Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #4 Similarity. Edward Chang

Size: px
Start display at page:

Download "Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #4 Similarity. Edward Chang"

Transcription

1 Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval Lecture #4 Similarity Edward Y. Chang Edward Chang Foundations of LSMM 1

2 Edward Chang Foundations of LSMM 2

3 Similar? Edward Chang Foundations of LSMM 3

4 Two Key Technical Problems Curse of Dimensionality Modeling Subjec'vity Query/User/App Dependent Edward Chang Foundations of LSMM 4

5 Dimensionality Curse D: Data Dimension When D increases Nearest neighbors are not local All points are equally distanced Edward Chang Foundations of LSMM 5

6 Sparse High- D Space [C. Aggarwal, etc. ICDT 2001] Hyper- cube Range Queries d P [ s] = s d Edward Chang Foundations of LSMM 6

7 Range Coverage à 0% Edward Chang Foundations of LSMM 7

8 Sparse High- D Space Spherical Range Queries Edward Chang Foundations of LSMM 8

9 P[ R sp d ( Q,0.5)] = π d (0.5) d d Γ( + 1) 2 Edward Chang Foundations of LSMM 9

10 No Point in the Nearest Neighborhood Edward Chang Foundations of LSMM 10

11 Dimensionality Curse Edward Chang Foundations of LSMM 11

12 Equidistant Points 4D 512D Edward Chang Foundations of LSMM 12

13 Are We Doomed? How does the curse affect classifica'on? Similar objects tend to cluster together Dimensionality reduc'on Edward Chang Foundations of LSMM 13

14 Summary of Approaches Dynamic Par'al Func'on Restricted Es'mators Specifying the nature of local neighborhood E.g., Manifold learning Adap've Feature Reduc'on PCA, LDA Edward Chang Foundations of LSMM 14

15 Distribu'on of Distances Edward Chang Foundations of LSMM 15

16 Some Solu'ons to High- D Restricted Es'mators Specifying the nature of local neighborhood Manifold learning Adap've Feature Reduc'on PCA, LDA Dynamic Par'al Func'on Edward Chang Foundations of LSMM 16

17 Three Major Paradigms Preserve data descrip'on in a lower dimensional space PCA Maximize discriminability in a lower dimensional space LDA Ac'vate only similar channels DPF Edward Chang Foundations of LSMM 17

18 Minkowski Distance Objects P and Q D = (Σ M (pi - qi) n ) 1/n Similar images are similar in all M features Edward Chang Foundations of LSMM 18

19 1.0E E-02 Frequency 1.0E E E E Feature Distance 1.0E E-02 Frequency 1.0E E E E Edward Chang Feature Distance Foundations of LSMM 19

20 Weighted Minkowski Distance D = (Σ M wi(pi - qi) n ) 1/n Similar images are similar in the same subset of the M features Edward Chang Foundations of LSMM 20

21 Average Distance GIF Feature Number Scale 0 up/down Feature Number Average Distance Average Distance Cropping Rotation Feature Number Feature Number Edward Chang Foundations of LSMM 21 Average Distance

22 Similarity Theories Objects are similar in all respects (Richardson 1928) Objects are similar in some respects (Tversky 1977) Similarity is a process of determining respects, rather than using predefined respects (Goldstone 94) Edward Chang Foundations of LSMM 22

23 DPF Which Place is Similar to Kyoto? Par'al Dynamic Dynamic Par'al Func'on Edward Chang Foundations of LSMM 23

24 Precision/Recall Edward Chang Foundations of LSMM 24

25 Summary of Approaches Dynamic Par'al Func'on Restricted Es'mators Specifying the nature of local neighborhood E.g., Manifold learning Adap've Feature Reduc'on PCA, LDA Edward Chang Foundations of LSMM 25

26 Manifold Learning Algorithms Auto. NN KPCA Principal curves SOM GTM MDS ISOMAP LLE Explicit Manifold No No Yes No Yes No Yes Yes Parametric Yes Yes No No Yes No No No Dissimilarity matrix Local neighborhood No No(?) No No No Yes Yes No(?) No No No(?) No No No Yes Yes Edward Chang Foundations of LSMM 26

