Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc

Size: px
Start display at page:

Download "Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc"

Transcription

1 Hubble Sequence Lecture Three: Fundamental difference between Elliptical galaxies and galaxies with disks, and variations of disk type & importance of bulges Observed Properties of Galaxies, contd.! Monday 15th Feb Longair, chapter 3 + literature Early type Late type Hubble 1936, the Realm of Nebulae Environment! Globular Clusters in Milky Way Mateo 2008, Garching workshop kpc ~140 globular clusters, 65% <8kpc from centre

2 Globular Clusters & galaxy formation and evolution vrot = 193 +/- 29km/s!los = 59 +/- 14km/s" vrot = 43 +/- 29km/s!los = 116 +/- 11km/s" Metallicity dispersion is large; mean metallicity decreases with increasing distance from galactic centre metal rich Armandroff 1989 AJ metal rich (disk) Globular Clusters & galaxy formation and evolution metal poor (halo) milky way disk metal poor flattened from rotation dominated by random motions Zinn 1985 ApJ, 293, 424 Zinn 1985 ApJ, 293, 424 Formation of Halo? Outer Halo: dsph kpc Mateo 2008, Garching workshop Bullock & Johnston 2005 ApJ

3 The Local Group Nearest Cluster! hello Near centres of mass: gas-less pressure supported dsphs Anomalies: more distant dsph Outer regions: dominated by gas rich quiescently evolving dwarf irregulars kpc Mateo 2008, Garching workshop Local Super-Cluster! What is a galaxy cluster? Half the galaxies in the Universe are found in clusters or groups, systems of galaxies that are a few Mpc across. Within the central Mpc, clusters typically contain luminous galaxies (L> L * ~ 2 x L! ). Most famous catalogues: Abell 1958 and it s 1989 supplement, with 4073 rich clusters, having at least 30 giant members within a radius of ~1.5h -1 Mpc. Galaxies in clusters are bound together by their mutual gravitational attraction: the cluster is generally filled with hot interstellar gas, also retained by gravity. Clusters differ from groups by having higher densities. Cluster galaxies live in such proximity that they significantly affect each others development.

4 What causes diversity of galaxy types? Virgo Cluster Velocity dispersion 715km/s Virial radius 730kpc ~17Mpc distance There are a number of ways of reducing the variables in a study of galaxy properties and one is to look at a group or cluster of galaxies. You remove uncertainties due to different distances of your sample of galaxies as well as different environments. Your sample completeness is easily defined. HOWEVER it is not clear that you obtain a complete sample of all types of galaxies, and it may not even be a good average sample. closest rich cluster of galaxies, centred on giant elliptical galaxy M87 Virgo Cluster! Brighter galaxies are redder Global Properties! Elliptical galaxies in Virgo (open symbols) & Coma (closed symbols) Coma galaxies are shown 3.6 mag brighter as they would be at distance of Virgo This trend could be explained if small elliptical galaxies were either younger or more metal poor than large bright ones (or both). ~17Mpc distance, ~2000 member galaxies Bower et al. 1992

5 What do colours mean?! Spectrum of an Elliptical galaxy! U B V R I What does it mean?! U B V R Star Formation History >10Gyr ~8Gyr ~1.5Gyr ~5Myr Stellar spectra Elliptical Galaxy O Connell 1986 PASP, 98, 163

6 Velocity dispersion 148km/s Virial radius 880 kpc Ursa Major Group! Galaxies get bluer and fainter Global Properties! On average S0 galaxies are luminous and red Sd, Sm systems are fainter and bluer Only late type galaxies with no particular concentration towards any centre Verheijen & Sancisi 2001 Ursa Major Group M. Verheijen 1997 Fainter galaxies have proportionately more HI Global Properties! Virgo Cluster! M HI /L K (solar units) Open circles, low SB galaxies (I K (0) > 19.5), the least luminous and richest in HI; not efficient at turning HI into stars Disk has lower central surface brightness Ursa Major Group M. Verheijen 1997 VIVA: VLA Imaging of Virgo in Atomic gas

7 Inter-cluster Medium! Virgo Cluster ngc4402 falling into centre of Virgo ngc4522 in Virgo Ursa Major Group vs. Virgo! Fraction of E & Sp HI properties of late-type galaxies HI / optical diameter HI content of galaxies in centre of Virgo LESS than in the outskirts or in lower density systems (Ursa Major) outskirts HI deficiency Gas disks are SMALLER in centre of Virgo than in the outskirts or in lower density systems (Ursa Major) centre Distance to cluster centre (degrees) Verheijen 2004 Oemler 1974

