Cooking with Strong Lenses and Other Ingredients

Size: px
Start display at page:

Download "Cooking with Strong Lenses and Other Ingredients"

Transcription

1 Cooking with Strong Lenses and Other Ingredients Adam S. Bolton Department of Physics and Astronomy The University of Utah AASTCS 1: Probes of Dark Matter on Galaxy Scales Monterey, CA, USA 2013-July-17

2 Introduction Strong lensing provides the most direct measure of total mass in galaxies at cosmological distances Combination of lensing with other ingredients offers further complementary constraints on physical parameters of lens galaxies Complementarities and degeneracies of various combinations of lensing with other data are generally non-intuitive Goal of this talk is to unpack these combinations (and to present several relevant results in prep!)

3 What other sorts of ingredients? Redshifts Weak lensing Stellar populations Theoretical priors Scaling relations Ensemble analysis Stellar dynamics Nearby-galaxy analysis Non-lenses Single-image lenses Hierarchical statistics

4 Context I ll be talking about strong galaxy-galaxy lenses Sloan Lens ACS Survey (SLACS): -e.g., Bolton et al. 2006, 2008a -~100 lenses, SDSS-I selection, z 0.1 to 0.4 BOSS Emission-Line Lens Survey -Brownstein et al ~25 lenses, SDSS-III/BOSS selection, z 0.4 to 0.7 Spectroscopic redshifts for all lenses and sources Distinguish between: -Zeroth-order dark-matter probe: M (< R) -First-order dark-matter probe: dm / dr

5 SLACS/BELLS in a nutshell SDSS spectroscopy One spectrum, two redshifts HST follow-up Strong lenses

6 Importance of spectroscopic redshifts Specify cosmic geometry Convert precise angular observables into precise mass observables

7 What do galaxy-scale lenses measure? Primarily: mass within Einstein radius Great because this is a unique and direct probe of mass Large numbers now being delivered from large surveys But also: combination of mass, slope, axis ratio,... Constrains cylindrical rather than spherical mass Extracting full info is a challenge for modeling codes (see e.g., Warren & Dye 2003, Wayth et al, 2005, Vegetti et al )

8 Example: complete Einstein ring Weak constraint on mass slope Parameterized model from Bolton et al. 2008a

9 Example: complete Einstein ring Strong constraint on Einstein radius

10 Example: complete Einstein ring Mass axis ratios become unphysical at high gamma Approximate lens-galaxy light axis ratio

11 Example: asymmetric double More radial coverage gives more mass-slope leverage

12 Example: asymmetric double Einstein radius still constrained, but less tightly

13 Example: asymmetric double Stronger variation of axis ratio with power-law index Approximate lens-galaxy light axis ratio

14 Position angle and flattening Bolton et al. 2008a,b Mass more radially extended than light -or- Mass more flattened than light -or- Large-scale shear aligned with lens-galaxy PA

15 Combining strong & weak lensing Weak lensing signal must be stacked over many lenses SLACS WL signal consistent with extrapolation of SL Shows approx. isothermal bulge--halo conspiracy Surface mass density 3D mass density Gavazzi et al. 2007

16 Star/dark-matter decomposition Use photometry to measure light profile Assume parametric model for DM profile Fit for dark-matter fraction, stellar M/L, central DM profile slope, etc. Also can use broadband photometry and/or spectroscopic diagnostics to constrain stellar M/L (e.g., Rusin & Kochanek 2003, Dye & Warren 2005, Jiang & Kochanek 2007, Auger et al. 2009, Grillo et al. 2009, Barnabe et al , Treu et al. 2010, Spiniello et al. 2011, Sonnenfeld et al. 2012)

17 Fundamental problem for decomposition A well-known degeneracy, worth recalling... When decomposing stars and dark-matter, can slosh back and forth via Subject only to requirement that everywhere leaving all macroscopic lensing and dynamical observables unchanged!

18 Integrated-light and -mass constraints All macroscopic lensing + dark-matter decompositions invoke theoretical priors on the shape of the DM halo and/or on the stellar M/L or IMF NFW (1996/1997) halo parameters inconvenient for kiloparsec-scale observables. (What robust observables are most relevant to CDM?) Low-mass star diagnostics can break the degeneracy (e.g., van Dokkum & Conroy 2010, Spiniello et al 2013) Quasar microlensing can also break the degeneracy (e.g., Pooley et al. 2012)

19 Integrated-light and -mass constraints Can still get upper limits on stellar mass robustly Stellar mass fraction Velocity dispersion (km/s) Brewer et al. 2012

20 Total-mass scaling relations Dynamical mass ~ σ 2 R/G and luminosity supplemented with lensing mass (no dynamical modeling) Lensing Mass Luminosity Luminosity Dynamical Mass Dynamical Mass Lensing Mass Massive galaxies homologous in total mass DM content or stellar M/L increases with galaxy mass Bolton et al. 2008b (cf. Padmanabhan et al. 2004, Cappellari et al. 2006)

