How to Zoom: Lagrange volumes and Other Halo Properties

Size: px
Start display at page:

Download "How to Zoom: Lagrange volumes and Other Halo Properties"

Transcription

1 How to Zoom: Lagrange volumes and Other Halo Properties Jose Oñorbe Fulbright Postdoctoral University of California Irvine In collaboration with S. Garrison-Kimmel (UCI), J. Bullock (UCI), A. Maller (CUNY), M. Rocha (UCI) & O. Hahn (Stanford). August 18, 2012 Galaxy Simulation Comparison Project Workshop

2 How to do a zoom (zoom-in/multimass/multiresolution/nested) simulation Pipeline 1 Choose parameters: z ini, resolution, cosmology, etc 2 Run dark matter only simulation 3 Identify the desired halo to zoom 4 Calculate the Lagrange volume region to re-simulate 5 Create ICs 6 Run zoom-in simulation. Check for contamination Jose Oñorbe How to Zoom: Lagrange volumes 2

3 How to do a zoom (zoom-in/multimass/multiresolution/nested) simulation Using MUSIC (Hahn & Abel 2011) Pipeline 1 Choose parameters: z ini, resolution, cosmology, etc 2 Run dark matter only simulation 3 Identify the desired halo to zoom 4 Calculate the Lagrange volume region to re-simulate 5 Create ICs 6 Run zoom-in simulation. Check for contamination Lagrange volume definitions? How do Lagrange volumes correlate with other properties? Improve method to guarantee no contamination? How does contamination really affect the halos? Jose Oñorbe How to Zoom: Lagrange volumes 2

4 Lagrange volume Definitions Which particles do you trace back to z ini? N r vir, mainbranch(z), tree(z), fixed size, etc How do you define the volume at z ini? Convex hull, Cuboid, Sphere, etc Jose Oñorbe How to Zoom: Lagrange volumes 3

5 Part I: Full box simulations Simulations resolution: 128 3, 256 3, L box : 5, 10, 25, 50, 150, 650, 900 Mpc/h z ini codes: GADGET and ENZO hydro: adiabatic test runs Properties analysis: AMIGA HALO FINDER (AHF;Knollmann & Knebe 2009) M vir, V max, λ, shape, T, conc., a 50, # mergers,... Environment. D x,y (distance to the nearest halo B with mass over y M vir divided by r B vir ). N x,y (# of neightbours with mass > x M vir in a radius y) Lagrange volumes. Selecting the particles: 1, 2, r vir, r 200, Mainbranch, Tree approach. Defining the volume: cuboid, sphere, convex hull Jose Oñorbe How to Zoom: Lagrange volumes 4

6 Lagrange volumes Same box. Different resolutions Lagrange volume = 500 particles F07: low res (128 3 ) F08: med res (256 3 ) F09: high res (512 3 ) Jose Oñorbe How to Zoom: Lagrange volumes 5

7 Lagrange volumes Same box. Different resolutions Normalize by Vol vir = 4π 3 r 3 vir Lagrangevolume VirialVolume Resolution effects = = 500 particles F07: low res (128 3 ) F08: med res (256 3 ) F09: high res (512 3 ) Jose Oñorbe How to Zoom: Lagrange volumes 5

8 Lagrange volumes: Resolution lower-res/highest-res Lag. vol. /V olc,1 hr V ol c,1 lr Same box. Different resolutions. No subhalos and N hr part > particles L50-x64 L50-x8 L25-x64 L25-x8 mass x8 mass x64 lower-res/highest-res Vmax/V max hr Vmax Agreement L50-x64 L50-x8 L25-x64 L25-x Npart hr Npart hr # of particles in highest-res sim Single halo Lagrange volume increases with increasing resolution The smaller the level of zoom relative to initial box for Lagrange vol. calculation, the better for contamination Jose Oñorbe How to Zoom: Lagrange volumes 6

9 Correlations with other halo parameters log T log Vmax/V vir log c/a log D1, log z50 log λ log N neigh 3 log V olch lag V ol vir log V olc lag V ol vir log M vir 0.15 log Vmax/V vir Correlations in agreement with previous works (Jeeson-Daniel et al. 2011; Skibba & Maccio 2011) 0.23 log z log c/a 0.03 log λ 0.01 log T log D1, log N neigh log V olch lag V ol vir log V olc lag V ol vir Jose Oñorbe How to Zoom: Lagrange volumes 7

10 Correlations with other halo parameters Correlations in agreement with previous works (Jeeson-Daniel et al. 2011; Skibba & Maccio 2011) Jose Oñorbe How to Zoom: Lagrange volumes 7

11 Correlations with other halo parameters Correlations in agreement with previous works (Jeeson-Daniel et al. 2011; Skibba & Maccio 2011) Only significant correlations with environment parameters ( Lag. vol definitions: for N x,y for D x,y ) Significant dispersion ( with higher Lag. vol. definitions) Jose Oñorbe How to Zoom: Lagrange volumes 7

