if in addition i, σ i = σ: δ + is LDA with spherical classes.

17 Model [ασq i d i ] Theorem The decision rule δ + consists in classifying x to the class C i if: i = argmin{α µ i P i (x) 2 + (1 α) x P i (x) 2 }. i=1,...,k

18 HDDA estimators Estimators are computed using maximum likelihood estimation from the learning set A. Classical estimators: ˆπ i = n i n, n i = #(C i ), ˆµ i = 1 n i x j C i x j, ˆΣ i = 1 n i x j C i (x j ˆµ i ) t (x j ˆµ i ).

19 Estimators of the model [a i b i Q i d i ] Assuming d i is known, the ML estimators are: ˆQ i is made of the eigenvectors associated to the ordered eigenvalues of ˆΣi, â i is the mean of the largest d i eigenvalues of ˆΣi : â i = 1 d i d i l=1 λ il, ˆb i is the mean of the smallest (p d i ) eigenvalues of ˆΣi : ˆb i = 1 (p d i ) p l=d i+1 λ il.

20 Estimation trick In order to minimize the number of parameters to estimate, we use the following relation: p l=d i +1 λ il = tr( ˆΣ d i i ) λ il. Number of parameters to estimate with p = 100, d i = 10 and k = 4: Method l=1 Nb of param. QDA HDDA (model [a i b i Q i d i ]) HDDA (model [a i b i Qd]) 1 367

21 Intrinsic dimension estimation We base our approach to chose the values of d i on eigenvalues of Σ i, We use the scree-test of Cattell [Cat66]: The scree-test of Cattell.

22 Optical character recognition We consider the USPS dataset: learning: 2007 examples, test: 7291 examples. Recognition results: Examples of the USPS dataset. Method Recognition rate HDDA [a i bq i d i ] % HDDA [a i b i Q i d i ] % LDA (d = 256) % FDA (d = 9) % SVM (linear) % Human %

23 Object recognition Our approach uses local descriptors: detection of interest points: Harris-Laplace operator interest points description: Sift operator. We consider 3 object classes (wheels, seat and handlebars) and 1 background class, The dataset contains 1000 descriptors in 128 dimensions: learning dataset: 500, test dataset: 500.

24 Numerical results HDDA SVM (Rbf, γ=0.6) FDA PCA+LDA (d=45) 0.8 Precision Recall Classication results for the object recognition experiment.

25 Recognition results Recognition using HDDA Recognition using SVM Recognition results for the object recognition experiment.

26 Conclusion The new model proposed here nds the specic subspace and estimates the intrinsic dimension of each class, uses this information in the Gaussian model of each class, includes additional assumptions in order to reduce the number of parameters to estimate. The main advantages of our model are: good performances without dimension reduction of the data, good performances with small learning datasets, as fast as classical generative methods, it can be used either in supervised or in unsupervised classication.

27 Work in progress Extension to unsupervised classication using the EM algorithm. Application to object recognition in a weakly-supervised framework: unsupervised classication to learn object parts, supervised classication to recognize the object in a new image.

28 References H. Bensmail and G. Celeux. Regularized gaussian discriminant analysis through eigenvalue decomposition. Journal of the American Statistical Association, 91: , R. Bellman. Adaptive Control Processes. Princeton University Press, C. Bouveyron, S. Girard, and C. Schmid. Analyse discriminante de haute dimension. Rapport de recherche 5470, INRIA, January R. B. Cattell. The scree test for the number of factors. Multivariate Behavioral Research, 1(2):140161, J.H. Friedman. Regularized discriminant analysis. Journal of the American Statistical Association, 84:165175, D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91110, D. Scott and J. Thompson. Probability density estimation in higher dimensions. In Proceedings of the Fifteenth Symposium on the Interface, North Holland-Elsevier Science Publishers, pages , 1983.

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron LMC-IMAG & INRIA Rhône-Alpes Joint work with S. Girard and C. Schmid High Dimensional Discriminant Analysis - Lear seminar p.1/43 Introduction High

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information

Classification of high dimensional data: High Dimensional Discriminant Analysis

Classification of high dimensional data: High Dimensional Discriminant Analysis Classification of high dimensional data: High Dimensional Discriminant Analysis Charles Bouveyron, Stephane Girard, Cordelia Schmid To cite this version: Charles Bouveyron, Stephane Girard, Cordelia Schmid.

