Everything in baryons?

Size: px
Start display at page:

Download "Everything in baryons?"

Transcription

1 Everything in baryons? Benoit Famaey (ULB) Rencontres de Blois 2007 General Relativity -> Dark Matter R αβ - 1/2 R g αβ + Λg αβ = (8πG/c 4 ) T αβ very precisely tested on solar system scales (but Pioneer) Weak-field limit: g 00 = -1-2Φ/c 2 with 2 Φ = 4πGρ Observe ρ bar in galaxies derive Φ bar (R Φ bar / R ) 1/2 = V c bar too low in the galactic plane compared to observed V c => DARK MATTER HALO 1

2 Concordance model: Assumes GR, DM and Λ DM non-baryonic (Ω b 0.05, Ω m 0.3) and cold (CDM) i.e. massive particles (e.g., neutralino ~ 1TeV) in order to grow hierarchical structure It cannot be ordinary neutrinos, too light (< 2.2 ev) to form hierarchical structure, too light fermions to have a density comparable to DM densities in galaxies (colder than galaxy clusters) However, CDM (necessary in a GR Universe) is not without problems CDM and the missing satellites Simulations predict times more satellites (with V c <30km/s) at z=0 than observed Low surface brightness and extinction => not observed? Not that many Cannot form stars? Maybe, thanks to reionization at 6 < z <11 But same problem at galaxy cluster scales (Lake et al.) WDM? Less small-scale power dsph of tidal origin? (Metz & Kroupa 2007) 2

3 CDM and the cusp problem Simulations of clustering CDM halos (e.g.diemand et al.) predict a central cusp ρ r -γ, with γ > 1 Feedback from the baryons makes the problem worse Angular momentum transfer from the bar WDM, but structure formation and small scale power Other solutions? Hiding cusps by triaxiality of the halo? No Klypin, Zhao & Somerville 2002 The Milky Way HI 21-cm (or CO) (l,v) diagrams Circular orbit at radius R: V r = [V c (R)/R - V c (R 0 )/R 0 ] R 0 sin l Enveloppe: terminal velocity curve V r = sign(l) V c (R 0 sin l) - V c (R 0 ) sin l 3

4 Bissantz et al. (2003) : baryonic potential from COBE near-ir luminosity density including bar and spiral structure in disk with spatially constant M/L Fit M/L and Ω in potentials of bar and of spiral to gas dynamics Fit to microlensing optical depth No DM Milky Way provides good fits to gas dynamics and microlensing within 5 kpc But V c (R 0 ) = 185 km/s instead of 220 km/s DM halo Φ = 1/2 V 2 ln(r 2 + r c2 ) Negligible contribution inside 5 kpc NOT cuspy if mass inside 5 kpc shifted from baryons to DM, non-circular motions in (l,v) vanish (even shallow halo smoothes bumps and dips in the TVC) CDM: the «correlation» problem Each time one sees a feature in the light, there is a feature in the rotation curve (Sancisi s rule) Baryonic Tully-Fisher relation V 4 M bar (tight->triaxiality of halo?) Amount of DM determined by the distribution of baryons at all radii and wiggles of rotation curves even follow wiggles of baryons 4

5 If no DM, then GR is wrong -> MOND Correlation summarized by the MOND formula in galaxies (Milgrom 1983) : µ ( g /a 0 ) g = g N baryons where a 0 ~ ch 0 with µ(x) = x for x «1 (MONDian regime) => V 2 /r ~ 1/r => V~cst µ(x) = 1 for x»1 (Newtonian regime) OK for the Milky Way TVC (Famaey & Binney 2005) No cusp problem + explains the RC wiggles following the baryons Tully-Fisher relation (observed with small scatter): V 4 = GM bar a 0 Predicts that the discrepancy always appear at V 2 /r ~ a 0 Predicts stability of disks with Σ <~ a 0 /G Rotation curves of LSB (Σ «a 0 /G => g N «a 0 ), with high-discrepancy Rotation curves of HSB including early-type disks (see e.g. Sanders & McGaugh 2002; Famaey, Gentile, Bruneton, Zhao 2007; Sanders & Noordermeer 2007) Fitted M/L ratios follow predictions of population synthesis models No discrepancy in centre of giant ellipticals + Pne (Milgrom & Sanders 2003) + solution to time-delay problem No discrepancy in nearby globular clusters (Milgrom 1983) (external field effect, breaks the strong equivalence principle) Statistical bar frequency in spirals closer to observations than in DM (Tiret & Combes 2007) Local galactic escape speed (Famaey, Bruneton & Zhao 2007) 5