12 Selecting your halo to zoom How do these numbers translate when you want to zoom? Lagrange volume log V ch,1 vol /Vvir log Mvir (M /h) Virial Mass p.d.f Formation log a50 time log Vmax/Vvir Concentration p.d.f Environment N neight log Mvir (M ) Virial Mass p.d.f Pick smallest Lagrange volumes without biasing any internal halo properties or merger history Jose Oñorbe How to Zoom: Lagrange volumes 8

13 Part II: Let s zoom! Zoom-in simulations resolution: 5123, 10243, 20483, 40963, Lbox : 5, 50, 650 Mpc/h codes: GADGET and ENZO hydro: adiabatic test runs Jose On orbe How to Zoom: Lagrange volumes 9

14 Contamination 10 1st low res particle (r/rvir) level +1 level +2 levels +3 levels +4 levels Lag vol. definition (r/r vir ) For the same halo and fixed Lagrange volume, risk of contamination increases with resolution Jose Oñorbe How to Zoom: Lagrange volumes 10

15 Contamination 10 1st low res particle (r/rvir) level +1 level +2 levels +3 levels +4 levels Lag vol. definition (r/r vir ) For the same halo and fixed Lagrange volume, risk of contamination increases with resolution Recipe to minimize Lagrange volume and guarantee no contamination Jose Oñorbe How to Zoom: Lagrange volumes 10

16 Other Definitions/Codes Convex hull definition Also for ENZO 1st low res particle (r/rvir) level 1 level 1st low res particle (r/rvir) level 1 level 2 levels Lag vol. definition (r/r vir) Lag vol. definition (r/r vir) For the same halo and fixed Lagrange volume, risk of contamination increases with resolution Jose Oñorbe How to Zoom: Lagrange volumes 11

17 Why bother? 10 7 Adiabatic test simulations Gas Density ρ(r) (M /kpc 3 ) T (r) (K) Temperature ρ/ρf 10 0 T/TF r (kpc) r (kpc) Grey lines: L box = 50Mpc/h full box results: Red and orange lines: non-contaminated runs: and Green lines: contaminated runs: and Jose Oñorbe How to Zoom: Lagrange volumes 12

18 Why bother? Adiabatic test simulations Gas Density ρ(r) (M /kpc 3 ) T (r) (K) Temperature ρ/ρf 10 0 T/TF r (kpc) r (kpc) Contaminated density and temperature too low by factors of Jose Oñorbe How to Zoom: Lagrange volumes 12

19 Conclusions There is room to improve the zoom-in technique pipeline, primarily via choosing the Lagrange volume appropriately Halos may be selected with small Lagrange volume without biasing (spin, concentration, formation time, etc) Important to select halos to zoom and save cpu time! Lagrange volume increases with resolution. If you measure Lagrange volume using low-resolution simulations you risk severe contamination in the zoom We have developed recipes to minimize the Lagrange volume (cost) and guarantee no contamination for specific Lagrange volume definitions and codes Jose Oñorbe How to Zoom: Lagrange volumes 13

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY Shea Garrison-Kimmel (UCI) Santa Cruz 2011 Collaborators: Jose Oñorbe (UCI), James Bullock (UCI), Mike Boylan-Kolchin (UCI), Ari Maller (CUNY) Majority of halos

More information

How to Zoom: Bias, Contamination, and Lagrange Volumes in Multimass Cosmological Simulations

How to Zoom: Bias, Contamination, and Lagrange Volumes in Multimass Cosmological Simulations Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 1 May 201 (MN LATEX style file v2.2) How to Zoom: Bias, Contamination, and Lagrange Volumes in Multimass Cosmological Simulations in their appropriate

More information

Feedback from massive stars in dwarf galaxy formation

Feedback from massive stars in dwarf galaxy formation Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L. M. Lara, V. Quilis, and

More information

James Bullock UC Irvine

James Bullock UC Irvine Can Feedback Solve Too Big to Fail Problem? James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Collaborators Shea Garrison-Kimmel Mike Boylan-Kolchin Jose Oñorbe Jaspreet Lally Manoj Kaplinghat dsphs

More information

Angular Momentum Acquisition in Galaxy Halos

Angular Momentum Acquisition in Galaxy Halos Angular Momentum Acquisition in Galaxy Halos Kyle Stewart NASA Postdoctoral Fellow Jet Propulsion Laboratory, California Institute of Technology Mentor: Leonidas Moustakas The Baryon Cycle, UC Irvine,

More information

Where to Look for Dark Matter Weirdness

Where to Look for Dark Matter Weirdness Where to Look for Dark Matter Weirdness Dark Matter in Southern California (DaMaSC) - II James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Collaborators Mike Boylan-Kolchin U. Maryland Miguel Rocha