27 Geodesic Distance Geodesic: the shortest curve on a manifold that connects two points on the manifold Example: on a sphere, geodesics are great circles Geodesic distance: length of the geodesic A B Figure from mathworld.wolfram.com /GreatCircle.html Edward Chang Foundations of LSMM 27

28 Geodesic Distance Euclidean distance needs not be a good measure between two points on a manifold Length of geodesic is more appropriate Example: Swiss roll Figure from LLE paper Edward Chang Foundations of LSMM 28

29 Isometric Feature Mapping (ISOMAP) Take a distance matrix {g ij } as input Es'mate geodesic distance between any two points by a chain of short paths Formulate this as a graph theory problem Perform classical scaling on the matrix of geodesic distances to obtain final projec'on Edward Chang Foundations of LSMM 29

30 Steps to Es'mate Geodesic Distances 1. Find the neighbors of all data items z i Two possible defini'ons of neighbors Set of items whose distances are less than e The K closest items 2. Construct a weighted undirected graph Vertex i corresponds to z i An edge between the vertex i and j iff z i and z j are neighbors, and its weight is g ij Edward Chang Foundations of LSMM 30

31 Steps to Es'mate Geodesic Distances 3. Find the shortest distance between all pairs of ver'ces in the graph Floyd (O(m 3 )) or Dijkstra (O(m 2 log m+mp)) The shortest distance between ver'ces i and j in the graph is the es'mated geodesic distance between z i and z j Edward Chang Foundations of LSMM 31

32 Ra'onale for the Geodesic Distance Es'ma'on Figures from ISOMAP paper Edward Chang Foundations of LSMM 32

33 A Run of ISOMAP Figure from isomap.stanford.edu/ handfig.html Edward Chang Foundations of LSMM 33

34 A Run of ISOMAP Figures from ISOMAP paper Edward Chang Foundations of LSMM 34

35 Interpola'on on Straight Lines in the Projected Co- ordinates Figures from ISOMAP paper Edward Chang Foundations of LSMM 35

36 Summary of Approaches Dynamic Par'al Func'on Restricted Es'mators Specifying the nature of local neighborhood E.g., Manifold learning Adap've Feature Reduc'on PCA, LDA Edward Chang Foundations of LSMM 36

37 Two Key Technical Problems Curse of Dimensionality Modeling Subjec'vity Query/User/App Dependent Edward Chang Foundations of LSMM 37

38 Distance Func'on? Foundations 38 of LSMM Edward Chang

39 Group by Proximity Foundations 39 of LSMM Edward Chang

40 Group by Proximity x1 x2 x3 x4 x5 x6 x7 x8 x X X x x x x7 1.7 X8 1 Foundations 40 of LSMM Edward Chang

41 Group by Shape Foundations 41 of LSMM Edward Chang

42 Group by Shape x1 x2 x3 x4 x5 x6 x7 x8 x X X x x x x7 1.7 X8 1 Foundations 42 of LSMM Edward Chang

43 Group by Color Foundations 43 of LSMM Edward Chang

44 Group by Color x1 x2 x3 x4 x5 x6 x7 x8 x x x x x x x7 1.7 x8 1 Foundations 44 of LSMM Edward Chang

45 Naïve Alignment Rules Increasing the scores of similar pairs Decreasing the scores of dissimilar pairs S ij > D ij Foundations 45 of LSMM Edward Chang

46 Our Work [ACM KDD 2005, ACM MM 05] kij = β 1 kij if (xi, xj) D kij = β 2 kij + (1 - β 2 ) if (xi, xj) S 0 β 1 β 2 1 Theorem #1 The resul'ng matrix is psd Theorem #2 The resul'ng matrix is beser aligned with the ideal kernel Foundations 46 of LSMM Edward Chang

47 Personaliza'on & Scalability Unsupervised Method Clustering Mul'- version Clustering Ac've Learning Reinforcement Learning Foundations of LSMM 47 Edward Chang

48 Pairs 1,2 3,4 5,6 7,8 Are stable pairs Foundations of LSMM 48 Edward Chang

49 ULP: Unified Learning Paradigm Stable Pairs x1 x2 x3 x4 x5 x6 x7 x8 x X X x x x7 1.7 X8 1 Foundations of LSMM 49 Edward Chang

