Global Scaling Relations of Spiral Galaxies

Size: px
Start display at page:

Download "Global Scaling Relations of Spiral Galaxies"

Transcription

1 Global Scaling Relations of Spiral Galaxies Aaron A. Dutton Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany IAU 311, Galaxy Masses as constraints to Formation Models, Oxford, July 2014

2 Outline The Stellar Initial Mass Function (Cappellari, Romanowsky, Gerhard, Thomas, McDermid, Vazdekis, Conroy, Yi, Verheijen, Treu, Schechter, Smith, Chabrier, Shetty) Velocity - Mass relations (Cappellari, Romanowsky) Angular Momentum (Fall, Falcon-Barroso, Dekel) Evolution (Ziegler, Kassin, Miller)

3 Why the IMF is important Measuring stellar masses of galaxies - Galaxy formation (in)efficiency - Dark matter density profiles dn / d M M -x UV photons - Measuring galaxy star formation rates - Cosmic re-ionization Chemical evolution of galaxies - Supernova rates - Gas recycling Van Dokkum 2008

4 Main uncertainty: Dark matter halo profile Strong degeneracies between stellar and dark matter in galaxy mass models (van Albada & Sancisi 1986) No robust theoretical prediction for dark halo structure in a ΛCDM universe Option 1) Maximum disk (bulge) - Gives upper limit to stellar mass (only assumes DM is not hollow) Option 2) Use vertical kinematics to measure disk mass - Subtract off gas to get stellar mass (DISK MASS PROJECT - see Verheijen) Option 3) Use galaxies with bulge dominated centers - Dark matter fraction is effectively zero, but only gives bulge stellar mass

5 Upper limits to M/L 0.6 Bell & de Jong 2001 From maximum disk fits of spiral galaxies Salpeter IMF overpredicts M/L in many galaxies 0.15 dex lower M/L (known as diet -Salpeter) Milky Way IMFs are OK log10(m/lk) Salpeter IMF Chabrier IMF Spiral galaxies in Ursa Major: Are they typical? (B-R)

6 Scaling Relations Average galaxies Salpeter IMF too heavy in massive spirals diet -Salpeter OK Milky Way IMFs are OK Dutton et al. 2011b Salpeter IMF diet Salpeter Chabrier IMF

7 Brewer et al Upper limits: Strong Lensing!)(!$#"** Critical Curve Strong lensing:!)**$!'!' '!#' projected total mass with critical curve: Mlens Stellar Pop Synthesis: projected stellar mass within critical curve, assuming an IMF: MSPS f* = MSPS / Mlens '!(#$*(## '!(&$(*'& A physical IMF has f* < 1 ''!(

8 !"#!$%"%& Upper limits: Strong Lensing IMF is lighter than Salpeter in massive spirals IMF can be ~2 x heavier than Salpeter in most massive galaxies!)(!$#"** MSPS / Mlens Brewer et al '!(#$*(## Chabrier MSPS / Mlens '''&$%&!% Salpeter Velocity Dispersion '('($!*!,

9 velocity [km/s] velocity [km/s] The disk (bulge) - halo degeneracy (or you get out what you put in) van Albada & Sancisi 1986 Maximal Disk Cored Halo NGC 2403 Minimal Disk Cuspy Halo Total Dark Gas Stars Dutton et al radius [kpc] radius [kpc]

10 Disk Mass Project - Bershady et al. disk surface density vertical velocity dispersion disk scale height geometric constant Challenges 1. measuring σz is hard 2. can t measure σz and hz simultaneously 3. need dynamically cold disks (i.e., no bulges) Strength: Disk Mass Independent of assumptions about dark matter halo

11 Galaxy Disks are Sub-maximal vertical velocity dispersion Bershady et al disk scale height geometric constant } 1. can t measure simultaneously 2. measuring σz is hard 3. need dynamically cold disks Velocity Luminosity Color

12 Galaxy Disks are Sub-maximal vertical velocity dispersion Bershady et al disk scale height geometric constant } 1. can t measure simultaneously 2. measuring σz is hard 3. need dynamically cold disks Dark Matter > Baryonic Matter Velocity Luminosity Color Are all Spirals dark matter dominated within 2.2 disc scale lengths?

13 What about Bulge-dominated Spirals? kpc kpc kpc 20 kpc kpc Bulge stellar mass consistent with Salpeter IMF Disk mass degenerate with dark halo Probability Strong gravitational lenses with star-forming disks (Dutton et al. 2013a) log(mld / MSPS)

14 Sub-maximal disks and maximal bulges Bershady et al Dutton et al. 2013a Warning: constant stellar M/L gives biased results

15 Velocity - Mass relations Velocity (rotation / dispersion / circular) Depends on baryons and dark matter Mass (Luminosity / stellar mass / baryonic mass) Depends on baryons

16 Velocity - Luminosity Scaling Relations Faber-Jackson (1976) ~1200 citations Tully-Fisher (1977) ~1500 citations Velocity Dispersion EARLY TYPES Linewidth LATE TYPES B-Magnitude B-Magnitude 1976: 25 galaxies 1977: 18 galaxies