21 Ensemble aperture-mass analysis Scale lensing masses to dynamical mass Scale aperture radii to half-light radii Different lenses probe different (scaled) radii Still no dynamical models Bolton et al. 2008b Scaled aperture mass Scaled aperture radius Mass profile inconsistent with light-traces-mass Similar result for scaling to luminosity (e.g., Rusin et al. 2003, Koopmans et al. 2009)

22 Adding dynamical models to lensing Basic idea: constrain mass concentration with dynamics Jeans-based or Schwarzschild-based Dynamics + lensing mixes spherical and projection Note mass--anisotropy degeneracy! Self-consistent work is challenge for modeling code

23 Toy model for lensing & dynamics From Koopmans, astro-ph/ Power-law luminosity & mass-density profiles Aperture mass & velocity-dispersion values Constant velocity-anisotropy parameter Analytic solution for relationship between observables: Lensing velocity dispersion (squared)

24 Toy model for lensing & dynamics Stellar-to-lensing velocity dispersion ratio is observable proxy for mass slope Inferred (Mass slope)

25 Lensing mass--anisotropy degeneracy Assumed Measured Inferred (Mass slope)

26 Jeans-dynamical lensing measurement Isothermal mass profile assuming isotropic velocitydispersion tensor Koopmans et al (See also Barnabe et al for self-consistent modeling approach)

27 Dynamical mass--concentration degeneracy Measured Inferred Measured (More nuanced in detail: see ATLAS 3D Paper XV, Cappellari et al. 2012, Fig. 3) Assumed (Mass slope)

28 Virtual combination of strong lenses and local-galaxy dynamics Can break both mass--anisotropy and mass--concentration degeneracies Take mass models from SAURON (Cappellari et al. 2006) Project to typical lens redshifts Predict lensing Einstein radii and aperture vdisps Compare to observed SLACS scaling relations, via the σstar/σlens relation Cherkaev et al., in prep.

29 Virtual combination of strong lenses and local-galaxy dynamics Stellar velocity dispersion (km/s) SAURON SLACS Cherkaev et al., in prep. Lensing velocity dispersion (km/s) Distributions inconsistent at: ~4.5 sigma for full sample, ~5-sigma for ~150 < vdisp < ~300

30 Virtual combination of strong lenses and local-galaxy dynamics Possible explanations: Cherkaev et al., in prep. Mass significantly more extended than light even within one effective radius Significant contribution from projected dark-matter at large r in lens systems Lenses non-representative of non-lenses Larger SLACS comparison sample to be published soon (Brownstein et al., in prep.)

31 Are strong lenses representative? Monte Carlo simulation of spectroscopic gravitational lens selection No significant selection bias in mass profile over physically relevant ranges SLACS-like BELLS-like Mass slope Mass slope Einstein radius (arcsec) Arneson et al Einstein radius (arcsec)

32 Single-image lenses Excluding single-image lenses from analysis at lowmass end can lead to biased population results Can include single-image lenses in self-consistent statistical analysis as upper limits on lens galaxy mass Einstein radius too high predicts non-existent counter-image Shu et al., in prep.

33 Single-image lenses Write relationship between lensing and stellar velocity dispersions as log σ = a (log σ SIE m)+b Including single-image lenses leads to (weakly) non-homologous result of lower total-mass concentration at higher masses Shu et al., in prep.

34 Single-image lenses Weak dependence on delta-chi-squared threshold Shu et al., in prep.

35 Lenses + dynamics + hierarchical stats Combination of SLACS + BELLS lenses gives detection of mass-slope evolution with redshift BOSS vdisps for BELLS galaxies are low-s/n Use full vdisp likelihood function for each lens Parameterize population evolution of mass slope Constrain population parameters hierarchically SLACS BELLS Bolton et al (also see Shu et al. 2012)

36 Conclusions Strong lensing is still the most direct and precise way to measure mass in galaxies across redshift. Combination with other observables increases power for dark & luminous matter decomposition, but requires careful attention to degeneracies and assumptions. Methods for statistical combination of data from multiple lenses and multiple observables are key to future progress. How can we cast CDM parameters & predictions in terms of the robust observables of lensing++? Thank you!

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè CAULDRON: dynamics meets gravitational lensing Matteo Barnabè KIPAC/SLAC, Stanford University Collaborators: Léon Koopmans (Kapteyn), Oliver Czoske (Vienna), Tommaso Treu (UCSB), Aaron Dutton (MPIA), Matt

More information

The Stellar Initial Mass Function of Massive Galaxies

The Stellar Initial Mass Function of Massive Galaxies The Stellar Initial Mass Function of Massive Galaxies Aaron A. Dutton Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany Quenching and Quiescence, Heidelberg, July 2014 Motivation What is the

More information

Strong Gravitational-Lensing by Galaxies: 30 years later...