50 ULP Stable Pairs (green circles) Found via shot- gun clustering Selected Uncertain Pairs (red circles) Iden'fied via the maximum informa'on or fastest convergence rule Propaga'on (green arrow) Foundations of LSMM 50 Edward Chang

51 ULP [EITC 05] D Input: D = L + U K = CalcInitKernel(D) L K M = DoClustering(K) [K,M] [T,Xu] = DoSimilarityReinforce(K,M, M, L) Xu M M =DoActiveLearning(Xu) T K = TransformKernel(K, T) K K=K false IsConverge() true Output: K* Foundations of LSMM 51 Edward Chang

52 Convex Optimization SOCP SDP QCQP LP QP Foundations of LSMM 52 Edward Chang

53 Learning Similarity from Data Please refer to Chap 5 of FLSMIMR Edward Chang Foundations of LSMM 53

54 Summary Curse of Dimension Dynamic Par'al Func'on Manifold learning PCA, LDA Learning Distance Func'on from Data Kernel Alignment Unified Learning Paradigm Edward Chang Foundations of LSMM 54

55 Reading Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval, E. Y. Chang, Springer, 2011 Chapter #4 Similarity Chapter #5 Learning Distance Func'on Edward Chang Foundations of LSMM 55

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold. Nonlinear Methods Data often lies on or near a nonlinear low-dimensional curve aka manifold. 27 Laplacian Eigenmaps Linear methods Lower-dimensional linear projection that preserves distances between all

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Manifold Learning and it s application

Manifold Learning and it s application Manifold Learning and it s application Nandan Dubey SE367 Outline 1 Introduction Manifold Examples image as vector Importance Dimension Reduction Techniques 2 Linear Methods PCA Example MDS Perception

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Machine Learning. for Image Retrieval. Edward Chang Associate Professor, Electrical Engineering, UC Santa Barbara CTO, VIMA Technologies

Machine Learning. for Image Retrieval. Edward Chang Associate Professor, Electrical Engineering, UC Santa Barbara CTO, VIMA Technologies Machine Learning for Image Retrieval Edward Chang Associate Professor, Electrical Engineering, UC Santa Barbara CTO, VIMA Technologies 4/5/2004 JHU-APL 1 Are They Similar? 4/5/2004 JHU-APL 2 Are They Similar?

More information

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval Lecture #3 Machine Learning Edward Y. Chang Edward Chang Founda'ons of LSMM 1 Edward Chang Foundations of LSMM 2 Machine Learning

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Lecture 10: Dimension Reduction Techniques

Lecture 10: Dimension Reduction Techniques Lecture 10: Dimension Reduction Techniques Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 17, 2018 Input Data It is assumed that there is a set

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction A presentation by Evan Ettinger on a Paper by Vin de Silva and Joshua B. Tenenbaum May 12, 2005 Outline Introduction The

More information

Distance Preservation - Part 2

Distance Preservation - Part 2 Distance Preservation - Part 2 Graph Distances Niko Vuokko October 9th 2007 NLDR Seminar Outline Introduction Geodesic and graph distances From linearity to nonlinearity Isomap Geodesic NLM Curvilinear

More information

Dimension Reduction and Low-dimensional Embedding

Dimension Reduction and Low-dimensional Embedding Dimension Reduction and Low-dimensional Embedding Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/26 Dimension

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Nonlinear Manifold Learning Summary

Nonlinear Manifold Learning Summary Nonlinear Manifold Learning 6.454 Summary Alexander Ihler ihler@mit.edu October 6, 2003 Abstract Manifold learning is the process of estimating a low-dimensional structure which underlies a collection

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

(Non-linear) dimensionality reduction. Department of Computer Science, Czech Technical University in Prague

(Non-linear) dimensionality reduction. Department of Computer Science, Czech Technical University in Prague (Non-linear) dimensionality reduction Jiří Kléma Department of Computer Science, Czech Technical University in Prague http://cw.felk.cvut.cz/wiki/courses/a4m33sad/start poutline motivation, task definition,