17 Velocity - Mass Scaling Relations Dutton, Conroy, van den Bosch, Simard, Mendel, Courteau, Dekel, More, Prada, 2011, MNRAS, 416, 322 Faber-Jackson (1976) > 1000 citations Tully-Fisher (1977) >1200 citations Velocity Dispersion EARLY TYPES SDSS data Rotation Velocity LATE TYPES Stellar Mass Stellar Mass 2011: ~100,000 galaxies 2011: ~1500 galaxies

18 Scaling Relation Mass Models As a function of Mstar we know average - dark halo mass (+ halo concentration) - stellar light profile (bulge, disk) - cold gas mass, and size V 2 total (R) = V2 stars (R) + V2 gas (R) + V2 dark (R) Known Known up to IMF Known Known up to halo response Early-types: R=Re Late-types: R=2.2 Rd ~1.3 Re

19 Fiducial Model: Chabrier IMF + Gnedin et al. (2004) halo contraction Faber-Jackson (1976) Tully-Fisher (1977) log(circular Velocity) GOOD MATCH log(circular Velocity) Vrot is ~20% higher than observed log(stellar Mass) log(stellar Mass) Agrees with Schulz et al Agrees with Dutton et al. (2007)

20 Fiducial Model: Chabrier IMF + Gnedin et al. (2004) halo contraction Future: complete samples galaxies on same plot CALIFA, SAMI, MaNGA log(circular Velocity) Model Almost Universal log(circular Velocity) Observed Late types have lower Vcirc log(stellar Mass) log(stellar Mass)

21 Fiducial Model: Chabrier IMF + Blumenthal et al. (1986) halo contraction Early-types: good match Luminosity Late-types: contraction model over predicts rotation velocities. Trujillo-Gomez et al Circular Velocity

22 Cosmological Hydro-Simulations Circular Velocity Vogelsberger et al Illustris Trujillo-Gomez et al Stellar Mass Models over predict rotation velocities of spiral galaxies Solutions: 1) lower observed stellar mass (IMF) 2) lower predicted Velocities (halo response)

23 Varying stellar mass (IMF) and halo response Contraction NFW Expansion log (M star / M SPS ) Halo Response Model Error bars are 2 sigma: halo masses and V/σ Heavier IMF Chabrier IMF (Milky Way) Lighter IMF For Milky Way IMF late-type haloes do not contract early-type haloes contract

24 Dark halo Expansion is possible in cosmological hydro simulations Mashchenko et al. 2008, Governato et al. 2010, Duffy et al. 2010, Pontzen & Governato 2012, Macciò et al. 2012,... DM slope at 1-2% Rvir MaGICC - Stinson et al core NFW contracted Di Cintio et al log(mstar/mhalo) It would be surprising! if real haloes were NFW

25 The Baryonic Tully Fisher relation Motivation: low mass late-types contain lots of cold gas Baryonic Mass = Mstar + Matomic + Mmolecular Gas Rich log (Mgas / Mstar) Dutton et al. 2011b Gas Poor log(mstar)

26 The Baryonic Tully Fisher relation Baryonic Mass = Mstar + MHI + MH2 Baryonic Mass (McGaugh 2000, Bell & de Jong 2001; Geha et al. 2005; Avila-Reese et al. 2008; Begum et al 2008; Stark et al. 2009; Trachternach et al. 2009; Gurovich et al. 2010; Hall et al. 2011; Catinella et al. 2012,...) McGaugh 2011 HI Linewidth, W20/2 [km/s] Vflat [km/s]

27 The Baryonic Tully Fisher relation Baryonic Mass (McGaugh 2000, Bell & de Jong 2001; Geha et al. 2005; Avila-Reese et al. 2008; Begum et al 2008; Stark et al. 2009; Trachternach et al. 2009; Gurovich et al. 2010; Hall et al. 2011; Catinella et al. 2012,...) Baryonic Mass = Mstar + MHI + MH2 Power-law over 4 decades Small scatter: (McGaugh 2012) - observed 0.25 dex - intrinsic < 0.15 dex - Is it too small for ΛCDM? McGaugh 2011 Linewidth Vflat [km/s]

28 Baryonic Mass Gas Mass / Stellar Mass The Baryonic Tully Fisher relation Observed Intrinsic scatter < 0.15 dex (McGaugh 2012) ΛCDM based model scatter 0.15 dex (Dutton 2012) Vflat [km/s] Vflat [km/s] Not a problem. But an intrinsic BTF scatter < 0.1 dex would be

29 cumulative mass Angular Momentum Disk structure is governed by Angular Momentum Distribution AMD of dark matter haloes described by two parameters: 1. Amount of angular momentum spin parameter log-normal distributions <λ > ~ 0.03, σ log λ ~ 0.5 <µ-1> ~ 0.3, σ log µ-1 ~ 0.4 Bullock et al. (2001) 2. Distribution of angular momentum shape parameter (dashed line) uniform sphere in solid-body rotation specific angular momentum, j=j/m

30 Average Spin Parameter Spin Parameters of Disk Galaxies Disk galaxies have lower specific angular momentum than their host dark matter haloes (AM is not conserved?) Virial Mass Dutton & van den Bosch (2012)