8 Morphology-Density Relation First large (55 clusters, 6000 galaxies) study of morphological segregation (Dressler 1980). The frequency of different galaxy types was found to vary as a function of the number density of galaxies in which they are found. Is this related to R? Or N? Difficult to ascertain: N # R -1. galaxy type appears to be dictated by LOCAL DENSITY of galaxies, although presumably galaxies move through a range of densities, thus there must be coherent sub-structure. study of poor groups (Postman & Geller 1984) - the centres of which have similar densities to outer regions of clusters follow same relations as clusters. galaxies with a nearby companion are more likely to be Es (Whitmore, Gilmore & Jones 1993), so morphology-density a local phenomenon. there is a single universal morphology -density relation over 6 orders of magnitude in density. What causes diversity? Galaxies in clusters more likely to be Es or S0s than those in the field Environment plays a role Not all clusters are the same - large E fraction correlates to regular symmetric clusters; low values to ratty ones Oemler (1974) Also E/Sp varies with position in a cluster -> depends on density. Fraction of spirals increases out from centre; essentially no spirals in cluster cores MORPHOLOGY-RADIUS RELATION Spirals closer to the centre have less gas than those further away Why? Spatial segregation should give rise to kinematic differences - ie., spirals follow more energetic orbits - ie., spirals at a given distance from centre of cluster should have larger random velocities than E Fraction Sp/E goes up moving out from cluster centre Dressler 1980 fraction of Sp goes down with size of cluster. Effect of sub-structure? Simulating Interacting Systems Lack of spirals compared to ellipticals in dense environments has lead people to consider that merging spirals result in an elliptical galaxy... Galaxy luminosity function Just as the distribution of stellar luminosities reflects the physics of star formation and stellar structure, we might hope to learn about galactic evolutionary processes by studying the distribution of galaxy luminosities. The galaxy luminosity fn. $(M), $(M)dM is proportional to the number of galaxies that have absolute magnitudes in the range (M, M+dM): Where % is the total number of galaxies per unit volume The field galaxy luminosity function, in its simplest form, involves measuring the apparent magnitudes of all the galaxies in some representative sample. The individual brightnesses are converted to absolute magnitudes by estimating the galaxies distances usually by applying the Hubble law to their observed redshifts. Josh Barnes 1998 Toomre & Toomre 1972, ApJ

9 Short comings Malmquist bias - magnitude limited surveys - luminosity function distorted if function has a finite spread in luminosity. Even if all galaxies have intrinsically identical luminosities, but a range of estimated absolute magnitudes due to errors in their adopted distances. Estimating distances using hubble law intrinsically approximate process. Particular problem for nearby galaxies - local motions dominate over hubble flow. Particular problem for low luminosity galaxies - which can only be observed nearby. So faint end of luminosity fns remains rather poorly defined. Spatial structure - incomplete sampling of variations in galaxy distribution (filaments vs. Voids). Luminosity Functions of galaxies In an attempt to find a general analytic fit to galactic luminosity functions, Schechter (ApJ 203, p297, 1976) proposed the functional form: Which can also be written (in terms of astronomical magnitudes): In both forms & (the slope of the power-law at low luminosities) and L * (the break luminosity) are free parameters that are used to obtain the best fit to the available data. Local: &= -1.0 and M * B = -21 Virgo: &= and M * B = -21 ± 0.7 A power law with a high luminosity exponential cut-off i.e., this is NOT a universal luminosity function. It seems to depend upon environment. Press-Schecter Thus & sets the slope of the luminosity fn at the faint end L * or M * gives the characteristic luminosity above which the number of galaxies falls sharply and $ * sets the overall normalisation of the galaxy density. This formula was initially motivated by a simple model of galaxy formation (Press & Schecter 1974 ApJ ), but has proved to have a wider range of application than originally envisaged. Integration over previous eqn has limitation that it effectively predicts infinite number of small faint galaxies (alpha lies close to ~-1) However we know universe is finite (dark sky) However only place we can easily detect low lum galaxies. They exist in large numbers Galaxy Counts Schechter function Number of galaxies $(M) per 10Mpc cube between absolute magnitude M R and M R + 1; vertical bars are errors

10 Galaxy cluster LFs Different environment. Easier to obtain LF members lie in small region of sky. So photometry can be obtained efficiently, and all members at same distance. Reducing distance errors. Only problem is rich clusters are rare. So typically at large distances. Making it hard to detect fainter members. faint bright Jerjen & Tammann 1997 Faint end slope in cluster significantly steeper than in the field: encounters don t end in mergers as often as in field relative velocities are higher bright faint $* larger in clusters Galaxy luminosity function in the Virgo cluster (Sandage, Binggeli & Tammann 1985, AJ 90, 1759) Relative numbers of different types Largest fraction in either environment of all galaxies are dwarfs (de and Irr). Even though S and E the most prominent in terms of mass and luminosity. More E in Virgo... see: Thomas: ESO Astrophysics Symposia (1999) The total luminosity function in either environment is the sum of the individual luminosity functions of each Hubble type. Binggeli, Sandage, Tammann ARAA (1988) ARAA,26, 509 This is usually represented by the luminosity function '(M)dM. Defined to be the number of galaxies in a particular sample that have absolute magnitudes between M and M+dM. All dis and des