More information

Model-based clustering of high-dimensional data: an overview and some recent advances

Model-based clustering of high-dimensional data: an overview and some recent advances Model-based clustering of high-dimensional data: an overview and some recent advances Charles BOUVEYRON Laboratoire SAMM, EA 4543 Université Paris 1 Panthéon-Sorbonne This presentation is based on several

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software January 2012, Volume 46, Issue 6. http://www.jstatsoft.org/ HDclassif: An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data Laurent

More information

INRIA Rh^one-Alpes. Abstract. Friedman (1989) has proposed a regularization technique (RDA) of discriminant analysis

INRIA Rh^one-Alpes. Abstract. Friedman (1989) has proposed a regularization technique (RDA) of discriminant analysis Regularized Gaussian Discriminant Analysis through Eigenvalue Decomposition Halima Bensmail Universite Paris 6 Gilles Celeux INRIA Rh^one-Alpes Abstract Friedman (1989) has proposed a regularization technique

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Teemu Roos TAs: Ville Hyvönen and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer

More information

Classification Methods II: Linear and Quadratic Discrimminant Analysis

Classification Methods II: Linear and Quadratic Discrimminant Analysis Classification Methods II: Linear and Quadratic Discrimminant Analysis Rebecca C. Steorts, Duke University STA 325, Chapter 4 ISL Agenda Linear Discrimminant Analysis (LDA) Classification Recall that linear

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Antti Ukkonen TAs: Saska Dönges and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer,

More information

Classification 2: Linear discriminant analysis (continued); logistic regression

Classification 2: Linear discriminant analysis (continued); logistic regression Classification 2: Linear discriminant analysis (continued); logistic regression Ryan Tibshirani Data Mining: 36-462/36-662 April 4 2013 Optional reading: ISL 4.4, ESL 4.3; ISL 4.3, ESL 4.4 1 Reminder:

More information

Regularized Discriminant Analysis and Reduced-Rank LDA

Regularized Discriminant Analysis and Reduced-Rank LDA Regularized Discriminant Analysis and Reduced-Rank LDA Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Regularized Discriminant Analysis A compromise between LDA and

More information

Kernel discriminant analysis and clustering with parsimonious Gaussian process models

Kernel discriminant analysis and clustering with parsimonious Gaussian process models Kernel discriminant analysis and clustering with parsimonious Gaussian process models Charles Bouveyron, Mathieu Fauvel, Stephane Girard To cite this version: Charles Bouveyron, Mathieu Fauvel, Stephane

More information

Introduction to Machine Learning Spring 2018 Note 18

Introduction to Machine Learning Spring 2018 Note 18 CS 189 Introduction to Machine Learning Spring 2018 Note 18 1 Gaussian Discriminant Analysis Recall the idea of generative models: we classify an arbitrary datapoint x with the class label that maximizes

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

CMSC858P Supervised Learning Methods

CMSC858P Supervised Learning Methods CMSC858P Supervised Learning Methods Hector Corrada Bravo March, 2010 Introduction Today we discuss the classification setting in detail. Our setting is that we observe for each subject i a set of p predictors

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis October 13, 2017 1 / 21 Review: Main strategy in Chapter 4 Find an estimate ˆP (Y X). Then, given an input x 0, we

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis October 13, 2017 1 / 21 Review: Main strategy in Chapter 4 Find an estimate ˆP (Y X). Then, given an input x 0, we

More information

Adaptive Mixture Discriminant Analysis for. Supervised Learning with Unobserved Classes

Adaptive Mixture Discriminant Analysis for. Supervised Learning with Unobserved Classes Adaptive Mixture Discriminant Analysis for Supervised Learning with Unobserved Classes Charles Bouveyron SAMOS-MATISSE, CES, UMR CNRS 8174 Université Paris 1 (Panthéon-Sorbonne), Paris, France Abstract

More information

ISyE 6416: Computational Statistics Spring Lecture 5: Discriminant analysis and classification

ISyE 6416: Computational Statistics Spring Lecture 5: Discriminant analysis and classification ISyE 6416: Computational Statistics Spring 2017 Lecture 5: Discriminant analysis and classification Prof. Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