More information

Reionization and the radial distribution of satellites

Reionization and the radial distribution of satellites Reionization and the radial distribution of satellites Andrew Graus (UC Irvine) Collaborators: James Bullock (UC Irvine) Tyler Kelley Oliver Elbert Claire Qi Michael Boylan-Kolchin (UT Austin) Alex Fitts

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

Shea C. Garrison-Kimmel

Shea C. Garrison-Kimmel Curriculum Vitae Shea C. Garrison-Kimmel Einstein Postdoctoral Fellow Phone: (610) 731-6378 California Institute of Technology Email: sheagk@caltech.edu 1200 E. California Blvd., Pasadena, CA 91125 Homepage:

More information

The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations

The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations J. CASADO GÓMEZ (UAM) R. DOMÍNGUEZ-TENREIRO J. OÑORBE (UCA/Irvine) F. MARTINEZ - SERRANO (UMH) A. KNEBE

More information

ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos

ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos Frank van den Bosch Yale University, spring 2017 The Structure of Dark Matter Haloes In this lecture we examine the detailed

More information

Beyond the spherical dust collapse model

Beyond the spherical dust collapse model Beyond the spherical dust collapse model 1.5M 1.0M M=1.66 10 15 M 0.65M 0.4M 0.25M Evolution of radii of different mass shells in a simulated halo Yasushi Suto Department of Physics and RESCEU (Research

More information

Planck meets the Lyman-α forest

Planck meets the Lyman-α forest Planck meets the Lyman-α forest Jose Oñorbe Max Planck Institute for Astronomy (onorbe@mpia.de) Collaborators: J. Hennawi (MPIA), Z. Lukić (LBNL), A. Rorai (IoA), G. Kulkarni (IoA) June 15, 2016 Meeting

More information

RHAPSODY: I. HALO PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS

RHAPSODY: I. HALO PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS Draft version July 24, 2012 Preprint typeset using L A TEX style emulateapj v. 12/16/11 RHAPSODY: I. HALO PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS Hao-Yi

More information

ELVIS: Exploring the Local Volume in Simulations

ELVIS: Exploring the Local Volume in Simulations Mon. Not. R. Astron. Soc. 000, 1 22 (2013) Printed 16 January 2014 (MN LATEX style file v2.2) ELVIS: Exploring the Local Volume in Simulations Shea Garrison-Kimmel 1, Michael Boylan-Kolchin 2,1, James

More information

The first stars and primordial IMBHs

The first stars and primordial IMBHs The first stars and primordial IMBHs Ab initio predictions of black hole merger rates by the time LISA flies? Tom Abel Penn State Initial Conditions Time Evolution z=100 z=24 z=20.4 10 comoving kpc Cosmological

More information

A.Klypin. Dark Matter Halos

A.Klypin. Dark Matter Halos A.Klypin Dark Matter Halos 1 Major codes: GADET N-body Hydro Cooling/Heating/SF Metal enrichment Radiative transfer Multistepping/Multiple masses Springel, SDM White PKDGRAV - GASOLINE ART ENZO Quinn,

More information

The edge of darkness, and other halo surprises

The edge of darkness, and other halo surprises The edge of darkness, and other halo surprises Benedikt Diemer ITC Fellow, Harvard-Smithsonian Center for Astrophysics (in collaboration with Andrey Kravtsov and Surhud More) APEC Seminar IPMU 4/7/26 Strength

More information

Origin and Evolution of Disk Galaxy Scaling Relations

Origin and Evolution of Disk Galaxy Scaling Relations Origin and Evolution of Disk Galaxy Scaling Relations Aaron A. Dutton (CITA National Fellow, University of Victoria) Collaborators: Frank C. van den Bosch (Utah), Avishai Dekel (HU Jerusalem), + DEEP2

More information

The Mass of the Milky Way from its Satellites. Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler

The Mass of the Milky Way from its Satellites. Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler The Mass of the Milky Way from its Satellites Michael Busha KIPAC/Stanford Collaborators: Phil Marshall, Risa Wechsler Introduction As seen earlier in this conference, the Bolshoi simulation + SHAM does

More information

Galaxy Hydrodynamic Simulations and Sunrise Visualizations

Galaxy Hydrodynamic Simulations and Sunrise Visualizations Galaxy Hydrodynamic Simulations and Sunrise Visualizations Joel Primack, UCSC Daniel Ceverino, HU Madrid Avishai Dekel, HU & UCSC Sandra Faber, UCSC Anatoly Klypin, NMSU Patrik Jonsson, Harvard CfA Chris