31 Excess of low angular momentum in ΛCDM Exponential disks are not natural in ΛCDM van den Bosch, Burkert, Swaters (2001) LCDM (µ=1.3) Data (stars+hi gas) Specific angular momentum r Vrot(r) Galactic outflows (Maller & Dekel 2002, Dutton 2009, Governato et al. 2010, Brook et al. 2011, 2012) preferentially remove low angular momentum material

32 Evolution of disk galaxy scaling relations

33 Scaling relations of Dark Matter Haloes Δ log R vir (z)(m vir ) Δ log M vir (z)(v vir ) Δ log R vir (z)(v vir ) ΔM vir (z)(v vir ) ~ (1+z) -1.3 ΔR vir (z)(m vir ) ~ (1+z) -0.8 ΔR vir (z)(v vir ) ~ (1+z) -1.3 ΛCDM cosmology (Ω M =0.3, Ω Λ =0.7)

34 Observed Evolution is Weaker Dutton et al. 2011a Keys: non-evolving spin parameter, non evolving Mgal/Mvir Theory: Somerville et al. (2008); Firmani & Avila-Reese (2009) Observation: van der Wel et al. (2014) - CANDELS A consistent picture...

35 Velocity - Mass Evolution Miller et al Benson+12 Dutton+11 since z~1 - weak/no evolution (models and obs agree) before z~1 - strong observed evolution (is this physical?) - model predictions diverge

36 Global Scaling Relations of Spiral Galaxies Star forming disks (in the local universe) are consistent with a universal Milky Way IMF, and sub-maximal disks Bell & de Jong 2001, Dutton et al. 2011b, Bershady et al. 2011, Brewer et al But bulges might have a Salpeter-type IMF Dutton et al. 2013a We don t understand the origin of the Tully-Fisher relation Dutton et al. 2007; 2011b, Trujillo-Gomez et al. 2011, Miller et al Specifc Angular Momentum is not conserved in disk galaxy formation van den Bosch et al. 2001, Dutton & van den Bosch 2012

37 Provocative Questions Sub-maximal disks is the wrong question. Isn t Dark Matter fraction fdm(r) what we really want to know? Are any observable dark matter haloes expected to be unmodified by galaxy formation? (or why do people assume ΛCDM = NFW/Einasto?) Could the Tully-Fisher problems just reflect systematic errors in SPS stellar masses?

The Stellar Initial Mass Function of Massive Galaxies

The Stellar Initial Mass Function of Massive Galaxies The Stellar Initial Mass Function of Massive Galaxies Aaron A. Dutton Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany Quenching and Quiescence, Heidelberg, July 2014 Motivation What is the

More information

Origin and Evolution of Disk Galaxy Scaling Relations

Origin and Evolution of Disk Galaxy Scaling Relations Origin and Evolution of Disk Galaxy Scaling Relations Aaron A. Dutton (CITA National Fellow, University of Victoria) Collaborators: Frank C. van den Bosch (Utah), Avishai Dekel (HU Jerusalem), + DEEP2

More information

Baryonic Masses from Rotation Curves. Stacy McGaugh University of Maryland

Baryonic Masses from Rotation Curves. Stacy McGaugh University of Maryland Unveiling the Mass - Extracting and Interpreting Galaxy Masses, Kingston, Ontario, 19 June 2009 Baryonic Masses from Rotation Curves Stacy McGaugh University of Maryland Rotation curves tend to become

More information

The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction

The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction Mon. Not. R. Astron. Soc. 421, 608 620 (2012) doi:10.1111/j.1365-2966.2011.20339.x The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction Aaron A. Dutton

More information

Angular Momentum Problems in Disk Formation

Angular Momentum Problems in Disk Formation Angular Momentum Problems in Disk Formation MPIA Theory Group Seminar, 07/03/2006 The Standard Picture Disks galaxies are systems in centrifugal equilibrium Structure of disks is governed by angular momentum

More information

Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content

Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content arxiv:1005.1289 arxiv:1002.3660 S. Trujillo-Gomez (NMSU) in collaboration with: A. Klypin (NMSU), J. Primack (UCSC)

More information

The Baryonic Tully-Fisher Relation

The Baryonic Tully-Fisher Relation NRAO - TF35: Global Properties of HI in Galaxies Workshop - 1 April 2012 The Baryonic Tully-Fisher Relation Stacy McGaugh University of Maryland Tully & Fisher (1977) Abs. Mag. line-width 9/30/10 3/30/10

More information

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè CAULDRON: dynamics meets gravitational lensing Matteo Barnabè KIPAC/SLAC, Stanford University Collaborators: Léon Koopmans (Kapteyn), Oliver Czoske (Vienna), Tommaso Treu (UCSB), Aaron Dutton (MPIA), Matt

More information

Dark Matter. ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552

Dark Matter. ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552 Dark Matter ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552 TODAY - Laws of Galactic Rotation - Flat rotation curves - Tully-Fisher - Universal Rotation curve - central Density Relation - Renzo s Rule