11 Masses of galaxies Spiral Galaxies: application of Gauss s theorem to Newton s law of gravity: Rotation curves allow mass determination. The constant rotational velocities in the outer regions - suggests that mass increases linearly with distance from the centre. In stark contrast to the light distribution, which decreases exponentially over the same distance. Meaning a rapidly increasing mass-to-light ration (M/L) and a hidden dark matter halo in spiral galaxies (Bosma 1981). Elliptical Galaxies: application of virial theorem, assuming isotropic stellar distribution This kind of analysis has led to the prediction of large dark matter haloes around elliptical galaxies (e.g., Côte et al. 2001, 2003), using globular clusters as tracers. The line-of-sight velocity dispersion remains remarkably constant out to the limits of observation. This has the same explanation as flat rotation curves in HI. To bind globular clusters with large velocity dispersions at large radii means that the mass within R must increase proportional to R. Rotation Curves of Galaxies Surface Brightness profiles sample the distribution of luminous matter in a galaxy. This does not necessarily tell us about the mass of the galaxy - about the presence and amount of DARK MATTER. The most direct way to do this is via the rotation curve of the HI. When rotation curves are compared with either luminosity or Hubble type a number of correlations are found:! for increasing L B rotation curves tend to rise more rapidly with distance from centre and peak at higher maximum velocity (V max ). Tully-Fisher! for equal L B spirals of earlier type have larger V max.! within a given Hubble type more luminous galaxies have larger V max.! for a given value of V max the rotation curves tend to rise slightly more rapidly with radius for earlier type galaxies. The fact that galaxies of different Hubble types, and therefore different bulge-to-disk luminosity ratios, exhibit rotation curves that are very similar in form if not in amplitude suggests that the shapes of the gravitational potential do not necessarily follow the distribution of luminous matter. V max is significantly lower in Irrs (50-70km/s). This suggests that this is the minimum rotation speed required for the development of a well ordered spiral pattern Bosma 1981 Internal dynamics of Ellipticals Source of galaxies shape? It might be thought that the internal dynamics of elliptical galaxies would be relatively simple - the surface brightness distributions appear to be ellipsoidal, with a range of flattenings, which it might be thought could be attributed to rotation. This can be tested by measuring the mean velocities and velocity dispersions of the stars through out the body of a galaxy. These measurements can be compared with the rotation and internal velocity dispersions expected if the flattening can be attributed to rotation. Solid line: amount of rotation necessary to account for observed ellipticity of galaxy relative to! of stars. Ellipticals rotate too slowly for centrifugal forces to be the causes of their observed flattening. This means that the assumptions of asymmetric spatial distribution and/or an isotropic velocity distribution of stars at all points within galaxy must be wrong. Converting luminosity to mass IMF (initial mass function) ((m, t), number of stars formed per unit volume at t=0 LF (luminosity function) currently observed number of stars observed per unit luminosity per unit volume PDMF (present day mass function) number of stars observed today per unit mass per unit volume. This needs to be corrected for the time evolution of the IMF up to the present day, low mass, long lived stars often approximated as a power law: ((m) dm = ( 0 m -& IMF TRIAXIAL SYSTEMS this means a system with 3 unequal axes and consequently anisotropic stellar velocity distributions PDMF high mass, short lived stars Star Formation History From Davies et al Kroupa, Tout & Gilmore 1993 MNRAS, 262, 545

Lecture Three: Observed Properties of Galaxies, contd. Longair, chapter 3 + literature. Monday 18th Feb

Lecture Three: Observed Properties of Galaxies, contd. Longair, chapter 3 + literature. Monday 18th Feb Lecture Three: Observed Properties of Galaxies, contd. Longair, chapter 3 + literature Monday 18th Feb 1 The Hertzsprung-Russell Diagram magnitude colour LOW MASS STARS LIVE A VERY VERY LONG TIME! 2 The

More information

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy? Lecture 12: Galaxies View of the Galaxy from within The Milky Way galaxy Rotation curves and dark matter External galaxies and the Hubble classification scheme Plotting the sky brightness in galactic coordinates,

More information

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy.