More information

arxiv: v2 [astro-ph.ga] 17 Oct 2015

arxiv: v2 [astro-ph.ga] 17 Oct 2015 Mon. Not. R. Astron. Soc., () Printed October 15 (MN LATEX style file v.) Forged in FIRE: cusps, cores, and baryons in low-mass dwarf galaxies arxiv:15.3v [astro-ph.ga] 17 Oct 15 Jose Oñorbe 1,, Michael

More information

Hydro ART simulations sample

Hydro ART simulations sample Hydro ART simulations sample Stellar Merger Trees Dylan Tweed dylan.tweed@googlemail.com Racah Institute of Physics, HUJI, Jerusalem CANDELS Theory Workshop - UCSC - August 8 th 10 th 2012 D. P. Tweed

More information

Simulations and the Galaxy Halo Connection

Simulations and the Galaxy Halo Connection Simulations and the Galaxy Halo Connection Yao-Yuan Mao (Stanford/SLAC PITT PACC) @yaoyuanmao yymao.github.io SCMA6 @ CMU 6/10/16 My collaborators at Stanford/SLAC Joe DeRose Ben Lehmann ( UCSC) Vincent

More information

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY N-body Simulations N-body Simulations N-body Simulations Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY Final distribution of dark matter.

More information

Clusters and groups of galaxies: internal structure and dynamics

Clusters and groups of galaxies: internal structure and dynamics Clusters and groups of galaxies: internal structure and dynamics Strong constraints on cosmological theories and on the nature of dark matter can be obtained from the study of cluster masses, mass distribution,

More information

The Los Cabos Lectures

The Los Cabos Lectures January 2009 The Los Cabos Lectures Dark Matter Halos: 2 Simon White Max Planck Institute for Astrophysics EPS statistics for the standard ΛCDM cosmology Millennium Simulation cosmology: Ωm = 0.25, ΩΛ

More information

Identifying Star-Forming Clumps in CANDELS Galaxies

Identifying Star-Forming Clumps in CANDELS Galaxies Properties of Dark Matter Halos: Environment Density, Mass Loss, and Connection to Galaxy Size Deep Learning Applied to Galaxy Evolution: Identifying Star-Forming Clumps in CANDELS Galaxies Christoph Lee

More information

The Milky Way and Near-Field Cosmology

The Milky Way and Near-Field Cosmology The Milky Way and Near-Field Cosmology Kathryn V Johnston (Columbia University) Collaborators (theorists): James S Bullock (Irvine), Andreea Font (Durham), Brant Robertson (Chicago), Sanjib Sharma (Columbia),

More information

halo merger histories

halo merger histories Physics 463, Spring 07 Lecture 5 The Growth and Structure of Dark Mater Halos z=7! z=3! z=1! expansion scalefactor z=0! ~milky way M>3e12M! /h c vir ~13 ~virgo cluster M>3e14M! /h, c vir ~6 halo merger

More information

The mass of a halo. M. White

The mass of a halo. M. White A&A 367, 27 32 (2001) DOI: 10.1051/0004-6361:20000357 c ESO 2001 Astronomy & Astrophysics The mass of a halo M. White Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA e-mail: mwhite@cfa.harvard.edu

More information

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Mia S. Bovill with Massimo Ricotti University of Maryland The Smallest Galaxies Minihalos DO NOT initiate gas condensation

More information

CDM Controversies. James Bullock (UC Irvine)

CDM Controversies. James Bullock (UC Irvine) CDM Controversies James Bullock (UC Irvine) Low stellar mass: feedback can t change DM Core Cusp Tollet et al. 2015 Also: Governato+12; Penarrubia+12; Garrison-Kimmel+13, Di Cintio+14 Low stellar mass:

More information

arxiv: v2 [astro-ph.co] 19 Jan 2017

arxiv: v2 [astro-ph.co] 19 Jan 2017 Mon. Not. R. Astron. Soc., 1 22 (215) Printed 2 January 217 (MN LATEX style file v2.2) Baryonic impact on the dark matter distribution in Milky Way-size galaxies and their satellites arxiv:156.5537v2 [astro-ph.co]

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744

The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744 The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744 Kawamata+15, ApJ, 804, 103 Ryota Kawamata The University of Tokyo With: Masafumi Ishigaki, Kazuhiro Shimasaku, Masamune

More information

arxiv: v2 [astro-ph.co] 7 Jul 2014

arxiv: v2 [astro-ph.co] 7 Jul 2014 Mon. Not. R. Astron. Soc. 000, 1 6 (2014) Printed 31 October 2018 (MN LATEX style file v2.2) Near-field limits on the role of faint galaxies in cosmic reionization Michael Boylan-Kolchin, 1 James S. Bullock,

More information

The Merging Systems Identification (MeSsI) Algorithm.