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Dimensionality Reduc1on

Dimensionality Reduc1on Dimensionality Reduc1on contd Aarti Singh Machine Learning 10-601 Nov 10, 2011 Slides Courtesy: Tom Mitchell, Eric Xing, Lawrence Saul 1 Principal Component Analysis (PCA) Principal Components are the

More information

Supplemental Materials for. Local Multidimensional Scaling for. Nonlinear Dimension Reduction, Graph Drawing. and Proximity Analysis

Supplemental Materials for. Local Multidimensional Scaling for. Nonlinear Dimension Reduction, Graph Drawing. and Proximity Analysis Supplemental Materials for Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing and Proximity Analysis Lisha Chen and Andreas Buja Yale University and University of Pennsylvania

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Introduction and Data Representation Mikhail Belkin & Partha Niyogi Department of Electrical Engieering University of Minnesota Mar 21, 2017 1/22 Outline Introduction 1 Introduction 2 3 4 Connections to

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 23 1 / 27 Overview

More information

Apprentissage non supervisée

Apprentissage non supervisée Apprentissage non supervisée Cours 3 Higher dimensions Jairo Cugliari Master ECD 2015-2016 From low to high dimension Density estimation Histograms and KDE Calibration can be done automacally But! Let

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machine Learning & Perception Instructor: Tony Jebara Topic 2 Nonlinear Manifold Learning Multidimensional Scaling (MDS) Locally Linear Embedding (LLE) Beyond Principal Components Analysis (PCA)

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

ISSN: (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at:

More information

Statistical Learning. Dong Liu. Dept. EEIS, USTC

Statistical Learning. Dong Liu. Dept. EEIS, USTC Statistical Learning Dong Liu Dept. EEIS, USTC Chapter 6. Unsupervised and Semi-Supervised Learning 1. Unsupervised learning 2. k-means 3. Gaussian mixture model 4. Other approaches to clustering 5. Principle

More information

Manifold Learning: From Linear to nonlinear. Presenter: Wei-Lun (Harry) Chao Date: April 26 and May 3, 2012 At: AMMAI 2012

Manifold Learning: From Linear to nonlinear. Presenter: Wei-Lun (Harry) Chao Date: April 26 and May 3, 2012 At: AMMAI 2012 Manifold Learning: From Linear to nonlinear Presenter: Wei-Lun (Harry) Chao Date: April 26 and May 3, 2012 At: AMMAI 2012 1 Preview Goal: Dimensionality Classification reduction and clustering Main idea:

More information

Intrinsic Structure Study on Whale Vocalizations

Intrinsic Structure Study on Whale Vocalizations 1 2015 DCLDE Conference Intrinsic Structure Study on Whale Vocalizations Yin Xian 1, Xiaobai Sun 2, Yuan Zhang 3, Wenjing Liao 3 Doug Nowacek 1,4, Loren Nolte 1, Robert Calderbank 1,2,3 1 Department of

More information

Unsupervised dimensionality reduction

Unsupervised dimensionality reduction Unsupervised dimensionality reduction Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 Guillaume Obozinski Unsupervised dimensionality reduction 1/30 Outline 1 PCA 2 Kernel PCA 3 Multidimensional

More information

Lecture 8: Principal Component Analysis; Kernel PCA

Lecture 8: Principal Component Analysis; Kernel PCA Lecture 8: Principal Component Analysis; Kernel PCA Lester Mackey April 23, 2014 Stats 306B: Unsupervised Learning Sta306b April 19, 2011 Principal components: 16 PCA example: digit data 130 threes, a

More information

Dimensionality Reduction:

Dimensionality Reduction: Dimensionality Reduction: From Data Representation to General Framework Dong XU School of Computer Engineering Nanyang Technological University, Singapore What is Dimensionality Reduction? PCA LDA Examples:

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU,

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU, Eric Xing Eric Xing @ CMU, 2006-2010 1 Machine Learning Data visualization and dimensionality reduction Eric Xing Lecture 7, August 13, 2010 Eric Xing Eric Xing @ CMU, 2006-2010 2 Text document retrieval/labelling