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy. Galaxies Aim to understand the characteristics of galaxies, how they have evolved in time, and how they depend on environment (location in space), size, mass, etc. Need a (physically) meaningful way of

More information

Lecture Two: Galaxy Morphology:

Lecture Two: Galaxy Morphology: Lecture Two: Galaxy Morphology: Looking more deeply at the Hubble Sequence Galaxy Morphology How do you quantify the properties of galaxies? and how do you put them in groups which allow you to study physically

More information

Lecture 7: the Local Group and nearby clusters

Lecture 7: the Local Group and nearby clusters Lecture 7: the Local Group and nearby clusters in this lecture we move up in scale, to explore typical clusters of galaxies the Local Group is an example of a not very rich cluster interesting topics include:

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Lecture 15: Galaxy morphology and environment

Lecture 15: Galaxy morphology and environment GALAXIES 626 Lecture 15: Galaxy morphology and environment Why classify galaxies? The Hubble system gives us our basic description of galaxies. The sequence of galaxy types may reflect an underlying physical

More information

Spheroidal (Elliptical) Galaxies MBW chap 13, S+G ch 6!

Spheroidal (Elliptical) Galaxies MBW chap 13, S+G ch 6! " The project: Due May 2!! I expect ~10 pages double spaced (250 words/page) with references from material you used (I do not expect 'densely' cited but a sufficient number).! It must be in a subject related

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5 and proceed to 25.1, 25.2, 25.3. Then, if there is time remaining,

More information

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Galaxies Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Cepheids in M31 Up to 1920s, the Milky Way was thought by

More information

Galaxies -- Introduction. Classification -- Feb 13, 2014

Galaxies -- Introduction. Classification -- Feb 13, 2014 Galaxies -- Introduction Classification -- Feb 13, 2014 Why Begin with Classification? The Hubble system forms the basic vocabulary of the subject. The sequence of galaxy types reflects an underlying physical

More information

Galaxies. CESAR s Booklet

Galaxies. CESAR s Booklet What is a galaxy? Figure 1: A typical galaxy: our Milky Way (artist s impression). (Credit: NASA) A galaxy is a huge collection of stars and interstellar matter isolated in space and bound together by

More information

Chapter 25: Galaxy Clusters and the Structure of the Universe

Chapter 25: Galaxy Clusters and the Structure of the Universe Chapter 25: Galaxy Clusters and the Structure of the Universe Distribution of galaxies Evolution of galaxies Study of distant galaxies Distance derived from redshift Hubble s constant age of the Universe:

More information

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern Spiral Structure In the mid-1960s Lin and Shu proposed that the spiral structure is caused by long-lived quasistatic density waves The density would be higher by about 10% to 20% Stars, dust and gas clouds

More information

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes.

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes. Distances to galaxies Cepheids used by Hubble, 1924 to show that spiral nebulae like M31 were further from the Sun than any part of the Milky Way, therefore galaxies in their own right. Review of Cepheids

More information

Clicker Question: Galaxy Classification. What type of galaxy do we live in? The Variety of Galaxy Morphologies Another barred galaxy

Clicker Question: Galaxy Classification. What type of galaxy do we live in? The Variety of Galaxy Morphologies Another barred galaxy Galaxies Galaxies First spiral nebula found in 1845 by the Earl of Rosse. Speculated it was beyond our Galaxy. 1920 - "Great Debate" between Shapley and Curtis on whether spiral nebulae were galaxies beyond

More information

An analogy. "Galaxies" can be compared to "cities" What would you like to know about cities? What would you need to be able to answer these questions?

An analogy. Galaxies can be compared to cities What would you like to know about cities? What would you need to be able to answer these questions? An analogy "Galaxies" can be compared to "cities" What would you like to know about cities? how does your own city look like? how big is it? what is its population? history? how did it develop? how does

More information

Galaxy classification

Galaxy classification Galaxy classification Questions of the Day What are elliptical, spiral, lenticular and dwarf galaxies? What is the Hubble sequence? What determines the colors of galaxies? Top View of the Milky Way The

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Goals: Galaxies To determine the types and distributions of galaxies? How do we measure the mass of galaxies and what comprises this mass? How do we measure distances to galaxies and what does this tell

More information

Dwarf Elliptical Galaxies Nelson Caldwell. Encyclopedia of Astronomy & Astrophysics P. Murdin

Dwarf Elliptical Galaxies Nelson Caldwell. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2615 Dwarf Elliptical Galaxies Nelson Caldwell From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics

More information

The visible constituents of the Universe: Non-relativistic particles ( baryons ): Relativistic particles: 1. radiation 2.