More information

High Dimensional Kullback-Leibler divergence for grassland classification using satellite image time series with high spatial resolution

High Dimensional Kullback-Leibler divergence for grassland classification using satellite image time series with high spatial resolution High Dimensional Kullback-Leibler divergence for grassland classification using satellite image time series with high spatial resolution Presented by 1 In collaboration with Mathieu Fauvel1, Stéphane Girard2

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Chap 2. Linear Classifiers (FTH, ) Yongdai Kim Seoul National University

Chap 2. Linear Classifiers (FTH, ) Yongdai Kim Seoul National University Chap 2. Linear Classifiers (FTH, 4.1-4.4) Yongdai Kim Seoul National University Linear methods for classification 1. Linear classifiers For simplicity, we only consider two-class classification problems

More information

Supervised Learning. Regression Example: Boston Housing. Regression Example: Boston Housing

Supervised Learning. Regression Example: Boston Housing. Regression Example: Boston Housing Supervised Learning Unsupervised learning: To extract structure and postulate hypotheses about data generating process from observations x 1,...,x n. Visualize, summarize and compress data. We have seen

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis Jonathan Taylor, 10/12 Slide credits: Sergio Bacallado 1 / 1 Review: Main strategy in Chapter 4 Find an estimate ˆP

More information

BANA 7046 Data Mining I Lecture 6. Other Data Mining Algorithms 1

BANA 7046 Data Mining I Lecture 6. Other Data Mining Algorithms 1 BANA 7046 Data Mining I Lecture 6. Other Data Mining Algorithms 1 Shaobo Li University of Cincinnati 1 Partially based on Hastie, et al. (2009) ESL, and James, et al. (2013) ISLR Data Mining I Lecture

More information

Discriminant Analysis Documentation

Discriminant Analysis Documentation Discriminant Analysis Documentation Release 1 Tim Thatcher May 01, 2016 Contents 1 Installation 3 2 Theory 5 2.1 Linear Discriminant Analysis (LDA).................................. 5 2.2 Quadratic Discriminant

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Dimensionality Reduction and Principal Components

Dimensionality Reduction and Principal Components Dimensionality Reduction and Principal Components Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Motivation Recall, in Bayesian decision theory we have: World: States Y in {1,..., M} and observations of X

More information

Linear Regression and Discrimination

Linear Regression and Discrimination Linear Regression and Discrimination Kernel-based Learning Methods Christian Igel Institut für Neuroinformatik Ruhr-Universität Bochum, Germany http://www.neuroinformatik.rub.de July 16, 2009 Christian

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

LECTURE NOTE #10 PROF. ALAN YUILLE

LECTURE NOTE #10 PROF. ALAN YUILLE LECTURE NOTE #10 PROF. ALAN YUILLE 1. Principle Component Analysis (PCA) One way to deal with the curse of dimensionality is to project data down onto a space of low dimensions, see figure (1). Figure

More information

The Bayes classifier

The Bayes classifier The Bayes classifier Consider where is a random vector in is a random variable (depending on ) Let be a classifier with probability of error/risk given by The Bayes classifier (denoted ) is the optimal

More information

LEC 4: Discriminant Analysis for Classification

LEC 4: Discriminant Analysis for Classification LEC 4: Discriminant Analysis for Classification Dr. Guangliang Chen February 25, 2016 Outline Last time: FDA (dimensionality reduction) Today: QDA/LDA (classification) Naive Bayes classifiers Matlab/Python

More information

Model-Based Clustering of High-Dimensional Data: A review

Model-Based Clustering of High-Dimensional Data: A review Model-Based Clustering of High-Dimensional Data: A review Charles Bouveyron, Camille Brunet To cite this version: Charles Bouveyron, Camille Brunet. Model-Based Clustering of High-Dimensional Data: A review.