More information

Dark Matter. ASTR 333/433 Fall 2013 M T 4:00-5:15pm Sears 552. Prof. Stacy McGaugh Sears

Dark Matter. ASTR 333/433 Fall 2013 M T 4:00-5:15pm Sears 552. Prof. Stacy McGaugh Sears Dark Matter ASTR 333/433 Fall 2013 M T 4:00-5:15pm Sears 552 Prof. Stacy McGaugh Sears 573 368-1808 stacy.mcgaugh@case.edu Empirical Laws of Galactic Rotation Homework 2 due Oct 15 midterm Oct 29 What

More information

Scaling Relations OF DISK GALAXIES. Stéphane Courteau

Scaling Relations OF DISK GALAXIES. Stéphane Courteau Scaling Relations OF DISK GALAXIES Stéphane Courteau Modern (SDSS) Structural Parameters and Relations Age, Metallicity Star Formation History Sizes Dust Extinction Star Formation Rates AGN, Winds Chemical

More information

The close link between baryons and dark matter in disc galaxies

The close link between baryons and dark matter in disc galaxies The close link between baryons and dark matter in disc galaxies Federico Lelli Astronomy Department, Case Western Reserve University, Cleveland, Ohio, USA Main Collaborators: Stacy McGaugh (Case Western

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies

ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies Frank van den Bosch Yale University, spring 2017 The Structure & Formation of Disk Galaxies In this lecture we discuss the structure and formation

More information

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway Disk Formation and the Angular Momentum Problem Presented by: Michael Solway Papers 1. Vitvitska, M. et al. 2002, The origin of angular momentum in dark matter halos, ApJ 581: 799-809 2. D Onghia, E. 2008,

More information

Fundamental Planes and Galaxy Formation

Fundamental Planes and Galaxy Formation Fundamental Planes and Galaxy Formation Philip Hopkins, NoviCosmo 2007 Fundamental Planes = Scaling Laws Obeyed by Galaxies vs Origin of scaling laws: Ideally, we d understand every galaxy as an individual:

More information

What do we need to know about galaxy formation?

What do we need to know about galaxy formation? What do we need to know about galaxy formation? rachel somerville University of Michigan Hubble Science Legacy Workshop April 2002 what s next? test the CDM paradigm constrain the nature of the dark matter

More information

Laws of Galactic Rotation. Stacy McGaugh Case Western Reserve University

Laws of Galactic Rotation. Stacy McGaugh Case Western Reserve University Laws of Galactic Rotation Stacy McGaugh Case Western Reserve University UGC 2885 Galaxies NGC 2403 Huge dynamic range in 10 kpc Gravitationally self-bound entities composed of stars, gas, dust, [& dark

More information

Central dark matter distribution in dwarf galaxies

Central dark matter distribution in dwarf galaxies Central dark matter distribution in dwarf galaxies Se-Heon Oh (ICRAR/UWA) Content cusp/core controversy in ΛCDM simulations Dark matter distribution of THINGS dwarf galaxies High-resolution N-body+SPH

More information

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Overview Stellar Mass-to-Light (M/L) ratios from SEDs Comparing different SED fitting techniques Comparing

More information

Scaling Relations of late-type galaxies

Scaling Relations of late-type galaxies Scaling Relations of late-type galaxies - an observational perspective - Lecture I Lecture II Trends along the Hubble sequence Galaxy rotation curves Lecture III Tully-Fisher relations Marc Verheijen Kapteyn

More information

Some like it warm. Andrea V. Macciò

Some like it warm. Andrea V. Macciò Some like it warm Andrea V. Macciò MPIA - Heidelberg D. Aderhalden, A. Schneider, B. Moore (Zurich), F. Fontanot (HITS), A. Dutton, J. Herpich, G. Stinson (MPIA), X. Kang (PMO) CDM problems, hence WDM

More information

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010)

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010) GAS MIXES high density Springel (2010) low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) HOT HALO highest resolved density nth= 50x10

More information

Dark Matter in Galaxies

Dark Matter in Galaxies Dark Matter in Galaxies Garry W. Angus VUB FWO 3rd COSPA Meeting Université de Liège Ellipticals. Old stars. Gas poor. Low star formation rate. Spiral (disk) galaxies. Often gas rich => star formation.

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

Rotation curves of spiral galaxies

Rotation curves of spiral galaxies Rotation curves of spiral galaxies Rotation curves Mass discrepancy Circular velocity of spherical systems and disks Dark matter halos Inner and outer regions Tully-Fisher relation From datacubes to rotation

More information

Galaxies in CDM with Halo Abundance Matching: luminosity-velocity relation, baryonic mass-velocity relation, velocity function, and clustering

Galaxies in CDM with Halo Abundance Matching: luminosity-velocity relation, baryonic mass-velocity relation, velocity function, and clustering San Jose State University From the SelectedWorks of Aaron J. Romanowsky 2011 Galaxies in CDM with Halo Abundance Matching: luminosity-velocity relation, baryonic mass-velocity relation, velocity function,