More information

DIDELĖS APIMTIES DUOMENŲ VIZUALI ANALIZĖ

DIDELĖS APIMTIES DUOMENŲ VIZUALI ANALIZĖ Vilniaus Universitetas Matematikos ir informatikos institutas L I E T U V A INFORMATIKA (09 P) DIDELĖS APIMTIES DUOMENŲ VIZUALI ANALIZĖ Jelena Liutvinavičienė 2017 m. spalis Mokslinė ataskaita MII-DS-09P-17-7

More information

L26: Advanced dimensionality reduction

L26: Advanced dimensionality reduction L26: Advanced dimensionality reduction The snapshot CA approach Oriented rincipal Components Analysis Non-linear dimensionality reduction (manifold learning) ISOMA Locally Linear Embedding CSCE 666 attern

More information

Dimensionality Reduction: A Comparative Review

Dimensionality Reduction: A Comparative Review Tilburg centre for Creative Computing P.O. Box 90153 Tilburg University 5000 LE Tilburg, The Netherlands http://www.uvt.nl/ticc Email: ticc@uvt.nl Copyright c Laurens van der Maaten, Eric Postma, and Jaap

More information

Dimensionality Reduction: A Comparative Review

Dimensionality Reduction: A Comparative Review Dimensionality Reduction: A Comparative Review L.J.P. van der Maaten, E.O. Postma, H.J. van den Herik MICC, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. Abstract In recent

More information

Lecture 17: Face Recogni2on

Lecture 17: Face Recogni2on Lecture 17: Face Recogni2on Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei-Fei Li Stanford Vision Lab Lecture 17-1! What we will learn today Introduc2on to face recogni2on Principal Component Analysis

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Sign

More information

Manifold Learning: Theory and Applications to HRI

Manifold Learning: Theory and Applications to HRI Manifold Learning: Theory and Applications to HRI Seungjin Choi Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr August 19, 2008 1 / 46 Greek Philosopher

More information

Pivot Selection Techniques

Pivot Selection Techniques Pivot Selection Techniques Proximity Searching in Metric Spaces by Benjamin Bustos, Gonzalo Navarro and Edgar Chávez Catarina Moreira Outline Introduction Pivots and Metric Spaces Pivots in Nearest Neighbor

More information

A Tour of Unsupervised Learning Part I Graphical models and dimension reduction

A Tour of Unsupervised Learning Part I Graphical models and dimension reduction A Tour of Unsupervised Learning Part I Graphical models and dimension reduction Marina Meilă mmp@stat.washington.edu Department of Statistics University of Washington MPS2016 Supervised vs. Unsupervised

More information

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Université du Littoral- Calais July 11, 16 First..... to the

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Graph Metrics and Dimension Reduction

Graph Metrics and Dimension Reduction Graph Metrics and Dimension Reduction Minh Tang 1 Michael Trosset 2 1 Applied Mathematics and Statistics The Johns Hopkins University 2 Department of Statistics Indiana University, Bloomington November

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Spherical Euclidean Distance Embedding of a Graph

Spherical Euclidean Distance Embedding of a Graph Spherical Euclidean Distance Embedding of a Graph Hou-Duo Qi University of Southampton Presented at Isaac Newton Institute Polynomial Optimization August 9, 2013 Spherical Embedding Problem The Problem:

More information

Algorithms, Lecture 3 on NP : Nondeterminis7c Polynomial Time

Algorithms, Lecture 3 on NP : Nondeterminis7c Polynomial Time Algorithms, Lecture 3 on NP : Nondeterminis7c Polynomial Time Last week: Defined Polynomial Time Reduc7ons: Problem X is poly 7me reducible to Y X P Y if can solve X using poly computa7on and a poly number

More information

Robust Laplacian Eigenmaps Using Global Information

Robust Laplacian Eigenmaps Using Global Information Manifold Learning and its Applications: Papers from the AAAI Fall Symposium (FS-9-) Robust Laplacian Eigenmaps Using Global Information Shounak Roychowdhury ECE University of Texas at Austin, Austin, TX

More information

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

Discriminant Uncorrelated Neighborhood Preserving Projections

Discriminant Uncorrelated Neighborhood Preserving Projections Journal of Information & Computational Science 8: 14 (2011) 3019 3026 Available at http://www.joics.com Discriminant Uncorrelated Neighborhood Preserving Projections Guoqiang WANG a,, Weijuan ZHANG a,

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Semi Supervised Distance Metric Learning

Semi Supervised Distance Metric Learning Semi Supervised Distance Metric Learning wliu@ee.columbia.edu Outline Background Related Work Learning Framework Collaborative Image Retrieval Future Research Background Euclidean distance d( x, x ) =

More information

Is Manifold Learning for Toy Data only?