6 At the very least, MOND tells us something fundamental we are not understanding in galaxy formation («gastrophysical» feedbacks?), not even close to understanding it! Non-standard: a) fundamental property of DM b) modification of inertia (Milgrom 1994) c) modification of gravity. [ µ ( Φ /a 0 ) Φ] = 4 π G ρ Modifying GR to obtain MOND in static weak-field limit: dynamical 4-vector field U α U α = 1, with free function in the action playing the role of µ (Bekenstein 2004; Zlosnik, Ferreira & Starkman 2007) g αβ = (-1-2Φ/c 2 ) (1-2Φ/c 2 ) (1-2Φ/c 2 ) (1-2Φ/c 2 ) where Φ obeys a MOND-like equation (dynamics and lensing are governed by the same physical metric g αβ as in GR, strong lenses well fitted by point lenses, except a few outliers in clusters, Zhao et al. 2005) 6

7 MOND and Cosmology Can we form structure without dark matter in relativistic MOND? YES (Dodelson & Liguori 2006) Perturbations in the vector field U ν = (1+α 0, α) where α 0 =-Φ/c 2 through U ν U ν =-1 In Poisson equation: term depending on the spatial part α of the vector field (zero in static systems) Behaves like dark matter on right-hand side of equation This α-term grows in the perturbation and plays the role of DM Matter power spectrum ok without DM (Dodelson & Liguori 2006), but apparently needs DM in the form of 2eV neutrinos to fit the angular power spectrum of the CMB, in order not to change the angular-distance relation by having too much acceleration (Skordis et al. 2006) MOND and galaxy Clusters Rich X-ray emitting clusters of galaxies still need dark matter in MOND, typically in the central ~100 kpc, typically 1 to 3 times more than the total visible mass Bullet cluster (Clowe et al. 2006, Angus et al. 2007)-> must be collisionless Integrated baryonic mass from clusters of galaxies only represent a few percents of BBN, so if the necessary missing baryons are present in clusters, they still represent much less than 1/2 of BBN Other possibility: ordinary neutrinos of 2eV (Sanders 2003), also invoked to fit the CMB (Skordis et al. 2006), not clustering in galaxies Interestingly m ν 6eV (Ω ν 0.12) excluded in standard cosmology 7

8 Mass of electron neutrino β-decay of tritium ( 3 H) into Helium 3 ion + electron + neutrino: Conclusions CDM has its most outstanding problems (missing satellite, cusp, correlation, time delay, missing baryons) on galactic scales, where MOND does much better and naturally explains the galactic Kepler laws It is not yet clear if a purely baryonic Universe can provide a fully consistent cosmology, more work has to be done along these lines, one must also wait for the basic principle and fundamental theory underlying the MOND paradigm MOND has a missing baryons problem in galaxy clusters, and these baryons must be in collisionless form (clumps of cold gas?) These missing baryons would still represent much less than half of the BBN An interesting alternative possibility would be that neutrinos have a 2eV mass: this is possible in a MOND Universe (and does help the cause of the CMB), but ruled out in standard cosmology 8

GMU, April 13, The Pros and Cons of Invisible Mass and Modified Gravity. Stacy McGaugh University of Maryland

GMU, April 13, The Pros and Cons of Invisible Mass and Modified Gravity. Stacy McGaugh University of Maryland GMU, April 13, 2007 The Pros and Cons of Invisible Mass and Modified Gravity Stacy McGaugh University of Maryland What gets us into trouble is not what we don t know. It s what we know for sure that just

More information

Dark Matter. 4/24: Homework 4 due 4/26: Exam ASTR 333/433. Today. Modified Gravity Theories MOND

Dark Matter. 4/24: Homework 4 due 4/26: Exam ASTR 333/433. Today. Modified Gravity Theories MOND Dark Matter ASTR 333/433 Today Modified Gravity Theories MOND 4/24: Homework 4 due 4/26: Exam Not any theory will do - length scale based modifications can be immediately excluded as the discrepancy does

More information

MOND and the Galaxies

MOND and the Galaxies MOND and the Galaxies Françoise Combes Observatoire de Paris With Olivier Tiret Angus, Famaey, Gentile, Wu, Zhao Wednesday 1st July 2009 MOND =MOdified Newtonian Dynamics Modification at weak acceleration

More information

Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E )

Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E ) Modified Newtonian Dynamics (MOND) and the Bullet Cluster (1E 0657-558) Alan G. Aversa ABSTRACT Modified Newtonian Dynamics (MOND) is a theory that modifies Newton s force law to explain observations that

More information

Tidal streams as gravitational experiments!