More information

Angular momentum of disc galaxies with a lognormal density distribution

Angular momentum of disc galaxies with a lognormal density distribution Angular momentum of disc galaxies with a lognormal density distribution John H Marr Unit of Computational Science, Building 250, Babraham Research Campus, Cambridge, CB22 3AT, UK. E-mail: john.marr@2from.com

More information

Phys/Astro 689: Lecture 8. Angular Momentum & the Cusp/Core Problem

Phys/Astro 689: Lecture 8. Angular Momentum & the Cusp/Core Problem Phys/Astro 689: Lecture 8 Angular Momentum & the Cusp/Core Problem Summary to Date We first learned how to construct the Power Spectrum with CDM+baryons. Found CDM agrees with the observed Power Spectrum

More information

Angular Momentum Acquisition in Galaxy Halos

Angular Momentum Acquisition in Galaxy Halos Angular Momentum Acquisition in Galaxy Halos Kyle Stewart NASA Postdoctoral Fellow Jet Propulsion Laboratory, California Institute of Technology Mentor: Leonidas Moustakas The Baryon Cycle, UC Irvine,

More information

Dwarf Galaxies as Cosmological Probes

Dwarf Galaxies as Cosmological Probes Dwarf Galaxies as Cosmological Probes Julio F. Navarro The Ursa Minor dwarf spheroidal First Light First Light The Planck Satellite The Cosmological Paradigm The Clustering of Dark Matter The Millennium

More information

Overview of Dynamical Modeling. Glenn van de Ven

Overview of Dynamical Modeling. Glenn van de Ven Overview of Dynamical Modeling Glenn van de Ven glenn@mpia.de 1 Why dynamical modeling? -- mass total mass stellar systems key is to their evolution compare luminous mass: constrain DM and/or IMF DM radial

More information

arxiv:astro-ph/ v2 9 Jan 2007

arxiv:astro-ph/ v2 9 Jan 2007 THE ASTROPHYSICAL JOURNAL 654:27-52, 2007 JANUARY 1 Preprint typeset using LATEX style emulateapj v. 10/09/06 A REVISED MODEL FOR THE FORMATION OF DISK GALAXIES: LOW SPIN AND DARK-HALO EXPANSION AARON

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Volume-limited limited sample

Volume-limited limited sample Masses of Early-Type Galaxies from Atlas 3D Michele Cappellari Mass DF degeneracy SAURON Data Model Cap ppellari+07 Both orbital distribution (DF) and kinematics are 3D Given gravitational potential one

More information

Modelling the galaxy population

Modelling the galaxy population Modelling the galaxy population Simon White Max Planck Institut für Astrophysik IAU 277 Ouagadougou 1 The standard model reproduces -- the linear initial conditions -- IGM structure during galaxy formation

More information

How Massive is the Milky Way?

How Massive is the Milky Way? How Massive is the Milky Way? See also: Klypin et al. (2002) Simon s talk Matthias Steinmetz Astrophysical Institute Potsdam Overview Spectroscopic Surveys of the MW Geneva-Copenhagen, SDSS, RAVE Mass

More information

Dark Matter Dominated Objects. Louie Strigari Stanford

Dark Matter Dominated Objects. Louie Strigari Stanford Dark Matter Dominated Objects Louie Strigari Stanford Milky Way Circa 2009 Satellite Year Discovered LMC 1519 SMC 1519 Sculptor 1937 Fornax 1938 Leo II 1950 Leo I 1950 Ursa Minor 1954 Draco 1954 Carina

More information

arxiv: v1 [astro-ph.ga] 14 Dec 2015

arxiv: v1 [astro-ph.ga] 14 Dec 2015 Draft version December 16, 2015 Preprint typeset using L A TEX style emulateapj v. 01/23/15 THE SMALL SCATTER OF THE BARYONIC TULLY-FISHER RELATION Federico Lelli 1, Stacy S. McGaugh 1, James M. Schombert

More information

Ay 127 Systematics of Galaxy Properties and Scaling Relations

Ay 127 Systematics of Galaxy Properties and Scaling Relations Ay 127 Systematics of Galaxy Properties and Scaling Relations Morphological Classification and Galaxy Types The first step in any empirical science: look for patterns and trends, then try to understand

More information

What can M2M do for Milky Way Models?

What can M2M do for Milky Way Models? What can M2M do for Milky Way Models? Ortwin Gerhard Max-Planck-Institut für Extraterrestrische Physik, Garching gerhard@mpe.mpg.de Thanks to F. de Lorenzi, V. Debattista, P. Das, L. Morganti I. Made-to-Measure

More information

Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc

Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc Hubble Sequence Lecture Three: Fundamental difference between Elliptical galaxies and galaxies with disks, and variations of disk type & importance of bulges Observed Properties of Galaxies, contd.! Monday

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora

Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora ITP Zurich What is fun with dark matter (DM)? DARK MATTER DC comics Futurama come back to talk

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

Systematic variations of central mass density slopes in early-type galaxies

Systematic variations of central mass density slopes in early-type galaxies doi:10.1093/mnras/stu1616 Systematic variations of central mass density slopes in early-type galaxies C. Tortora, 1 F. La Barbera, 1 N. R. Napolitano, 1 A. J. Romanowsky, 2,3 I. Ferreras 4 andr.r.decarvalho