The visible constituents of the Universe: Non-relativistic particles ( baryons ): Relativistic particles: 1. radiation 2. The visible constituents of the Universe: Non-relativistic particles ( baryons ): Galaxies / Clusters / Super-clusters Intergalactic Medium Relativistic particles: 1. radiation 2. neutrinos Dark sector

More information

Classification Distribution in Space Galaxy Clusters. Formation and Evolution Hubble s Law

Classification Distribution in Space Galaxy Clusters. Formation and Evolution Hubble s Law The American astronomer Edwin Hubble in 1924, according to appearance of galaxies categorized them into four basic types. Classification Distribution in Space Galaxy Clusters Masses Formation and Evolution

More information

Stellar Populations in the Local Group

Stellar Populations in the Local Group Stellar Populations in the Local Group Recall what we ve learned from the Milky Way: Age and metallicity tend to be correlated: older -> lower heavy element content younger -> greater heavy element content

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Galaxies & Introduction to Cosmology

Galaxies & Introduction to Cosmology Galaxies & Introduction to Cosmology Other Galaxies: How many are there? Hubble Deep Field Project 100 hour exposures over 10 days Covered an area of the sky about 1/100 the size of the full moon Probably

More information

Lecture Two: Observed Properties of Galaxies

Lecture Two: Observed Properties of Galaxies Lecture Two: Observed Properties of Galaxies http://www.astro.rug.nl/~etolstoy/gfe14/index.html Longair, chapter 3 Wednesday 5th Feb Binney & Merrifield, chapter 4 1 From pretty picture to science 2 Galaxies

More information

Summary of Last Lecture - Local Group!

Summary of Last Lecture - Local Group! Summary of Last Lecture - Local Group Discussion of detailed properties of M31, M33 comparison to MW; differences in how they formed; MW very few 'major mergers' M31 more; not all galaxies even those close

More information

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Clusters of Galaxies Groups: Clusters poor rich Superclusters: Clusters of Galaxies Galaxies are not randomly strewn throughout space. Instead the majority belong to groups and clusters of galaxies. In these structures, galaxies are bound gravitationally and orbit

More information

Astronomy 330 Lecture Dec 2010

Astronomy 330 Lecture Dec 2010 Astronomy 330 Lecture 26 10 Dec 2010 Outline Clusters Evolution of cluster populations The state of HI sensitivity Large Scale Structure Cluster Evolution Why might we expect it? What does density determine?

More information

1. Overview. Theory lags behind and there are many unsolved problems, including the nature of dark matter and dark energy.

1. Overview. Theory lags behind and there are many unsolved problems, including the nature of dark matter and dark energy. PC2491: Galaxies 1. Overview The aim of this course is to understand the observed properties of galaxies in the hierarchical structure formation model. This is a particular exciting time to study galaxies

More information

Normal Galaxies ASTR 2120 Sarazin

Normal Galaxies ASTR 2120 Sarazin Normal Galaxies ASTR 2120 Sarazin Test #2 Monday, April 8, 11-11:50 am ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other materials or any person

More information

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well.

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well. Normal Galaxies (Ch. 24) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5. The sections we are skipping are all about processes that occur in the centers of galaxies, so I d like

More information

Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and

Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and sizes Edwin Hubble classified the galaxies into four

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

The effects of the environment on the evolution of late-type galaxies

The effects of the environment on the evolution of late-type galaxies The effects of the environment on the evolution of late-type galaxies Alessandro BOSELLI Samuel BOISSIER, Luca CORTESE, Giuseppe GAVAZZI, Elisa TOLOBA Boselli et al 2006, ApJ, 651, 811 Boselli et al 2008,

More information

Upcoming class schedule

Upcoming class schedule Upcoming class schedule Thursday March 15 2pm AGN evolution (Amy Barger) th Monday March 19 Project Presentation (Brad) nd Thursday March 22 postponed to make up after spring break.. Spring break March

More information

Lecture 19: Galaxies. Astronomy 111

Lecture 19: Galaxies. Astronomy 111 Lecture 19: Galaxies Astronomy 111 Galaxies What is a galaxy? Large assembly of stars, gas and dust, held together by gravity Sizes: Largest: ~1 Trillion stars (or more) Smallest: ~10 Million stars Milky

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16 University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 16 Stellar populations Walter Baade (1893-1960) Learning outcomes The student

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

24.1 Hubble s Galaxy Classification

24.1 Hubble s Galaxy Classification Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble s Law 24.4 XXActive Galactic Nuclei XXRelativistic Redshifts and Look-Back

More information

AS1001:Extra-Galactic Astronomy

AS1001:Extra-Galactic Astronomy AS1001:Extra-Galactic Astronomy Lecture 5: Dark Matter Simon Driver Theatre B spd3@st-andrews.ac.uk http://www-star.st-and.ac.uk/~spd3 Stars and Gas in Galaxies Stars form from gas in galaxy In the high-density

More information

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Structure of the Milky Way. Structure of the Milky Way. The Milky Way Key Concepts: Lecture 29: Our first steps into the Galaxy Exploration of the Galaxy: first attempts to measure its structure (Herschel, Shapley). Structure of the Milky Way Initially, star counting was

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

1924: Hubble classification scheme 1925: Hubble measures Cepheids (Period-Luminosity) in Andromeda case closed

1924: Hubble classification scheme 1925: Hubble measures Cepheids (Period-Luminosity) in Andromeda case closed Galaxies 1920 - Curtis-Shapley debate on nature of spiral nebulae - distribution in the sky: zone of avoidance Curtis: extinction Shapley:? - apparent brightness of stars(?) observed in some nebulae Shapley:

More information

Galaxy photometry. The surface brightness of a galaxy I(x) is the amount of light on the sky at a particular point x on the image.