Tidal streams as gravitational experiments! Tidal streams as gravitational experiments! Benoit Famaey CNRS - Observatoire astronomique de Strasbourg MOND paradigm MDAR: McGaugh et al. 2016 Lelli et al. 2016 Famaey & McGaugh 2012 MOND paradigm Prediction:

More information

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant?

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College (moving to Penn State, Hazleton) Collaborators Duncan Farrah Chiu Man Ho Djordje Minic

More information

MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION. Luc Blanchet. 15 septembre 2008

MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION. Luc Blanchet. 15 septembre 2008 MODEL OF DARK MATTER AND DARK ENERGY BASED ON GRAVITATIONAL POLARIZATION Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris 15 septembre 2008 Luc Blanchet (GRεCO) Séminaire

More information

modified gravity? Chaire Galaxies et Cosmologie XENON1T Abel & Kaehler

modified gravity? Chaire Galaxies et Cosmologie XENON1T Abel & Kaehler Dark matter or modified gravity? Chaire Galaxies et Cosmologie Françoise Combes 11 December, 2017 XENON1T Abel & Kaehler Why modified gravity? CDM models beautifully account for LSS, CMB, galaxy formation

More information

MOND and the Galaxies

MOND and the Galaxies MOND and the Galaxies F. Combes a and O. Tiret b a Observatoire de Paris, LERMA, 61 Av de l Observatoire, F-75014 Paris, France b SISSA, via Beirut 4, I-34014 Trieste, Italy Abstract. We review galaxy

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem Dr. Yves Gaspar, Ph.D. ( University of Cambridge, UK) Università Cattolica del Sacro Cuore, Brescia Department of Mathematics and Physics. Implications of astronomical data. James

More information

MOND s Problem in Local Group

MOND s Problem in Local Group MOND s Problem in Local Group Yan-Chi Shi 1 ABSTRACT I use the distances and motions of Local Group galaxies to test Modified Newtonian Dynamics (MOND). The old Local Group timing argument of Kahn & Woltjer,

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

arxiv: v2 [astro-ph.ga] 12 Jan 2011

arxiv: v2 [astro-ph.ga] 12 Jan 2011 Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Distant star clusters of the Milky Way in MOND Hossein Haghi 1,2,, Holger Baumgardt 2,3, and Pavel Kroupa 2 arxiv:111.1952v2 [astro-ph.ga]

More information

Baryonic Masses from Rotation Curves. Stacy McGaugh University of Maryland

Baryonic Masses from Rotation Curves. Stacy McGaugh University of Maryland Unveiling the Mass - Extracting and Interpreting Galaxy Masses, Kingston, Ontario, 19 June 2009 Baryonic Masses from Rotation Curves Stacy McGaugh University of Maryland Rotation curves tend to become

More information

ROE, Edinburgh, 20 April Observational Constraints on the Acceleration Discrepancy Problem. Stacy McGaugh University of Maryland

ROE, Edinburgh, 20 April Observational Constraints on the Acceleration Discrepancy Problem. Stacy McGaugh University of Maryland ROE, Edinburgh, 20 April 2006 Observational Constraints on the Acceleration Discrepancy Problem Stacy McGaugh University of Maryland What gets us into trouble is not what we don t know. It s what we know

More information

Atelier vide quantique et gravitation DARK MATTER AND GRAVITATIONAL THEORY. Luc Blanchet. 12 décembre 2012

Atelier vide quantique et gravitation DARK MATTER AND GRAVITATIONAL THEORY. Luc Blanchet. 12 décembre 2012 Atelier vide quantique et gravitation DARK MATTER AND GRAVITATIONAL THEORY Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris 12 décembre 2012 Luc Blanchet (GRεCO) Atelier

More information

MOND + 11eV sterile neutrinos

MOND + 11eV sterile neutrinos MOND + 11eV sterile neutrinos PPC10 - Day 2 13 -July-2010 th Garry Angus Caustic Group @ UTorino (INFN) In collaboration with Antonaldo Diaferio & Benoit Famaey Modified Newtonian Dynamics MOND new physical

More information

Exploring Extended MOND in Galaxy Clusters. Alistair Hodson Supervisor Hongsheng Zhao

Exploring Extended MOND in Galaxy Clusters. Alistair Hodson Supervisor Hongsheng Zhao Exploring Extended MOND in Galaxy Clusters Alistair Hodson Supervisor Hongsheng Zhao Overview What is Extended MOND (EMOND)? What is the motivation for EMOND? What are the implications of EMOND? How successful

More information

What do we need to know about galaxy formation?