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Properties of Dark Matter: What is it? And what isn t it? Leo Blitz UC Berkeley Stanford July 31, 2007 How much is there? WMAP results Rotation curves of Galaxies

More information

Baryons MaEer: Interpre>ng the Dark MaEer Model

Baryons MaEer: Interpre>ng the Dark MaEer Model Baryons MaEer: Interpre>ng the Dark MaEer Model Alyson Brooks Rutgers, the State University of New Jersey In collabora>on with the University of Washington s N- body Shop makers of quality galaxies Most

More information

Galaxy Evolution Workshop Austin, TX, Nov 2008

Galaxy Evolution Workshop Austin, TX, Nov 2008 Galaxy Evolution Workshop Austin, TX, Nov 2008 LCDM is a well-specified theory which makes definite predictions about the way structures in the Universe form and evolve. most (all?) of the mass of the

More information

Origin of Bi-modality

Origin of Bi-modality Origin of Bi-modality and Downsizing Avishai Dekel HU Jerusalem Galaxies and Structures Through Cosmic Times Venice, March 2006 Summary Q: z

More information

The Empirical Laws of Galactic Rotation

The Empirical Laws of Galactic Rotation The Empirical Laws of Galactic Rotation Federico Lelli (ESO Fellow Garching, Germany) Main Collaborators: Stacy McGaugh (CWRU), James Schombert (Univ. of Oregon) Marcel Pawlowski (UCI), Filippo Fraternali

More information

arxiv: v2 [astro-ph.ga] 11 May 2016

arxiv: v2 [astro-ph.ga] 11 May 2016 Astronomy & Astrophysics manuscript no. TBTF_vs_feedback c ESO 2018 October 20, 2018 An assessment of the too big to fail problem for field dwarf galaxies in view of baryonic feedback effects E. Papastergis

More information

arxiv: v2 [astro-ph.co] 17 Jan 2018

arxiv: v2 [astro-ph.co] 17 Jan 2018 Preprint 18 January 2018 Compiled using MNRAS LATEX style file v3.0 Constraining cosmology with the velocity function of low-mass galaxies Aurel Schneider 1 and Sebastian Trujillo-Gomez 2 1 Institute for

More information

AS1001:Extra-Galactic Astronomy

AS1001:Extra-Galactic Astronomy AS1001:Extra-Galactic Astronomy Lecture 5: Dark Matter Simon Driver Theatre B spd3@st-andrews.ac.uk http://www-star.st-and.ac.uk/~spd3 Stars and Gas in Galaxies Stars form from gas in galaxy In the high-density

More information

arxiv:astro-ph/ v2 9 Jan 2007

arxiv:astro-ph/ v2 9 Jan 2007 THE ASTROPHYSICAL JOURNAL 654:27-52, 2007 JANUARY 1 Preprint typeset using LATEX style emulateapj v. 08/22/09 A REVISED MODEL FOR THE FORMATION OF DISK GALAXIES: LOW SPIN AND DARK-HALO EXPANSION AARON

More information

arxiv:astro-ph/ v1 14 Nov 2003

arxiv:astro-ph/ v1 14 Nov 2003 **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** The visible matter dark matter coupling arxiv:astro-ph/0311348v1 14 Nov 2003 Renzo Sancisi Osservatorio Astronomico,

More information

X- Ray and UV Baryon Accoun1ng

X- Ray and UV Baryon Accoun1ng X- Ray and UV Baryon Accoun1ng Mike Anderson University of Michigan Jess Werk UC Santa Cruz Baryon Budgets of Galaxies Frac%on 24% 24% Stars ISM 24% 24% 4% 0% HVCs Cool CGM Warm CGM Hot Halo A late- type

More information

CALAR ALTO LEGACY INTEGRAL FIELD AREA SURVEY OVERVIEW, STATUS & LATEST RESULTS

CALAR ALTO LEGACY INTEGRAL FIELD AREA SURVEY OVERVIEW, STATUS & LATEST RESULTS CALAR ALTO LEGACY INTEGRAL FIELD AREA SURVEY OVERVIEW, STATUS & LATEST RESULTS Jesús Falcón-Barroso www.iac.es/project/traces THE CALIFA TEAM THE CALIFA SURVEY www.caha.es/califa IFU survey using the PPAK@3.5m

More information

The Radial Acceleration Relation of Galaxies

The Radial Acceleration Relation of Galaxies The Radial Acceleration Relation of Galaxies Federico Lelli ESO Fellow (Garching, Germany) In collaboration with Stacy McGaugh (Case Western Reserve University) James Schombert (University of Oregon) Marcel

More information

Galaxies in the Cosmic Web

Galaxies in the Cosmic Web Galaxies in the Cosmic Web Empirical Constraints on Halo Profiles from Rotation Curves Stacy McGaugh University of Maryland New Mexico State University, Las Cruces, 19 May 2006 1. Global Correlations:

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-1 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

A.Klypin. Dark Matter Halos

A.Klypin. Dark Matter Halos A.Klypin Dark Matter Halos 1 Major codes: GADET N-body Hydro Cooling/Heating/SF Metal enrichment Radiative transfer Multistepping/Multiple masses Springel, SDM White PKDGRAV - GASOLINE ART ENZO Quinn,

More information

Baby Elliptical Galaxies or Non-Universal IMFs?