The Merging Systems Identification (MeSsI) Algorithm. The Merging Systems Identification (MeSsI) Algorithm. July 10, 2016 Table of contents 1 Why searching merging galaxy clusters? 2 The MeSsI Algorithm Machine learning algorithm applied for identification

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

Formation and evolution of CDM halos and their substructure

Formation and evolution of CDM halos and their substructure Formation and evolution of CDM halos and their substructure 1) cold dark matter and structures on all scales 2) via lactea, z=0 results 3) subhalo evolution Jürg Diemand UC Santa Cruz 4) DM annihilation

More information

Galaxy Cluster Mergers

Galaxy Cluster Mergers Galaxy Cluster Mergers Alexia Schulz Institute for Advanced Study Andrew Wetzel Daniel Holz Mike Warren Talk Overview! Introduction " Why are cluster mergers of interest? " Where will mergers complicate

More information

RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS

RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS Draft version October 23, 212 Preprint typeset using L A TEX style emulateapj v. 12/16/11 SLAC-PUB-15314 RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF

More information

Dwarf Galaxies as Cosmological Probes

Dwarf Galaxies as Cosmological Probes Dwarf Galaxies as Cosmological Probes Julio F. Navarro The Ursa Minor dwarf spheroidal First Light First Light The Planck Satellite The Cosmological Paradigm The Clustering of Dark Matter The Millennium

More information

Understanding isolated and satellite galaxies through simulations

Understanding isolated and satellite galaxies through simulations Understanding isolated and satellite galaxies through simulations Kenza Arraki! Blue Waters Graduate Fellow! New Mexico State University! Anatoly Klypin! Daniel Ceverino! Sebastian Trujillo-Gomez! Joel

More information

How much of their stellar mass have group galaxies lost to the ICL?

How much of their stellar mass have group galaxies lost to the ICL? GEPI How much of their stellar mass have group galaxies lost to the ICL? Édouard Tollet Andrea Cattaneo Gary Mamon 3 1,2 * 1 1 Observatoire de Paris - GEPI Université Paris Diderot 3 Institut d'astrophysique

More information

Diverse Galactic Rotation Curves & Self-Interacting Dark Matter

Diverse Galactic Rotation Curves & Self-Interacting Dark Matter Diverse Galactic Rotation Curves & Self-Interacting Dark Matter Hai-Bo Yu University of California, Riverside TeVPA, August 7, 2017 See Anna Kwa s talk Review for Physics Reports: Sean Tulin, HBY arxiv:

More information

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation Cosmic ray feedback in hydrodynamical simulations of galaxy and structure formation Canadian Institute for Theoretical Astrophysics, Toronto April, 13 26 / Workshop Dark halos, UBC Vancouver Outline 1

More information

A tool to test galaxy formation theories. Joe Wolf (UC Irvine)

A tool to test galaxy formation theories. Joe Wolf (UC Irvine) A tool to test galaxy formation theories Joe Wolf (UC Irvine) SF09 Cosmology Summer Workshop July 7 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Frank Avedo KIPAC: Louie Strigari Haverford:

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias Hao-Yi Wu University of Michigan Galaxies are not necessarily test particles Probing dark energy with growth

More information

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins NYU Nov 5, 2010 R isa Wechsler The Dark Matter and Satellites in the Milky Way and its Twins What is the formation history of the Milky Way? Can we understand the population of satellites in the Milky

More information

Properties of dark matter haloes as a function of local environment density

Properties of dark matter haloes as a function of local environment density Advance Access publication 2016 December 23 doi:10.1093/mnras/stw3348 Properties of dark matter haloes as a function of local environment density Christoph T. Lee, 1 Joel R. Primack, 1 Peter Behroozi,

More information

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA)

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA) Dark Matter Substructure and their associated Galaxies Frank C. van den Bosch (MPIA) Outline PART I: The Subhalo Mass Function (van den Bosch, Tormen & Giocoli, 2005) PART II: Statistical Properties of

More information

arxiv:astro-ph/ v1 27 Nov 2000

arxiv:astro-ph/ v1 27 Nov 2000 A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 02 (3.13.18) - methods: N-body simulations ASTRONOMY AND ASTROPHYSICS The mass of a halo Martin White arxiv:astro-ph/0011495v1

More information

The halo-galaxy connection KITP, May 2017` Assembly bias. Simon White Max Planck Institute for Astrophysics

The halo-galaxy connection KITP, May 2017` Assembly bias. Simon White Max Planck Institute for Astrophysics The halo-galaxy connection KITP, May 2017` Assembly bias Simon White Max Planck Institute for Astrophysics Halo clustering depends on formation history Gao, Springel & White 2005 The 20% of halos with

More information

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov Elad Zinger Hebrew University Jerusalem IGM@50, Spineto, 12 June 2015 Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov They re still there! Account for most of the accretion.