More information

Machine Learning 11. week

Machine Learning 11. week Machine Learning 11. week Feature Extraction-Selection Dimension reduction PCA LDA 1 Feature Extraction Any problem can be solved by machine learning methods in case of that the system must be appropriately

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

Random projection ensemble classification

Random projection ensemble classification Random projection ensemble classification Timothy I. Cannings Statistics for Big Data Workshop, Brunel Joint work with Richard Samworth Introduction to classification Observe data from two classes, pairs

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Dimensionality Reduction and Principle Components

Dimensionality Reduction and Principle Components Dimensionality Reduction and Principle Components Ken Kreutz-Delgado (Nuno Vasconcelos) UCSD ECE Department Winter 2012 Motivation Recall, in Bayesian decision theory we have: World: States Y in {1,...,

More information

Classification: Linear Discriminant Analysis

Classification: Linear Discriminant Analysis Classification: Linear Discriminant Analysis Discriminant analysis uses sample information about individuals that are known to belong to one of several populations for the purposes of classification. Based

More information

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber Machine Learning Regression-Based Classification & Gaussian Discriminant Analysis Manfred Huber 2015 1 Logistic Regression Linear regression provides a nice representation and an efficient solution to

More information

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis CS 3 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis AD March 11 AD ( March 11 1 / 17 Multivariate Gaussian Consider data { x i } N i=1 where xi R D and we assume they are

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

STATS306B STATS306B. Discriminant Analysis. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010

STATS306B STATS306B. Discriminant Analysis. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010 STATS306B Discriminant Analysis Jonathan Taylor Department of Statistics Stanford University June 3, 2010 Spring 2010 Classification Given K classes in R p, represented as densities f i (x), 1 i K classify

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

PCA and LDA. Man-Wai MAK

PCA and LDA. Man-Wai MAK PCA and LDA Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S.J.D. Prince,Computer

More information

c 4, < y 2, 1 0, otherwise,

c 4, < y 2, 1 0, otherwise, Fundamentals of Big Data Analytics Univ.-Prof. Dr. rer. nat. Rudolf Mathar Problem. Probability theory: The outcome of an experiment is described by three events A, B and C. The probabilities Pr(A) =,

More information

Curves clustering with approximation of the density of functional random variables

Curves clustering with approximation of the density of functional random variables Curves clustering with approximation of the density of functional random variables Julien Jacques and Cristian Preda Laboratoire Paul Painlevé, UMR CNRS 8524, University Lille I, Lille, France INRIA Lille-Nord

More information

THESIS COVARIANCE REGULARIZATION IN MIXTURE OF GAUSSIANS FOR HIGH-DIMENSIONAL IMAGE CLASSIFICATION. Submitted by. Daniel L Elliott

THESIS COVARIANCE REGULARIZATION IN MIXTURE OF GAUSSIANS FOR HIGH-DIMENSIONAL IMAGE CLASSIFICATION. Submitted by. Daniel L Elliott THESIS COVARIANCE REGULARIZATION IN MIXTURE OF GAUSSIANS FOR HIGH-DIMENSIONAL IMAGE CLASSIFICATION Submitted by Daniel L Elliott Department of Computer Science In partial fulfillment of the requirements

More information

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction Using PCA/LDA Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction One approach to deal with high dimensional data is by reducing their

More information

Lecture 5. Gaussian Models - Part 1. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. November 29, 2016

Lecture 5. Gaussian Models - Part 1. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. November 29, 2016 Lecture 5 Gaussian Models - Part 1 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza November 29, 2016 Luigi Freda ( La Sapienza University) Lecture 5 November 29, 2016 1 / 42 Outline 1 Basics

More information

Probabilistic Fisher Discriminant Analysis

Probabilistic Fisher Discriminant Analysis Probabilistic Fisher Discriminant Analysis Charles Bouveyron 1 and Camille Brunet 2 1- University Paris 1 Panthéon-Sorbonne Laboratoire SAMM, EA 4543 90 rue de Tolbiac 75013 PARIS - FRANCE 2- University

More information

International Journal of Pure and Applied Mathematics Volume 19 No , A NOTE ON BETWEEN-GROUP PCA

International Journal of Pure and Applied Mathematics Volume 19 No , A NOTE ON BETWEEN-GROUP PCA International Journal of Pure and Applied Mathematics Volume 19 No. 3 2005, 359-366 A NOTE ON BETWEEN-GROUP PCA Anne-Laure Boulesteix Department of Statistics University of Munich Akademiestrasse 1, Munich,