Is Manifold Learning for Toy Data only? s Manifold Learning for Toy Data only? Marina Meilă University of Washington mmp@stat.washington.edu MMDS Workshop 2016 Outline What is non-linear dimension reduction? Metric Manifold Learning Estimating

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Issues and Techniques in Pattern Classification

Issues and Techniques in Pattern Classification Issues and Techniques in Pattern Classification Carlotta Domeniconi www.ise.gmu.edu/~carlotta Machine Learning Given a collection of data, a machine learner eplains the underlying process that generated

More information

UVA CS / Introduc8on to Machine Learning and Data Mining

UVA CS / Introduc8on to Machine Learning and Data Mining UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 13: Probability and Sta3s3cs Review (cont.) + Naïve Bayes Classifier Yanjun Qi / Jane, PhD University of Virginia Department

More information

Basics and Random Graphs con0nued

Basics and Random Graphs con0nued Basics and Random Graphs con0nued Social and Technological Networks Rik Sarkar University of Edinburgh, 2017. Random graphs on jupyter notebook Solu0on to exercises 1 is out If your BSc/MSc/PhD work is

More information

Distance Metric Learning

Distance Metric Learning Distance Metric Learning Technical University of Munich Department of Informatics Computer Vision Group November 11, 2016 M.Sc. John Chiotellis: Distance Metric Learning 1 / 36 Outline Computer Vision

More information

ISOMAP TRACKING WITH PARTICLE FILTER

ISOMAP TRACKING WITH PARTICLE FILTER Clemson University TigerPrints All Theses Theses 5-2007 ISOMAP TRACKING WITH PARTICLE FILTER Nikhil Rane Clemson University, nrane@clemson.edu Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Regression.

Regression. Regression www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts linear regression RMSE, MAE, and R-square logistic regression convex functions and sets

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

Learning a Kernel Matrix for Nonlinear Dimensionality Reduction

Learning a Kernel Matrix for Nonlinear Dimensionality Reduction Learning a Kernel Matrix for Nonlinear Dimensionality Reduction Kilian Q. Weinberger kilianw@cis.upenn.edu Fei Sha feisha@cis.upenn.edu Lawrence K. Saul lsaul@cis.upenn.edu Department of Computer and Information

More information

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Final Exam, Machine Learning, Spring 2009

Final Exam, Machine Learning, Spring 2009 Name: Andrew ID: Final Exam, 10701 Machine Learning, Spring 2009 - The exam is open-book, open-notes, no electronics other than calculators. - The maximum possible score on this exam is 100. You have 3

More information

Metrics: Growth, dimension, expansion

Metrics: Growth, dimension, expansion Metrics: Growth, dimension, expansion Social and Technological Networks Rik Sarkar University of Edinburgh, 2017. Metric A distance measure d is a metric if: d(u,v) 0 d(u,v) = 0 iff u=v d(u,v) = d(u,v)

More information

arxiv: v2 [cs.lg] 8 May 2014

arxiv: v2 [cs.lg] 8 May 2014 Geodesic Distance Function Learning via heat flow on Vector Fields arxiv:1405.0133v2 [cs.lg] 8 ay 2014 Binbin Lin Ji Yang Xiaofei He Jieping Ye Center for Evolutionary edicine and Informatics, Arizona

More information

Linear and Non-Linear Dimensionality Reduction

Linear and Non-Linear Dimensionality Reduction Linear and Non-Linear Dimensionality Reduction Alexander Schulz aschulz(at)techfak.uni-bielefeld.de University of Pisa, Pisa 4.5.215 and 7.5.215 Overview Dimensionality Reduction Motivation Linear Projections