Baby Elliptical Galaxies or Non-Universal IMFs? Baby Elliptical Galaxies or Non-Universal IMFs? Anna Ferré-Mateu & A. Vazdekis & I. G. de la Rosa A fresh look into the stellar IMF SpS12, EWASS 2013, 12th July 2013 Does God play dice? UNIVERSAL (e.h.

More information

GMU, April 13, The Pros and Cons of Invisible Mass and Modified Gravity. Stacy McGaugh University of Maryland

GMU, April 13, The Pros and Cons of Invisible Mass and Modified Gravity. Stacy McGaugh University of Maryland GMU, April 13, 2007 The Pros and Cons of Invisible Mass and Modified Gravity Stacy McGaugh University of Maryland What gets us into trouble is not what we don t know. It s what we know for sure that just

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Dark Matter Halos of Spiral Galaxies

Dark Matter Halos of Spiral Galaxies Dark Matter Halos of Spiral Galaxies Arunima Banerjee National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune, India email: arunima@ncra.tifr.res.in Web: http://www.ncra.tifr.res.in/~arunima

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Galaxy Formation Now and Then

Galaxy Formation Now and Then Galaxy Formation Now and Then Matthias Steinmetz Astrophysikalisches Institut Potsdam 1 Overview The state of galaxy formation now The state of galaxy formation 10 years ago Extragalactic astronomy in

More information

The Role of Dissipation in Spheroid Formation

The Role of Dissipation in Spheroid Formation The Role of Dissipation in Spheroid Formation Philip Hopkins 4/08/08 Lars Hernquist, TJ Cox, John Kormendy, Tod Lauer, Suvendra Dutta, Dusan Keres, Volker Springel Ellipticals & Bulges: Formation in Mergers?

More information

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching gerhard@mpe.mpg.de 1. Preamble Arnaboldi et al 2013 2. Predictions: ETG halos in cosmological simulations 3.

More information

Testing claims of IMF variation with strong lensing (and dynamics)

Testing claims of IMF variation with strong lensing (and dynamics) IAU311, Oxford, July 2014 Testing claims of IMF variation with strong lensing (and dynamics) Russell Smith University of Durham A Heavy IMF in Ellipticals: Consensus? Spectroscopy: Gravity-sensitive features

More information

CALIFA galaxy dynamics across the Hubble sequence

CALIFA galaxy dynamics across the Hubble sequence CALIFA galaxy dynamics across the Hubble sequence Mariya Lyubenova (Kapteyn) and Glenn van de Ven (MPIA) and the CALIFA team NGC6125 NGC1167 NGC4210 ARP220 150 arcsec 20 0 20 20 Velocity 150 250 rsion

More information

Everything in baryons?

Everything in baryons? Everything in baryons? Benoit Famaey (ULB) Rencontres de Blois 2007 General Relativity -> Dark Matter R αβ - 1/2 R g αβ + Λg αβ = (8πG/c 4 ) T αβ very precisely tested on solar system scales (but Pioneer)

More information

Effects of SN Feedback on the Dark Matter Distribution

Effects of SN Feedback on the Dark Matter Distribution The Galaxy Disk in Cosmological Context c 2008 International Astronomical Union Proceedings IAU Symposium No. IAU Symposium No.254, 2008 A.C. Editor, B.D. Editor & C.E. Editor, eds. Effects of SN Feedback

More information

The dark matter crisis

The dark matter crisis The dark matter crisis Ben Moore Department of Physics, Durham University, UK. arxiv:astro-ph/0103100 v2 8 Mar 2001 Abstract I explore several possible solutions to the missing satellites problem that

More information

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context Simon White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al

More information

University of Groningen. Understanding disk galaxies with the Tully-Fisher relation Ponomareva, Anastasia

University of Groningen. Understanding disk galaxies with the Tully-Fisher relation Ponomareva, Anastasia University of Groningen Understanding disk galaxies with the Tully-Fisher relation Ponomareva, Anastasia IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

IMF variations in unresolved stellar populations: Challenges

IMF variations in unresolved stellar populations: Challenges Department of Space and Climate Physics Mullard Space Science Laboratory http://www.ucl.ac.uk/mssl IMF variations in unresolved stellar populations: Challenges Ignacio Ferreras Mullard Space Science Laboratory

More information

Dwarf galaxies and the formation of the Milky Way

Dwarf galaxies and the formation of the Milky Way Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

Effects of baryons on the circular velocities of dwarf satellites

Effects of baryons on the circular velocities of dwarf satellites Effects of baryons on the circular velocities of dwarf satellites Anatoly Klypin, Kenza Arraki, Surhud More NMSU, U. Chicago August 15, 2012; Santa Cruz Galaxy Workshop LCDM and dwarfs: love to hate Missing