More information

Supervised Learning: Linear Methods (1/2) Applied Multivariate Statistics Spring 2012

Supervised Learning: Linear Methods (1/2) Applied Multivariate Statistics Spring 2012 Supervised Learning: Linear Methods (1/2) Applied Multivariate Statistics Spring 2012 Overview Review: Conditional Probability LDA / QDA: Theory Fisher s Discriminant Analysis LDA: Example Quality control:

More information

LDA, QDA, Naive Bayes

LDA, QDA, Naive Bayes LDA, QDA, Naive Bayes Generative Classification Models Marek Petrik 2/16/2017 Last Class Logistic Regression Maximum Likelihood Principle Logistic Regression Predict probability of a class: p(x) Example:

More information

Subspace Analysis for Facial Image Recognition: A Comparative Study. Yongbin Zhang, Lixin Lang and Onur Hamsici

Subspace Analysis for Facial Image Recognition: A Comparative Study. Yongbin Zhang, Lixin Lang and Onur Hamsici Subspace Analysis for Facial Image Recognition: A Comparative Study Yongbin Zhang, Lixin Lang and Onur Hamsici Outline 1. Subspace Analysis: Linear vs Kernel 2. Appearance-based Facial Image Recognition.

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to:

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to: System 2 : Modelling & Recognising Modelling and Recognising Classes of Classes of Shapes Shape : PDM & PCA All the same shape? System 1 (last lecture) : limited to rigidly structured shapes System 2 :

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Model selection criteria in Classification contexts. Gilles Celeux INRIA Futurs (orsay)

Model selection criteria in Classification contexts. Gilles Celeux INRIA Futurs (orsay) Model selection criteria in Classification contexts Gilles Celeux INRIA Futurs (orsay) Cluster analysis Exploratory data analysis tools which aim is to find clusters in a large set of data (many observations

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Multivariate Analysis

Multivariate Analysis Prof. Dr. J. Franke All of Statistics 3.1 Multivariate Analysis High dimensional data X 1,..., X N, i.i.d. random vectors in R p. As a data matrix X: objects values of p features 1 X 11 X 12... X 1p 2.

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Bayesian Classification Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians Engineering Part IIB: Module F Statistical Pattern Processing University of Cambridge Engineering Part IIB Module F: Statistical Pattern Processing Handout : Multivariate Gaussians. Generative Model Decision

More information

Discriminant analysis and supervised classification

Discriminant analysis and supervised classification Discriminant analysis and supervised classification Angela Montanari 1 Linear discriminant analysis Linear discriminant analysis (LDA) also known as Fisher s linear discriminant analysis or as Canonical

More information

Machine Learning 1. Linear Classifiers. Marius Kloft. Humboldt University of Berlin Summer Term Machine Learning 1 Linear Classifiers 1

Machine Learning 1. Linear Classifiers. Marius Kloft. Humboldt University of Berlin Summer Term Machine Learning 1 Linear Classifiers 1 Machine Learning 1 Linear Classifiers Marius Kloft Humboldt University of Berlin Summer Term 2014 Machine Learning 1 Linear Classifiers 1 Recap Past lectures: Machine Learning 1 Linear Classifiers 2 Recap

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

Lecture 5: Classification

Lecture 5: Classification Lecture 5: Classification Advanced Applied Multivariate Analysis STAT 2221, Spring 2015 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department of Mathematical Sciences Binghamton

More information

A Study of Relative Efficiency and Robustness of Classification Methods

A Study of Relative Efficiency and Robustness of Classification Methods A Study of Relative Efficiency and Robustness of Classification Methods Yoonkyung Lee* Department of Statistics The Ohio State University *joint work with Rui Wang April 28, 2011 Department of Statistics

More information

Regularized Discriminant Analysis. Part I. Linear and Quadratic Discriminant Analysis. Discriminant Analysis. Example. Example. Class distribution

Regularized Discriminant Analysis. Part I. Linear and Quadratic Discriminant Analysis. Discriminant Analysis. Example. Example. Class distribution Part I 09.06.2006 Discriminant Analysis The purpose of discriminant analysis is to assign objects to one of several (K) groups based on a set of measurements X = (X 1, X 2,..., X p ) which are obtained