Galaxy photometry. The surface brightness of a galaxy I(x) is the amount of light on the sky at a particular point x on the image. Galaxy photometry The surface brightness of a galaxy I(x) is the amount of light on the sky at a particular point x on the image. A small patch of side D in a galaxy located at a distance d, will subtend

More information

HW#6 is due; please pass it in. HW#7 is posted; it requires you to write out answers clearly and completely explaining your logic.

HW#6 is due; please pass it in. HW#7 is posted; it requires you to write out answers clearly and completely explaining your logic. Oct 21, 2015 Basic properties of groups and clusters of galaxies Number density, structure X-ray emission from hot ICM Estimating cluster masses Cluster scaling relations Impact of environment on galaxies

More information

Galaxies Guiding Questions

Galaxies Guiding Questions Galaxies Guiding Questions How did astronomers first discover other galaxies? How did astronomers first determine the distances to galaxies? Do all galaxies have spiral arms, like the Milky Way? How do

More information

2 Galaxy morphology and classification

2 Galaxy morphology and classification 2 Galaxy morphology and classification Galaxy classification is an important first step towards a physical understanding of the nature of these objects. For a detailed description of classification systems

More information

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 24 Astronomy Today 8th Edition Chaisson/McMillan Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble

More information

An Introduction to Galaxies and Cosmology. Jun 29, 2005 Chap.2.1~2.3

An Introduction to Galaxies and Cosmology. Jun 29, 2005 Chap.2.1~2.3 An Introduction to Galaxies and Cosmology Jun 29, 2005 Chap.2.1~2.3 2.1 Introduction external galaxies normal galaxies - majority active galaxies - 2% high luminosity (non-stellar origin) variability

More information

M31 - Andromeda Galaxy M110 M32

M31 - Andromeda Galaxy M110 M32 UNIT 4 - Galaxies XIV. The Milky Way galaxy - a huge collection of millions or billions of stars, gas, and dust, isolated in space and held together by its own gravity M110 M31 - Andromeda Galaxy A. Structure

More information

Galaxy Morphology. - a description of the structure of galaxies

Galaxy Morphology. - a description of the structure of galaxies Galaxy Morphology - a description of the structure of galaxies Galaxy Morphology - a description of the structure of galaxies Galaxy Morphology - a description of the structure of galaxies Clearly astronomical

More information

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter.

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter. Chapter 1 Introduction 1.1 What is a Galaxy? It s surprisingly difficult to answer the question what is a galaxy? Many astronomers seem content to say I know one when I see one. But one possible definition

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b. Dark Matter Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses Ω M ~ 0.3 2 1 Ω b 0.04 3 Mass Density by Direct Counting Add up the mass of all the galaxies per

More information

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Clusters of Galaxies Groups: Clusters poor rich Superclusters: Clusters of Galaxies Galaxies are not randomly strewn throughout space. Instead the majority belong to groups and clusters of galaxies. In these structures, galaxies are bound gravitationally and orbit

More information

AS1001:Extra-Galactic Astronomy. Lecture 3: Galaxy Fundamentals

AS1001:Extra-Galactic Astronomy. Lecture 3: Galaxy Fundamentals AS1001:Extra-Galactic Astronomy Lecture 3: Galaxy Fundamentals Galaxy Fundamentals How many stars are in a galaxy? How did galaxies form? How many galaxies are there? How far apart are they? How are they

More information

GALACTIC DYNAMICS AND INTERSTELLAR MATTER

GALACTIC DYNAMICS AND INTERSTELLAR MATTER GALACTIC DYNAMICS AND INTERSTELLAR MATTER Isaac Shlosman Department of Physics and Astronomy University of Kentucky at Lexington, USA and Theoretical Astrophysics Osaka University, Japan The goal: Explain

More information

II. Morphology and Structure of Dwarf Galaxies

II. Morphology and Structure of Dwarf Galaxies II. Morphology and Structure of Dwarf Galaxies Ferguson & Binggeli 1994, A&ARev 6, 67 1 1. Properties low mass : 10 6 10 10 M slow rotators : 10 100 km s -1 low luminosity : 10 6 10 10 L low surface brightness