What do we need to know about galaxy formation? What do we need to know about galaxy formation? rachel somerville University of Michigan Hubble Science Legacy Workshop April 2002 what s next? test the CDM paradigm constrain the nature of the dark matter

More information

Astro-2: History of the Universe. Lecture 5; April

Astro-2: History of the Universe. Lecture 5; April Astro-2: History of the Universe Lecture 5; April 23 2013 Previously.. On Astro-2 Galaxies do not live in isolation but in larger structures, called groups, clusters, or superclusters This is called the

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 4 Stellar orbits and dark matter 1 Using Kepler s laws for stars orbiting the center of a galaxy We will now use Kepler s laws of gravitation on much larger scales. We will study

More information

Rotation curves of spiral galaxies

Rotation curves of spiral galaxies Rotation curves of spiral galaxies Rotation curves Mass discrepancy Circular velocity of spherical systems and disks Dark matter halos Inner and outer regions Tully-Fisher relation From datacubes to rotation

More information

MOdified Newtonian Dynamics an introductory review. Riccardo Scarpa European Southern Observatory

MOdified Newtonian Dynamics an introductory review. Riccardo Scarpa European Southern Observatory MOdified Newtonian Dynamics an introductory review By Riccardo Scarpa European Southern Observatory Everything started in 1933 with the work by Zwicky on the Coma cluster of galaxies, but were galaxy rotation

More information

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe?

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? John Moffat Perimeter Institute, Waterloo, Ontario, Canada Talk given at the Miami 2014 topical conference on

More information

Gravitational Lensing by Intercluster Filaments in MOND/TeVeS

Gravitational Lensing by Intercluster Filaments in MOND/TeVeS Gravitational Lensing by Intercluster Filaments in MOND/TeVeS Martin Feix SUPA, School of Physics and Astronomy, University of St Andrews ATM workshop Toulouse November 8th 2007 Outline 1 Introduction

More information

Galaxy constraints on Dark matter

Galaxy constraints on Dark matter Galaxy constraints on Dark matter 25% 5% 70% CL 0152-1357. 1357 Jee et al 06 WMAP+Planck Françoise Combes Observatoire de Paris Thursday March 28, 2013 Evidences of dark matter Galaxy clusters, Virial

More information

What are the best constraints on theories from galaxy dynamics?

What are the best constraints on theories from galaxy dynamics? What are the best constraints on theories from galaxy dynamics? TDG in MOND DM MOND Françoise Combes Observatoire de Paris Tuesday 29 June 2010 O.Tiret Still most baryons are unidentified 6% in galaxies

More information

Recent developments in the understanding of Dark Matter

Recent developments in the understanding of Dark Matter Liverpool Physics Teachers Conference 20th June 2013 Recent developments in the understanding of Dark Matter Phil James Liverpool John Moores University Astrophysics Research Institute OUTLINE OF TALK

More information

arxiv: v1 [astro-ph] 13 May 2008

arxiv: v1 [astro-ph] 13 May 2008 Draft version May 13, 28 Preprint typeset using L A TEX style emulateapj v. 8/13/6 MOND AND THE UNIVERSAL ROTATION CURVE: SIMILAR PHENOMENOLOGIES Gianfranco Gentile 1,2 Draft version May 13, 28 arxiv:85.1731v1

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1 COSMOLOGY PHYS 30392 DENSITY OF THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - March 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Observational Evidence for Dark Matter. Simona Murgia, SLAC-KIPAC

Observational Evidence for Dark Matter. Simona Murgia, SLAC-KIPAC Observational Evidence for Dark Matter Simona Murgia, SLAC-KIPAC XXXIX SLAC Summer Institute 28 July 2011 Outline Evidence for dark matter at very different scales Galaxies Clusters of galaxies Universe???