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 55 Applied Machine Learning Lecture 5: Generative models for linear classification Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp55 Unless otherwise noted, all material

More information

Introduction to Machine Learning

Introduction to Machine Learning Outline Introduction to Machine Learning Bayesian Classification Varun Chandola March 8, 017 1. {circular,large,light,smooth,thick}, malignant. {circular,large,light,irregular,thick}, malignant 3. {oval,large,dark,smooth,thin},

More information

Computation. For QDA we need to calculate: Lets first consider the case that

Computation. For QDA we need to calculate: Lets first consider the case that Computation For QDA we need to calculate: δ (x) = 1 2 log( Σ ) 1 2 (x µ ) Σ 1 (x µ ) + log(π ) Lets first consider the case that Σ = I,. This is the case where each distribution is spherical, around the

More information

MSA220 Statistical Learning for Big Data

MSA220 Statistical Learning for Big Data MSA220 Statistical Learning for Big Data Lecture 4 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology More on Discriminant analysis More on Discriminant

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Spring 2006: Linear Discriminant Analysis, Etc.

Spring 2006: Linear Discriminant Analysis, Etc. 36-724 Spring 2006: Linear Discriminant Analysis, Etc. Brian Junker April 17, 2006 Review: The Bayes Classifier Linear and Quadratic Discriminant Analysis and Friends Linear regression of an indicator

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

Probabilistic Time Series Classification

Probabilistic Time Series Classification Probabilistic Time Series Classification Y. Cem Sübakan Boğaziçi University 25.06.2013 Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 1 / 54 Problem Statement The goal is to assign

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians University of Cambridge Engineering Part IIB Module 4F: Statistical Pattern Processing Handout 2: Multivariate Gaussians.2.5..5 8 6 4 2 2 4 6 8 Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2 2 Engineering

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

Lecture 6: Methods for high-dimensional problems

Lecture 6: Methods for high-dimensional problems Lecture 6: Methods for high-dimensional problems Hector Corrada Bravo and Rafael A. Irizarry March, 2010 In this Section we will discuss methods where data lies on high-dimensional spaces. In particular,

More information

Cellwise robust regularized discriminant analysis

Cellwise robust regularized discriminant analysis Cellwise robust regularized discriminant analysis Ines Wilms (KU Leuven) and Stéphanie Aerts (University of Liège) ICORS, July 2017 Wilms and Aerts Cellwise robust regularized discriminant analysis 1 Discriminant

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

STA 450/4000 S: January

STA 450/4000 S: January STA 450/4000 S: January 6 005 Notes Friday tutorial on R programming reminder office hours on - F; -4 R The book Modern Applied Statistics with S by Venables and Ripley is very useful. Make sure you have

More information

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition

Face Recognition. Face Recognition. Subspace-Based Face Recognition Algorithms. Application of Face Recognition ace Recognition Identify person based on the appearance of face CSED441:Introduction to Computer Vision (2017) Lecture10: Subspace Methods and ace Recognition Bohyung Han CSE, POSTECH bhhan@postech.ac.kr

More information

Gaussian Models

Gaussian Models Gaussian Models ddebarr@uw.edu 2016-04-28 Agenda Introduction Gaussian Discriminant Analysis Inference Linear Gaussian Systems The Wishart Distribution Inferring Parameters Introduction Gaussian Density

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

Lecture 13 Visual recognition

Lecture 13 Visual recognition Lecture 13 Visual recognition Announcements Silvio Savarese Lecture 13-20-Feb-14 Lecture 13 Visual recognition Object classification bag of words models Discriminative methods Generative methods Object

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Cellwise robust regularized discriminant analysis

Cellwise robust regularized discriminant analysis Cellwise robust regularized discriminant analysis JSM 2017 Stéphanie Aerts University of Liège, Belgium Ines Wilms KU Leuven, Belgium Cellwise robust regularized discriminant analysis 1 Discriminant analysis

More information

Classification via kernel regression based on univariate product density estimators

Classification via kernel regression based on univariate product density estimators Classification via kernel regression based on univariate product density estimators Bezza Hafidi 1, Abdelkarim Merbouha 2, and Abdallah Mkhadri 1 1 Department of Mathematics, Cadi Ayyad University, BP

More information