More information

Physics of Galaxies 2016 Exercises with solutions batch I

Physics of Galaxies 2016 Exercises with solutions batch I Physics of Galaxies 2016 Exercises with solutions batch I 1. Distance and brightness at low redshift You discover an interesting galaxy in the local Universe and measure its redshift to be z 0.053 and

More information

The separate formation of different galaxy components

The separate formation of different galaxy components The separate formation of different galaxy components Alfonso Aragón-Salamanca School of Physics and Astronomy University of Nottingham Overview: Galaxy properties and morphologies Main galaxy components:

More information

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13 Using Globular Clusters to Omega Centauri Study Elliptical Galaxies Terry Bridges Australian Gemini Office 10,000 1,000,000 stars up to 1000 stars/pc3 typical sizes ~10 parsec Mike Beasley (IAC, Tenerife)

More information

Clusters and Groups of Galaxies

Clusters and Groups of Galaxies Clusters and Groups of Galaxies Groups and clusters The Local Group Clusters: spatial distribution and dynamics Clusters: other components Clusters versus groups Morphology versus density Groups and Clusters

More information

1.4 Galaxy Light Distributions

1.4 Galaxy Light Distributions 26 1.4 Galaxy Light Distributions List of topics Hubble classification scheme see Binney & Merrifield text Galaxy surface brightness profiles (JL 2.3.1, plus additional material) Galaxy luminosity function

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Review of stellar evolution and color-magnitude diagrams

Review of stellar evolution and color-magnitude diagrams Review of stellar evolution and color-magnitude diagrams The evolution of stars can be used to study the properties of galaxies Very characteristic features pinpoint at the age (chemistry) of the stars

More information

Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies

Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies Faintest galaxies are distributed ~ uniformly over the sky except for the Galactic plane (zone of avoidance) Brighter

More information

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018 Galaxy clusters László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 April 6, 2018 Satellite galaxies Large galaxies are surrounded by orbiting dwarfs approx. 14-16 satellites

More information

Exam 4 Review EXAM COVERS LECTURES 22-29

Exam 4 Review EXAM COVERS LECTURES 22-29 Exam 4 Review EXAM COVERS LECTURES 22-29 Theoretically is there a center of the universe? Is there an edge? Do we know where Earth is on this? There is no center to the Universe, What kind of light we

More information

A 103 Notes, Week 14, Kaufmann-Comins Chapter 15

A 103 Notes, Week 14, Kaufmann-Comins Chapter 15 NEARBY GALAXIES I. Brief History A 103 Notes, Week 14, Kaufmann-Comins Chapter 15 A. Kant B. Curtis-Shapley debate C. Distance to Andromeda II. Classification of nearby galaxies: Spirals, Ellipticals,

More information

Whittle : EXTRAGALACTIC ASTRONOMY 5. SPIRAL GALAXIES

Whittle : EXTRAGALACTIC ASTRONOMY 5. SPIRAL GALAXIES Whittle : EXTRAGALACTIC ASTRONOMY 1 : Preliminaries 6 : Dynamics I 11 : Star Formation 16 : Cosmology : Morphology 7 : Ellipticals 1 : Interactions 17 : Structure Growth 3 : Surveys 8 : Dynamics II 13

More information

HI as a probe for dwarf galaxy evolution in different environments: Voids to clusters

HI as a probe for dwarf galaxy evolution in different environments: Voids to clusters HI as a probe for dwarf galaxy evolution in different environments: Voids to clusters Sushma Kurapati Collaborators: Jayaram N Chengalur, NCRA, India Simon Pustilnik, SAO RAS, Russia 2017 PHISCC Workshop

More information

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya Foundations Chapter of Astronomy 15 13e Our Milky Way Seeds Phys1403 Stars and Galaxies Instructor: Dr. Goderya Selected Topics in Chapter 15 A view our Milky Way? The Size of our Milky Way The Mass of

More information

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies Big Galaxies Are Rare! Potato Chip Rule: More small things than large things Big, bright spirals are easy to see, but least common Dwarf ellipticals & irregulars are most common Faint, hard to see Mostly

More information

PHY323:Lecture 7 Dark Matter with Gravitational Lensing

PHY323:Lecture 7 Dark Matter with Gravitational Lensing PHY323:Lecture 7 Dark Matter with Gravitational Lensing Strong Gravitational Lensing Theory of Gravitational Lensing Weak Gravitational Lensing Large Scale Structure Experimental Evidence for Dark Matter

More information

Lecture 27 Galaxy Types and the Distance Ladder December 3, 2018

Lecture 27 Galaxy Types and the Distance Ladder December 3, 2018 Lecture 27 Galaxy Types and the Distance Ladder December 3, 2018 1 2 Early Observations Some galaxies had been observed before 1900 s. Distances were not known. Some looked like faint spirals. Originally

More information

Chapter 20 Lecture. The Cosmic Perspective. Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc.