More information

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Alvina Goh Vision Reading Group 13 October 2005 Connection of Local Linear Embedding, ISOMAP, and Kernel Principal

More information

An Empirical Comparison of Dimensionality Reduction Methods for Classifying Gene and Protein Expression Datasets

An Empirical Comparison of Dimensionality Reduction Methods for Classifying Gene and Protein Expression Datasets An Empirical Comparison of Dimensionality Reduction Methods for Classifying Gene and Protein Expression Datasets George Lee 1, Carlos Rodriguez 2, and Anant Madabhushi 1 1 Rutgers, The State University

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering Linear algebra methods for data mining with applications to materials Yousef Saad Department of Computer Science and Engineering University of Minnesota ICSC 2012, Hong Kong, Jan 4-7, 2012 HAPPY BIRTHDAY

More information

A Duality View of Spectral Methods for Dimensionality Reduction

A Duality View of Spectral Methods for Dimensionality Reduction A Duality View of Spectral Methods for Dimensionality Reduction Lin Xiao 1 Jun Sun 2 Stephen Boyd 3 May 3, 2006 1 Center for the Mathematics of Information, California Institute of Technology, Pasadena,

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Outline. What is Machine Learning? Why Machine Learning? 9/29/08. Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond

Outline. What is Machine Learning? Why Machine Learning? 9/29/08. Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond Outline Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond Robert F. Murphy External Senior Fellow, Freiburg Ins>tute for Advanced Studies Ray and Stephanie Lane Professor

More information

Neural Networks, Convexity, Kernels and Curses

Neural Networks, Convexity, Kernels and Curses Neural Networks, Convexity, Kernels and Curses Yoshua Bengio Work done with Nicolas Le Roux, Olivier Delalleau and Hugo Larochelle August 26th 2005 Perspective Curse of Dimensionality Most common non-parametric

More information

Spectral Clustering. by HU Pili. June 16, 2013

Spectral Clustering. by HU Pili. June 16, 2013 Spectral Clustering by HU Pili June 16, 2013 Outline Clustering Problem Spectral Clustering Demo Preliminaries Clustering: K-means Algorithm Dimensionality Reduction: PCA, KPCA. Spectral Clustering Framework

More information

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs CSCI1950 Z Computa3onal Methods for Biology Lecture 24 Ben Raphael April 29, 2009 hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs Subnetworks with more occurrences than expected by chance. How to

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

Lecture 3: Compressive Classification

Lecture 3: Compressive Classification Lecture 3: Compressive Classification Richard Baraniuk Rice University dsp.rice.edu/cs Compressive Sampling Signal Sparsity wideband signal samples large Gabor (TF) coefficients Fourier matrix Compressive

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Dimensionality Reduction Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Exam Info Scheduled for Tuesday 25 th of July 11-13h (same time as the

More information

A Duality View of Spectral Methods for Dimensionality Reduction

A Duality View of Spectral Methods for Dimensionality Reduction Lin Xiao lxiao@caltech.edu Center for the Mathematics of Information, California Institute of Technology, Pasadena, CA 91125, USA Jun Sun sunjun@stanford.edu Stephen Boyd boyd@stanford.edu Department of

More information

Learning a kernel matrix for nonlinear dimensionality reduction

Learning a kernel matrix for nonlinear dimensionality reduction University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 7-4-2004 Learning a kernel matrix for nonlinear dimensionality reduction Kilian Q. Weinberger

More information

The Curse of Dimensionality for Local Kernel Machines

The Curse of Dimensionality for Local Kernel Machines The Curse of Dimensionality for Local Kernel Machines Yoshua Bengio, Olivier Delalleau & Nicolas Le Roux April 7th 2005 Yoshua Bengio, Olivier Delalleau & Nicolas Le Roux Snowbird Learning Workshop Perspective

More information

Mul$variate clustering & classifica$on with R

Mul$variate clustering & classifica$on with R Mul$variate clustering & classifica$on with R Eric Feigelson Penn State Cosmology on the Beach, 2014 Astronomical context Astronomers have constructed classifica@ons of celes@al objects for centuries:

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 42 Outline 1 Introduction 2 Feature selection

More information