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

Dark Matter Halos of Spiral Galaxies

Dark Matter Halos of Spiral Galaxies Dark Matter Halos of Spiral Galaxies Arunima Banerjee National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune, India email: arunima@ncra.tifr.res.in Web: http://www.ncra.tifr.res.in/~arunima

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

Small-scale problems of cosmology and how modified dynamics might address them

Small-scale problems of cosmology and how modified dynamics might address them Small-scale problems of cosmology and how modified dynamics might address them Marcel S. Pawlowski Email: marcel.pawlowski@case.edu Twitter: @8minutesold with support from the John Templeton Foundation

More information

Dark matter & Cosmology

Dark matter & Cosmology Dark matter & Cosmology CL 0152-1357. 1357 Jee et al 06 Françoise Combes Observatoire de Paris Thursday June 7, 2012 Evidences of dark matter Galaxy clusters, Virial /visible mass ~100 (Zwicky 1937) Coma

More information

Dark matter and galaxy formation

Dark matter and galaxy formation Dark matter and galaxy formation Galaxy rotation The virial theorem Galaxy masses via K3 Mass-to-light ratios Rotation curves Milky Way Nearby galaxies Dark matter Baryonic or non-baryonic A problem with

More information

The MOND paradigm. Mordehai Milgrom. Center for Astrophysics, Weizmann Institute, Rehovot 76100, Israel

The MOND paradigm. Mordehai Milgrom. Center for Astrophysics, Weizmann Institute, Rehovot 76100, Israel The MOND paradigm Mordehai Milgrom Center for Astrophysics, Weizmann Institute, Rehovot 76100, Israel ABSTRACT arxiv:0801.3133v2 [astro-ph] 3 Mar 2008 I review briefly different aspects of the MOND paradigm,

More information

Evidence for/constraints on dark matter in galaxies and clusters

Evidence for/constraints on dark matter in galaxies and clusters Nov 11, 2015 Evidence for/constraints on dark matter in galaxies and clusters HW#9 is due; please hand in your summaries; then you get to talk (I have slides of the different facilities/telescopes. HW#10

More information

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves Chapter 23: Dark Matter, Dark Energy & Future of the Universe Galactic rotation curves Orbital speed as a function of distance from the center: rotation_of_spiral_galaxy.htm Use Kepler s Third Law to get

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies Gerry Gilmore H47 email: gil@ast.cam.ac.uk Lectures: Monday 12:10-13:00 Wednesday 11:15-12:05 Friday 12:10-13:00 Books: Binney & Tremaine Galactic Dynamics Princeton

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Properties of Dark Matter: What is it? And what isn t it? Leo Blitz UC Berkeley Stanford July 31, 2007 How much is there? WMAP results Rotation curves of Galaxies

More information

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College

Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College Modified Dark Matter: Does Dark Matter Know about the Cosmological Constant? Douglas Edmonds Emory & Henry College Collaborators Duncan Farrah Chiu Man Ho Djordje Minic Y. Jack Ng Tatsu Takeuchi Outline

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem matter : anything with equation of state w=0 more obvious contribution to matter: baryons (stars, planets, us!) and both Big Bang Nucleosynthesis and WMAP tell us that Ω baryons

More information

3 The lives of galaxies

3 The lives of galaxies Discovering Astronomy : Galaxies and Cosmology 24 3 The lives of galaxies In this section, we look at how galaxies formed and evolved, and likewise how the large scale pattern of galaxies formed. But before

More information

Fitting the NGC 1560 rotation curve and other galaxies in the constant Lagrangian model for galactic dynamics.

Fitting the NGC 1560 rotation curve and other galaxies in the constant Lagrangian model for galactic dynamics. Fitting the NGC 1560 rotation curve and other galaxies in the constant Lagrangian model for galactic dynamics. 1, a) E.P.J. de Haas Nijmegen, The Netherlands (Dated: April 24, 2018) The velocity rotation

More information

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy)

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy) OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY Marco Roncadelli INFN Pavia (Italy) ABSTRACT Assuming KNOWN physical laws, I first discuss OBSERVATIONAL evidence for dark matter in galaxies and

More information

Relationship Between Newtonian and MONDian Acceleration

Relationship Between Newtonian and MONDian Acceleration Advances in Applied Physics, Vol. 4, 2016, no. 1, 31-37 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/aap.2016.6810 Relationship Between Newtonian and MONDian Acceleration A. S. Sarabi Department

More information

arxiv: v2 [astro-ph.ga] 23 Nov 2017

arxiv: v2 [astro-ph.ga] 23 Nov 2017 Publ. Astron. Obs. Belgrade No. 98 (2018), 1-4 Contributed paper arxiv:1711.06335v2 [astro-ph.ga] 23 Nov 2017 INVESTIGATING THE RADIAL ACCELERATION RELATION IN EARLY-TYPE GALAXIES USING THE JEANS ANALYSIS