More information

Solving. Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics

Solving. Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics Solving Constraining galaxy formation with gaseous halos Andrey Kravtsov The University of Chicago Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics X-ray Vision workshop:

More information

12.1 Elliptical Galaxies

12.1 Elliptical Galaxies 12.1 Elliptical Galaxies Elliptical Galaxies Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals formed in a monolithic

More information

The Cosmological Angular Momentum Problem of Low-Mass. Disk Galaxies

The Cosmological Angular Momentum Problem of Low-Mass. Disk Galaxies The Cosmological Angular Momentum Problem of Low-Mass Disk Galaxies Andreas Burkert Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany Received ; accepted 2 ABSTRACT The rotational

More information

arxiv: v1 [astro-ph] 13 May 2008

arxiv: v1 [astro-ph] 13 May 2008 Draft version May 13, 28 Preprint typeset using L A TEX style emulateapj v. 8/13/6 MOND AND THE UNIVERSAL ROTATION CURVE: SIMILAR PHENOMENOLOGIES Gianfranco Gentile 1,2 Draft version May 13, 28 arxiv:85.1731v1

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

Killing Dwarfs with Hot Pancakes. Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz

Killing Dwarfs with Hot Pancakes. Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz Killing Dwarfs with Hot Pancakes Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz The Paradigm... SN feedback AGN feedback The halo mass function is much steeper than luminosity function

More information

Stellar Population Synthesis, a Discriminant Between Gravity Models

Stellar Population Synthesis, a Discriminant Between Gravity Models Stellar Population Synthesis, a Discriminant Between Gravity Models Akram Hasani Zonoozi Institute for Advanced Studies in Basic Sciences, IASBS Zanjan, Iran In collaboration with: H.Haghi & Y.Sobouti

More information

Probing Galaxy Halos with Tidal Interactions. Kyoto University Astronomy Department June 27, 2013

Probing Galaxy Halos with Tidal Interactions. Kyoto University Astronomy Department June 27, 2013 Probing Galaxy Halos with Tidal Interactions Kyoto University Astronomy Department June 27, 2013 Galaxy Formation Baryons cool & collapse in dark halo potentials. White & Rees 78 Galaxy Formation Baryons

More information

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1 COSMOLOGY PHYS 30392 DENSITY OF THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - March 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern Spiral Structure In the mid-1960s Lin and Shu proposed that the spiral structure is caused by long-lived quasistatic density waves The density would be higher by about 10% to 20% Stars, dust and gas clouds

More information

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov Elad Zinger Hebrew University Jerusalem IGM@50, Spineto, 12 June 2015 Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov They re still there! Account for most of the accretion.

More information

arxiv:astro-ph/ v1 26 Mar 2002

arxiv:astro-ph/ v1 26 Mar 2002 The Intriguing Distribution of Dark Matter in Galaxies Paolo Salucci 1 and Annamaria Borriello 1 (1) International School for Advanced Studies SISSA-ISAS Trieste, I arxiv:astro-ph/0203457v1 26 Mar 2002

More information

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Benjamin Moster (IoA/KICC)! Simon White, Thorsten Naab (MPA), Rachel Somerville (Rutgers), Frank van den Bosch (Yale),

More information

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M NMAGIC Made-to-Measure Modeling of Elliptical Galaxies Ortwin Gerhard, MPE, Garching gerhard@mpe.mpg.de I. Made-to-measure dynamical modeling with NMAGIC II Elliptical galaxy halo kinematics with planetary

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

arxiv: v2 [astro-ph.ga] 19 Aug 2017

arxiv: v2 [astro-ph.ga] 19 Aug 2017 Preprint 22 August 2017 Compiled using MNRAS LATEX style file v3.0 The scatter, residual correlations and curvature of the sparc baryonic Tully Fisher relation Harry Desmond 1,2 1 Kavli Institute for Particle

More information

Angular momentum evolution in dark-matter haloes

Angular momentum evolution in dark-matter haloes Mon. Not. R. Astron. Soc. 411, 1963 1976 (2011) doi:10.1111/j.1365-2966.2010.17824.x Angular momentum evolution in dark-matter haloes Laura G. Book, 1 Alyson Brooks, 1 Annika H. G. Peter, 1 Andrew J. Benson

More information

Cooking with Strong Lenses and Other Ingredients

Cooking with Strong Lenses and Other Ingredients Cooking with Strong Lenses and Other Ingredients Adam S. Bolton Department of Physics and Astronomy The University of Utah AASTCS 1: Probes of Dark Matter on Galaxy Scales Monterey, CA, USA 2013-July-17

More information

Dark Matter in Dwarf Galaxies

Dark Matter in Dwarf Galaxies Maryland Center for Fundamental Physics & Joint Space-Science Institute 26-28 May 2010 Advances in Theoretical and Observational Cosmology Dark Matter in Dwarf Galaxies Stacy McGaugh University of Maryland

More information

Solving Cold Dark Matter s small scale crisis

Solving Cold Dark Matter s small scale crisis Solving Cold Dark Matter s small scale crisis Alyson Brooks Rutgers, the State University of New Jersey! In collabora>on with the University of Washington s N- body Shop makers of quality galaxies This

More information