More information

The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs

The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs Avishai Dekel The Hebrew University of Jerusalem & UCSC Silk 75, December 2017 A Characteristic Mass for Galaxy Formation Efficiency

More information

arxiv: v2 [astro-ph.co] 3 Feb 2016

arxiv: v2 [astro-ph.co] 3 Feb 2016 Mon. Not. R. Astron. Soc. 000, 1 21 (0000) Printed 5 February 2016 (MN LATEX style file v2.2) MultiDark simulations: the story of dark matter halo concentrations and density profiles. arxiv:1411.4001v2

More information

The statistics of ΛCDM halo concentrations

The statistics of ΛCDM halo concentrations Mon. Not. R. Astron. Soc. 381, 1450 1462 (2007) doi:10.1111/j.1365-2966.2007.12381.x The statistics of ΛCDM halo concentrations Angelo F. Neto, 1,2 Liang Gao, 2 Philip Bett, 2 Shaun Cole, 2 Julio F. Navarro,

More information

cluster scaling relations and mass definitions

cluster scaling relations and mass definitions cluster scaling relations and mass definitions Andrey Kravtsov Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics The University of Chicago Abell 85 SDSS Abell 85 SDSS/ Abell

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-1 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors

The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors John Wise Brian O Shea (PI, MSU) David Collins (FSU), Cameron Hummels (Caltech), Devin Silvia (MSU), Britton Smith (SDSC)

More information

Distinguishing Between Warm and Cold Dark Matter

Distinguishing Between Warm and Cold Dark Matter Distinguishing Between Warm and Cold Dark Matter Center for Cosmology Aspen Workshop Neutrinos in Physics & Astrophysics 2/2/2007 Collaborators: James Bullock, Manoj Kaplinghat astro-ph/0701581.. Motivations

More information

Angular Momentum Problems in Disk Formation

Angular Momentum Problems in Disk Formation Angular Momentum Problems in Disk Formation MPIA Theory Group Seminar, 07/03/2006 The Standard Picture Disks galaxies are systems in centrifugal equilibrium Structure of disks is governed by angular momentum

More information

The Self-Interacting Dark Matter Paradigm

The Self-Interacting Dark Matter Paradigm The Self-Interacting Dark Matter Paradigm Hai-Bo Yu University of California, Riverside UCLA Dark Matter 2016, February 17-19, 2016 Small Scale Issues Core VS. Cusp problem Too-big-to-fail problem s r

More information

Galaxy formation in cold dark matter

Galaxy formation in cold dark matter Galaxy formation in cold dark matter Cheng Zhao Tsinghua Center for Astrophysics Oct 27, 2017 Main references: Press & Schechter, 1974 White & Rees, 1978 Galaxy formation mechanism Cosmological initial

More information

arxiv: v1 [astro-ph.ga] 21 Aug 2017

arxiv: v1 [astro-ph.ga] 21 Aug 2017 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed August 22, 2017 (MN LATEX style file v2.2) Haloes at the ragged edge: The importance of the splashback radius arxiv:1708.06181v1 [astro-ph.ga] 21 Aug

More information

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Mergers and Mass Assembly of Dark Matter Halos & Galaxies Mergers and Mass Assembly of Dark Matter Halos & Galaxies Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin (MPA --> Southern UC) Claude-Andre Faucher-Giguere Dusan Keres (Harvard

More information

arxiv: v1 [astro-ph.ga] 18 Jan 2018

arxiv: v1 [astro-ph.ga] 18 Jan 2018 Preprint 22 January 218 Compiled using MNRAS LATEX style file v3. No Assembly Required: Mergers are Mostly Irrelevant for the Growth of Low-mass Dwarf Galaxies arxiv:181.6187v1 [astro-ph.ga] 18 Jan 218

More information

Galaxy Gas Halos and What They Can Tell Us About Galaxy Formation

Galaxy Gas Halos and What They Can Tell Us About Galaxy Formation Galaxy Gas Halos and What They Can Tell Us About Galaxy Formation Ariyeh Maller CUNY Z Why Gas Halos? Gas Accretion Star Formation Stellar Populations Feedback dt Dust dm dt Gas Accretion Feedback Gas

More information

The structure of clusters in a Self-Interacting Dark Matter cosmology

The structure of clusters in a Self-Interacting Dark Matter cosmology The structure of clusters in a Self-Interacting Dark Matter cosmology Thejs Ehlert Brinckmann Supervisor: Jesús Zavala Franco Co-supervisor: Steen Harle Hansen Master s thesis, submitted on August 7, 2015

More information

arxiv:astro-ph/ v1 22 Sep 2005

arxiv:astro-ph/ v1 22 Sep 2005 Mass Profiles and Shapes of Cosmological Structures G. Mamon, F. Combes, C. Deffayet, B. Fort (eds) EAS Publications Series, Vol.?, 2005 arxiv:astro-ph/0509665v1 22 Sep 2005 MONDIAN COSMOLOGICAL SIMULATIONS