More information

Numerical simulations of Modified Newtonian Dynamics

Numerical simulations of Modified Newtonian Dynamics Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical simulations of Modified Newtonian Dynamics To cite this article: G N Candlish et al 2016 J. Phys.: Conf. Ser. 720 012012 View the article

More information

REINVENTING GRAVITY: Living Without Dark Matter

REINVENTING GRAVITY: Living Without Dark Matter REINVENTING GRAVITY: Living Without Dark Matter John Moffat Perimeter Institute for Theoretical Physics and Department of Physics University of Toronto and University of Waterloo Talk given at Astronomy

More information

Dark Matter & Dark Energy. Astronomy 1101

Dark Matter & Dark Energy. Astronomy 1101 Dark Matter & Dark Energy Astronomy 1101 Key Ideas: Dark Matter Matter we cannot see directly with light Detected only by its gravity (possible future direct detection in the lab) Most of the matter in

More information

Dark Matter in Galaxies

Dark Matter in Galaxies Dark Matter in Galaxies Garry W. Angus VUB FWO 3rd COSPA Meeting Université de Liège Ellipticals. Old stars. Gas poor. Low star formation rate. Spiral (disk) galaxies. Often gas rich => star formation.

More information

Evidence for Dark Matter

Evidence for Dark Matter Evidence for Dark Matter We are now going to move on to another of the most important current mysteries in cosmology: dark matter. To set the stage, we will take a census of the mass in the universe, and

More information

Dynamical friction, galaxy merging, and radial-orbit instability in MOND

Dynamical friction, galaxy merging, and radial-orbit instability in MOND Dynamical friction, galaxy merging, and radial-orbit instability in MOND Carlo Nipoti Dipartimento di Astronomia Università di Bologna Strasbourg, 29 June 2010 Outline MOND and Equivalent Newtonian Systems

More information

Laws of Galactic Rotation. Stacy McGaugh Case Western Reserve University

Laws of Galactic Rotation. Stacy McGaugh Case Western Reserve University Laws of Galactic Rotation Stacy McGaugh Case Western Reserve University UGC 2885 Galaxies NGC 2403 Huge dynamic range in 10 kpc Gravitationally self-bound entities composed of stars, gas, dust, [& dark

More information

Dark Matter in Disk Galaxies

Dark Matter in Disk Galaxies Chapter 14 Dark Matter in Disk Galaxies Rotation curves of disk galaxies rise steeply in their inner regions and then remain roughly flat out to the last point measured. To explain these observations within

More information

Dark Energy vs. Dark Matter: Towards a unifying scalar field?

Dark Energy vs. Dark Matter: Towards a unifying scalar field? Dark Energy vs. Dark Matter: Towards a unifying scalar field? Alexandre ARBEY Centre de Recherche Astrophysique de Lyon Institut de Physique Nucléaire de Lyon, March 2nd, 2007. Introduction The Dark Stuff

More information

Ta-Pei Cheng PCNY 9/16/2011

Ta-Pei Cheng PCNY 9/16/2011 PCNY 9/16/2011 Ta-Pei Cheng For a more quantitative discussion, see Relativity, Gravitation & Cosmology: A Basic Introduction (Oxford Univ Press) 2 nd ed. (2010) dark matter & dark energy Astronomical

More information

Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College

Miami Modified dark matter in galaxy clusters. Douglas Edmonds Emory & Henry College Miami 2015 Modified dark matter in galaxy clusters Douglas Edmonds Emory & Henry College Collaboration D. Edmonds Emory & Henry College D. Farrah Virginia Tech C.M. Ho Michigan State University D. Minic

More information

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b. Dark Matter Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses Ω M ~ 0.3 2 1 Ω b 0.04 3 Mass Density by Direct Counting Add up the mass of all the galaxies per

More information

Dark Matter in Dwarf Galaxies

Dark Matter in Dwarf Galaxies Maryland Center for Fundamental Physics & Joint Space-Science Institute 26-28 May 2010 Advances in Theoretical and Observational Cosmology Dark Matter in Dwarf Galaxies Stacy McGaugh University of Maryland

More information

Astronomy 114. Lecture 29: Internal Properties of Galaxies. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 29: Internal Properties of Galaxies. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 29: Internal Properties of Galaxies Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 29 20 Apr 2007 Read: Ch. 26 Astronomy 114 1/16 Announcements