Chapter 20 Lecture. The Cosmic Perspective. Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc. Chapter 20 Lecture The Cosmic Perspective Seventh Edition Galaxies and the Foundation of Modern Cosmology 20.1 Islands of Stars Our goals for learning: How do galaxies evolve? What are the three major

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

The Cosmological Redshift. Cepheid Variables. Hubble s Diagram

The Cosmological Redshift. Cepheid Variables. Hubble s Diagram SOME NEGATIVE EFFECTS OF THE EXPANSION OF THE UNIVERSE. Lecture 22 Hubble s Law and the Large Scale Structure of the Universe PRS: According to modern ideas and observations, what can be said about the

More information

Galaxies and The Milky Way

Galaxies and The Milky Way Galaxies and The Milky Way Attendance Quiz Are you here today? Here! (a) yes (b) no (c) To infinity and beyond! Next Tuesday, 5/30, I will be away at a meeting. There will be a guest lecture by Dr. Jorge

More information

12.1 Elliptical Galaxies

12.1 Elliptical Galaxies 12.1 Elliptical Galaxies Elliptical Galaxies Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals formed in a monolithic

More information

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester The Milky Way The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas 20 March 2018 University of Rochester The Milky Way Today s lecture: The shape of the Galaxy Stellar populations and

More information

Dwarf Galaxies - ideal Laboratories to study astrophysical Processes

Dwarf Galaxies - ideal Laboratories to study astrophysical Processes Dwarf Galaxies - ideal Laboratories to study astrophysical Processes Gerhard Hensler University of Vienna Lecture 1 Lecture "Dwarf Galaxies",, Thursday 11:30 am Content/Presenter 7.3. Organization 14.3.

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Galaxies. Early Attempts to catalog and classify. Messier Catalog. "The Great Debate" PHY galaxies - J. Hedberg

Galaxies. Early Attempts to catalog and classify. Messier Catalog. The Great Debate PHY galaxies - J. Hedberg Galaxies 1. Early Attempts to catalog and classify 1. Messier Catalog 2. "The Great Debate" 3. Spiral: Andromeda 4. Ellipticals 2. Updates to the scheme 1. NGC1300 2. Grand Design Spiral 3. Grand Design

More information

Galaxy Classification

Galaxy Classification Galaxies Galaxies are collections of billons of stars; our home galaxy, the Milky Way, is a typical example. Stars, gas, and interstellar dust orbit the center of the galaxy due to the gravitational attraction

More information

Arguments for a Hubble Constant near H 0 =55

Arguments for a Hubble Constant near H 0 =55 Arguments for a Hubble Constant near H 0 =55 H. Arp Max-Planck-Institut für Astrophysik, Garching 85741, Germany ABSTRACT Recent analyses of Cepheid distances to spiral galaxies have led to an announcement

More information

Dark Matter. ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552

Dark Matter. ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552 Dark Matter ASTR 333/433 Spring 2018 T R 4:00-5:15pm Sears 552 TODAY - Laws of Galactic Rotation - Flat rotation curves - Tully-Fisher - Universal Rotation curve - central Density Relation - Renzo s Rule

More information

Astronomy 730. Evolution

Astronomy 730. Evolution Astronomy 730 Evolution Outline } Evolution } Formation of structure } Processes on the galaxy scale } Gravitational collapse, merging, and infall } SF, feedback and chemical enrichment } Environment }

More information

What is the solar system?

What is the solar system? Notes Astronomy What is the solar system? 11.1 Structure of the Solar System Our solar system includes planets and dwarf planets, their moons, a star called the Sun, asteroids and comets. Planets, dwarf

More information

arxiv:astro-ph/ v1 19 Nov 1999

arxiv:astro-ph/ v1 19 Nov 1999 Where are the First Stars now? Simon D.M. White & Volker Springel Max-Planck-Institute for Astrophysics, Garching bei München, Germany arxiv:astro-ph/9911378v1 19 Nov 1999 Abstract. We use high-resolution

More information

Veilleux! see MBW ! 23! 24!

Veilleux! see MBW ! 23! 24! Veilleux! see MBW 10.4.3! 23! 24! MBW pg 488-491! 25! But simple closed-box model works well for bulge of Milky Way! Outflow and/or accretion is needed to explain!!!metallicity distribution of stars in

More information

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

More information

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT GALAXIES

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT GALAXIES PROJECT 7 GALAXIES Objective: The topics covered in the previous lessons target celestial objects located in our neighbourhood, i.e. objects which are within our own Galaxy. However, the Universe extends

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information