More information

A Universe in Motion: Testing the Cosmological Paradigm with Galaxy Dynamics. John Dubinski, Toronto

A Universe in Motion: Testing the Cosmological Paradigm with Galaxy Dynamics. John Dubinski, Toronto A Universe in Motion: Testing the Cosmological Paradigm with Galaxy Dynamics John Dubinski, Toronto Outline Cosmology and galaxy dynamics Tools of the trade and computational challenges Case Studies: Triaxial

More information

arxiv: v1 [astro-ph.co] 26 Mar 2014

arxiv: v1 [astro-ph.co] 26 Mar 2014 Accepted to ApJ Preprint typeset using L A TEX style emulateapj v. 5/2/11 THE EFFECTS OF VARYING COSMOLOGICAL PARAMETERS ON HALO SUBSTRUCTURE Gregory A. Dooley 1, Brendan F. Griffen 1, Phillip Zukin 2,3,

More information

Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation Numerical Cosmology & Galaxy Formation Lecture 13: Example simulations Isolated galaxies, mergers & zooms Benjamin Moster 1 Outline of the lecture course Lecture 1: Motivation & Historical Overview Lecture

More information

Simulating the Universe

Simulating the Universe Simulating the Universe Christine Corbett Moran, Irshad Mohammed, Manuel Rabold, Davide Martizzi, Doug Potter, Aurel Schneider Oliver Hahn, Ben Moore, Joachim Stadel Outline - N-body codes: where do we

More information

Mass assembly history and infall time of the Fornax dwarf spheroidal galaxy

Mass assembly history and infall time of the Fornax dwarf spheroidal galaxy Advance Access publication 2016 January 27 doi:10.1093/mnras/stw220 Mass assembly history and infall time of the Fornax dwarf spheroidal galaxy Mei-Yu Wang, 1 Louis E. Strigari, 1 Mark R. Lovell, 2,3 Carlos

More information

Xiuyuan Yang (Columbia University and BNL) Jan Kratochvil (University of Miami)

Xiuyuan Yang (Columbia University and BNL) Jan Kratochvil (University of Miami) Xiuyuan Yang (Columbia University and BNL) Jan Kratochvil (University of Miami) Advisors: Morgan May (Brookhaven National Lab) Zoltan Haiman (Columbia University) Introduction Large surveys such as LSST

More information

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang Contents 1

More information

Dark Matter Dominated Objects. Louie Strigari Stanford

Dark Matter Dominated Objects. Louie Strigari Stanford Dark Matter Dominated Objects Louie Strigari Stanford Milky Way Circa 2009 Satellite Year Discovered LMC 1519 SMC 1519 Sculptor 1937 Fornax 1938 Leo II 1950 Leo I 1950 Ursa Minor 1954 Draco 1954 Carina

More information

Galaxy Ecology. an Environmental Impact Assessment. Frank van den Bosch (MPIA)

Galaxy Ecology. an Environmental Impact Assessment. Frank van den Bosch (MPIA) Galaxy an Environmental Impact Assessment Frank van den Bosch (MPIA) in collaboration with Xiaohu Yang (SHAO), Houjun Mo (UMass), Simone Weinmann (Zürich) Anna Pasquali (MPIA), Daniel Aquino (MPIA) Heidelberg,

More information

Masses of Dwarf Satellites of the Milky Way

Masses of Dwarf Satellites of the Milky Way Masses of Dwarf Satellites of the Milky Way Manoj Kaplinghat Center for Cosmology UC Irvine Collaborators: Greg Martinez Quinn Minor Joe Wolf James Bullock Evan Kirby Marla Geha Josh Simon Louie Strigari

More information

Simulating non-linear structure formation in dark energy cosmologies

Simulating non-linear structure formation in dark energy cosmologies Simulating non-linear structure formation in dark energy cosmologies Volker Springel Distribution of WIMPS in the Galaxy Early Dark Energy Models (Margherita Grossi) Coupled Dark Energy (Marco Baldi) Fifth

More information

The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations

The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations Sunghye BAEK Collaborators : B. Semelin, P. Di Matteo, F. Combes, Y. Revaz LERMA - Observatoire de Paris 9 Dec 2008 Physics of the

More information

NUMERICAL STUDY OF HALO CONCENTRATIONS IN DARK-ENERGY COSMOLOGIES

NUMERICAL STUDY OF HALO CONCENTRATIONS IN DARK-ENERGY COSMOLOGIES NUMERICAL STUDY OF HALO CONCENTRATIONS IN DARK-ENERGY COSMOLOGIES KLAUS DOLAG 1, MATTHIAS BARTELMANN, FRANCESCA PERROTTA,, CARLO BACCIGALUPI,, LAURO MOSCARDINI, MASSIMO MENEGHETTI 1 AND GIUSEPPE TORMEN