More information

arxiv:astro-ph/ v1 22 Sep 2005

arxiv:astro-ph/ v1 22 Sep 2005 Mass Profiles and Shapes of Cosmological Structures G. Mamon, F. Combes, C. Deffayet, B. Fort (eds) EAS Publications Series, Vol.?, 2005 arxiv:astro-ph/0509665v1 22 Sep 2005 MONDIAN COSMOLOGICAL SIMULATIONS

More information

Astrophysical observations preferring Modified Gravity

Astrophysical observations preferring Modified Gravity Astrophysical observations preferring Modified Gravity A natural approach to extended Newtonian gravity: tests and predictions across astrophysical scales. Mon.Not.Roy.Astron.Soc. 411 (2011) 226-234 Wide

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

Stellar Population Synthesis, a Discriminant Between Gravity Models

Stellar Population Synthesis, a Discriminant Between Gravity Models Stellar Population Synthesis, a Discriminant Between Gravity Models Akram Hasani Zonoozi Institute for Advanced Studies in Basic Sciences, IASBS Zanjan, Iran In collaboration with: H.Haghi & Y.Sobouti

More information

DARK MATTER IN UNIVERSE. edited by. John Bahcall Institute for Advanced Study, Princeton, USA. Tsvi Piran The Hebrew University, Israel

DARK MATTER IN UNIVERSE. edited by. John Bahcall Institute for Advanced Study, Princeton, USA. Tsvi Piran The Hebrew University, Israel DARK MATTER IN UNIVERSE n d edited by John Bahcall Institute for Advanced Study, Princeton, USA Tsvi Piran The Hebrew University, Israel Steven Weinberg University of Texas, Austin, USA TECHNiSCHE INFORMATIONSBIBLIOTHEK

More information

Strategies for Dark Matter Searches

Strategies for Dark Matter Searches SMR.1761-1 SUMMER SCHOOL IN COSMOLOGY AND ASTROPARTICLE PHYSICS 10-21 July 2006 Strategies for dark matter detection B. SADOULET University of California Department of Physics 366 Le Conte Hall Berkeley,

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect

Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect Dwarf Galaxy Dispersion Profile Calculations Using a Simplified MOND External Field Effect On the Shoulders of Giants Workshop Case Western Reserve University June 7, 2017 Stephen Alexander Physics Department

More information

Solving small scale structure puzzles with. dissipative dark matter

Solving small scale structure puzzles with. dissipative dark matter Solving small scale structure puzzles with. dissipative dark matter Robert Foot, COEPP, University of Melbourne Okinawa, March 2016 Dark matter: why we think it exists Dark matter issues on small scales

More information

AS1001:Extra-Galactic Astronomy

AS1001:Extra-Galactic Astronomy AS1001:Extra-Galactic Astronomy Lecture 5: Dark Matter Simon Driver Theatre B spd3@st-andrews.ac.uk http://www-star.st-and.ac.uk/~spd3 Stars and Gas in Galaxies Stars form from gas in galaxy In the high-density

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Galaxy Formation Now and Then

Galaxy Formation Now and Then Galaxy Formation Now and Then Matthias Steinmetz Astrophysikalisches Institut Potsdam 1 Overview The state of galaxy formation now The state of galaxy formation 10 years ago Extragalactic astronomy in

More information

The visible constituents of the Universe: Non-relativistic particles ( baryons ): Relativistic particles: 1. radiation 2.

The visible constituents of the Universe: Non-relativistic particles ( baryons ): Relativistic particles: 1. radiation 2. The visible constituents of the Universe: Non-relativistic particles ( baryons ): Galaxies / Clusters / Super-clusters Intergalactic Medium Relativistic particles: 1. radiation 2. neutrinos Dark sector

More information

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies! 3/6/12 Astro 358/Spring 2012 Galaxies and the Universe Dark Matter in Galaxies Figures + Tables for Lectures (Feb 16-Mar 6) Dark Matter in Spiral Galaxies Flat rotation curve of Milky Way at large radii

More information

Galaxy-Sized Monopoles as Dark Matter?

Galaxy-Sized Monopoles as Dark Matter? Galaxy-Sized Monopoles as Dark Matter? TPCSF Cosmology MiniWorkshop IHEP, May 23, 2012 WIMPs and Their Successes CDM WIMPs are the most successful dark matter model to date. The dark matter consists of

More information

arxiv: v1 [astro-ph.ga] 15 Jan 2015

arxiv: v1 [astro-ph.ga] 15 Jan 2015 Explaining the formation of bulges with MOND Françoise Combes arxiv:1501.03603v1 [astro-ph.ga] 15 Jan 2015 Abstract In the cold dark matter (CDM) paradigm, bulges easily form through galaxy mergers, either

More information

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50

More information

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Clusters of Galaxies Groups: Clusters poor rich Superclusters: Clusters of Galaxies Galaxies are not randomly strewn throughout space. Instead the majority belong to groups and clusters of galaxies. In these structures, galaxies are bound gravitationally and orbit

More information

Brief update (3 mins/2 slides) on astrophysics behind final project

Brief update (3 mins/2 slides) on astrophysics behind final project Nov 1, 2017 Brief update (3 mins/2 slides) on astrophysics behind final project Evidence for Dark Matter Next Wed: Prelim #2, similar to last one (30 mins). Review especially lecture slides, PEs and non-project

More information

Dark Matter. Jaan Einasto Tartu Observatory and ICRANet 16 December Saturday, December 15, 12

Dark Matter. Jaan Einasto Tartu Observatory and ICRANet 16 December Saturday, December 15, 12 Dark Matter Jaan Einasto Tartu Observatory and ICRANet 16 December 2012 Local Dark Matter: invisible matter in the Galaxy in Solar vicinity Global Dark Matter: invisible matter surrounding galaxies Global

More information

Galaxies Astro 530 Prof. Jeff Kenney

Galaxies Astro 530 Prof. Jeff Kenney Galaxies Astro 530 Prof. Jeff Kenney CLASS 7 February 5, 2018 Tully-Fisher Relation (finish) & Spiral Structure (start) 1 Tully-Fisher relation M B,i Tradi7onal Tully- Fisher rela7on: Good correla7on between

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Galaxy formation in cold dark matter

Galaxy formation in cold dark matter Galaxy formation in cold dark matter Cheng Zhao Tsinghua Center for Astrophysics Oct 27, 2017 Main references: Press & Schechter, 1974 White & Rees, 1978 Galaxy formation mechanism Cosmological initial

More information

Using globular clusters to test gravity in the weak acceleration regime

Using globular clusters to test gravity in the weak acceleration regime Using globular clusters to test gravity in the weak acceleration regime Riccardo Scarpa 1, Gianni Marconi 2, Roberto Gilmozzi 2, and Giovanni Carraro 3 1 Instituto de Astrofísica de Canarias, Spain 2 European

More information

arxiv: v1 [astro-ph.co] 24 Aug 2009

arxiv: v1 [astro-ph.co] 24 Aug 2009 Draft version August 25, 2009 Preprint typeset using L A TEX style emulateapj v. 10/09/06 ON THE SEPARATION BETWEEN BARYONIC AND DARK MATTER: EVIDENCE FOR PHANTOM DARK MATTER? Alexander Knebe 1, Claudio

More information

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe 16.1 Unseen Influences Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from its gravitational

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Challenges for ΛCDM and MOND

Challenges for ΛCDM and MOND Journal of Physics: Conference Series OPEN ACCESS Challenges for ΛCDM and MOND To cite this article: Benoit Famaey and Stacy McGaugh 2013 J. Phys.: Conf. Ser. 437 012001 View the article online for updates

More information

arxiv: v1 [astro-ph.co] 7 Nov 2011

arxiv: v1 [astro-ph.co] 7 Nov 2011 arxiv:1111.1611v1 [astro-ph.co] 7 Nov 2011 MOND particularly as modified inertia Mordehai Milgrom Department of Particle Physics and Astrophysics, Weizmann Institute After a succinct review of the MOND

More information

arxiv: v2 [astro-ph.co] 28 Sep 2012

arxiv: v2 [astro-ph.co] 28 Sep 2012 Testing MOND Over a Wide Acceleration Range in X-Ray Ellipticals Mordehai Milgrom DPPA, Weizmann Institute of Science, Rehovot 76100, Israel arxiv:1205.1308v2 [astro-ph.co] 28 Sep 2012 The gravitational

More information

CONSTRAINING MOND WITH SOLAR SYSTEM DYNAMICS LORENZO IORIO 1. Received 10 Dec.2007; Accepted 13 Feb.2008

CONSTRAINING MOND WITH SOLAR SYSTEM DYNAMICS LORENZO IORIO 1. Received 10 Dec.2007; Accepted 13 Feb.2008 CONSTRAINING MOND WITH SOLAR SYSTEM DYNAMICS LORENZO IORIO 1 1 Viale Unità di Italia 68, 70125, Bari (BA), Italy. tel. 0039 328 6128815. lorenzo.iorio@libero.it. Received 10 Dec.2007; Accepted 13 Feb.2008

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information