More information

arxiv: v1 [astro-ph.co] 22 Sep 2017

arxiv: v1 [astro-ph.co] 22 Sep 2017 Mon. Not. R. Astron. Soc. 000, 1 9 (2017) Printed 8 October 2018 (MN LATEX style file v2.2) The build up of the correlation between halo spin and the large scale structure arxiv:1709.07881v1 [astro-ph.co]

More information

Simulations of Cosmic Structure Formation

Simulations of Cosmic Structure Formation Simulations of Cosmic Structure Formation Volker Springel The role of simulations in cosmology High-resolution N-body simulations Millennium XXL Hydrodynamic simulations and recent results for galaxy formation

More information

Effects of baryons on the circular velocities of dwarf satellites

Effects of baryons on the circular velocities of dwarf satellites Effects of baryons on the circular velocities of dwarf satellites Anatoly Klypin, Kenza Arraki, Surhud More NMSU, U. Chicago August 15, 2012; Santa Cruz Galaxy Workshop LCDM and dwarfs: love to hate Missing

More information

The build up of the correlation between halo spin and the large-scale structure

The build up of the correlation between halo spin and the large-scale structure Advance Access publication 2017 September 25 doi:10.1093/mnras/stx2466 The build up of the correlation between halo spin and the large-scale structure Peng Wang 1,2 and Xi Kang 1 1 Purple Mountain Observatory,

More information

Dark matter. Anne Green University of Nottingham

Dark matter. Anne Green University of Nottingham Dark matter Anne Green University of Nottingham anne.green@nottingham.ac.uk 1. Observational evidence for DM and constraints on its properties Alternatives to dark matter (modified gravity) 2. The DM distribution

More information

The Role Of Globular Clusters During Reionization

The Role Of Globular Clusters During Reionization The Role Of Globular Clusters During Reionization MKI Level 5, Room 582K Collaboration University of Queensland University of Sussex University of Stockholm Michael Drinkwater Ilian Iliev Peter Thomas

More information

The dark matter crisis

The dark matter crisis The dark matter crisis Ben Moore Department of Physics, Durham University, UK. arxiv:astro-ph/0103100 v2 8 Mar 2001 Abstract I explore several possible solutions to the missing satellites problem that

More information

ASTR 610 Theory of Galaxy Formation Lecture 15: Galaxy Interactions

ASTR 610 Theory of Galaxy Formation Lecture 15: Galaxy Interactions ASTR 610 Theory of Galaxy Formation Lecture 15: Galaxy Interactions Frank van den Bosch Yale University, spring 2017 Galaxy Interactions & Transformations In this lecture we discuss galaxy interactions

More information

Global Scaling Relations of Spiral Galaxies

Global Scaling Relations of Spiral Galaxies Global Scaling Relations of Spiral Galaxies Aaron A. Dutton Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany IAU 311, Galaxy Masses as constraints to Formation Models, Oxford, July 2014 Outline

More information

Dynamics of Galaxies: Practice. Frontiers in Numerical Gravitational Astrophysics July 3, 2008

Dynamics of Galaxies: Practice. Frontiers in Numerical Gravitational Astrophysics July 3, 2008 Dynamics of Galaxies: Practice Frontiers in Numerical Gravitational Astrophysics July 3, 2008 http://xkcd.com/323/ Outline 1. Initial Conditions a) Jeans Theorem b) Exact solutions for spheres c) Approximations

More information

arxiv: v2 [astro-ph.co] 28 Oct 2011

arxiv: v2 [astro-ph.co] 28 Oct 2011 SUBMITTED TO APJ MARCH, 209 Preprint typeset using LATEX style emulateapj v. /0/09 THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES PETER S. BEHROOZI, RISA H. WECHSLER,

More information

arxiv: v1 [astro-ph.ga] 7 Nov 2016

arxiv: v1 [astro-ph.ga] 7 Nov 2016 Preprint 9 November 2016 Compiled using MNRAS LATEX style file v3.0 FIRE in the Field: Simulating the Threshold of Galaxy Formation arxiv:1611.02281v1 [astro-ph.ga] 7 Nov 2016 Alex Fitts 1, Michael Boylan-Kolchin

More information

The impact of Sagittarius on the disk of the Milky Way

The impact of Sagittarius on the disk of the Milky Way The impact of Sagittarius on the disk of the Milky Way David Law James Bullock (UC Irvine) The impact of Sagittarius on the disk of the Milky Way Chris Purcell (Irvine U Pittsburgh) Erik Tollerud (Irvine)

More information

The friends-of-friends algorithm: A percolation theory perspective

The friends-of-friends algorithm: A percolation theory perspective THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION Surhud More 1,2,Andrey V. Kravtsov 2,3,4,Neal Dalal 5,Stefan Gottlöber 6 Draft version February 28, 2011

More information