Strong Gravitational-Lensing by Galaxies: 30 years later... Strong Gravitational-Lensing by Galaxies: 30 years later... Léon Koopmans ( Institute (Kapteyn Astronomical Stellar Dynamics Gravitational lensing JENAM - April 22, 2009 Some Applications of Galaxy Lensing

More information

Integral-Field Spectroscopy of SLACS Lenses. Oliver Czoske Kapteyn Institute, Groningen, NL

Integral-Field Spectroscopy of SLACS Lenses. Oliver Czoske Kapteyn Institute, Groningen, NL Integral-Field Spectroscopy of SLACS Lenses Oliver Czoske Kapteyn Institute, Groningen, NL Three decades of gravitational lenses Symposium at the JENAM, 21-23 April 2009 Hatfield, 23 April 2009 Collaborators

More information

Galaxy mass assembly in KiDS: dynamics and gravitational lensing

Galaxy mass assembly in KiDS: dynamics and gravitational lensing Galaxy mass assembly in KiDS: dynamics and gravitational lensing r-band Crescenzo Tortora KiDS SDSS KiDS@VST aims to image 1500 square degrees in 4 optical bands (complemented in the NIR with VIKING@VISTA).

More information

Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL)

Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL) Joint Gravitational Lensing and Stellar Dynamics Analysis of Early-Type Galaxies Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL) Leiden, 04 August 2006 What is the mass structure

More information

SLACS Spectroscopy. Observations, Kinematics & Stellar Populations. Oliver Czoske Kapteyn Institute, Groningen, NL

SLACS Spectroscopy. Observations, Kinematics & Stellar Populations. Oliver Czoske Kapteyn Institute, Groningen, NL SLACS Spectroscopy Observations, Kinematics & Stellar Populations Oliver Czoske Kapteyn Institute, Groningen, NL Strong Gravitational Lensing in the Next Decade Cogne, 22 June 2009 Collaborators Léon Koopmans

More information

Elliptical galaxies as gravitational lenses

Elliptical galaxies as gravitational lenses Elliptical galaxies as gravitational lenses Raphaël Gavazzi UC Santa Barbara R. Gavazzi, Séminaire IAP, 22/12/06, 1 Outline Issues on Early-Type Galaxies (ETGs) Gravitational lensing, the basics SLACS:

More information

Gravitational Lensing: Strong, Weak and Micro

Gravitational Lensing: Strong, Weak and Micro P. Schneider C. Kochanek J. Wambsganss Gravitational Lensing: Strong, Weak and Micro Saas-Fee Advanced Course 33 Swiss Society for Astrophysics and Astronomy Edited by G. Meylan, P. Jetzer and P. North

More information

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing Probing Dark Matter Halos with & Weak Lensing Frank C. van den Bosch (MPIA) Collaborators: Surhud More, Marcello Cacciato UMass, August 2008 Probing Dark Matter Halos - p. 1/35 Galaxy Formation in a Nutshell

More information

Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora

Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora ITP Zurich What is fun with dark matter (DM)? DARK MATTER DC comics Futurama come back to talk

More information

IMF variations in unresolved stellar populations: Challenges

IMF variations in unresolved stellar populations: Challenges Department of Space and Climate Physics Mullard Space Science Laboratory http://www.ucl.ac.uk/mssl IMF variations in unresolved stellar populations: Challenges Ignacio Ferreras Mullard Space Science Laboratory

More information

The Caustic Technique An overview

The Caustic Technique An overview The An overview Ana Laura Serra Torino, July 30, 2010 Why the mass of? Small scales assumption of dynamical equilibrium Mass distribution on intermediate scales (1 10 Mpc/h) Large scales small over densities

More information

From quasars to dark energy Adventures with the clustering of luminous red galaxies

From quasars to dark energy Adventures with the clustering of luminous red galaxies From quasars to dark energy Adventures with the clustering of luminous red galaxies Nikhil Padmanabhan 1 1 Lawrence Berkeley Labs 04-15-2008 / OSU CCAPP seminar N. Padmanabhan (LBL) Cosmology with LRGs

More information

Testing claims of IMF variation with strong lensing (and dynamics)

Testing claims of IMF variation with strong lensing (and dynamics) IAU311, Oxford, July 2014 Testing claims of IMF variation with strong lensing (and dynamics) Russell Smith University of Durham A Heavy IMF in Ellipticals: Consensus? Spectroscopy: Gravity-sensitive features

More information

Physics of the Universe: Gravitational Lensing. Chris Fassnacht UC Davis

Physics of the Universe: Gravitational Lensing. Chris Fassnacht UC Davis Physics of the Universe: Gravitational Lensing Chris Fassnacht UC Davis The motivation The big question: What is dark energy? More specifically Obtain independent measurements of cosmological parameters

More information

arxiv: v1 [astro-ph.co] 17 Jul 2013

arxiv: v1 [astro-ph.co] 17 Jul 2013 Draft version July 19, 2013 Preprint typeset using L A TEX style emulateapj v. 5/2/11 THE SL2S GALAXY-SCALE LENS SAMPLE. III. LENS MODELS, SURFACE PHOTOMETRY AND STELLAR MASSES FOR THE FINAL SAMPLE Alessandro

More information

A Spectroscopically-Confirmed Double Source Plane Lens in the HSC SSP Tanaka, Wong, et al. 2016, ApJ, 826, L19

A Spectroscopically-Confirmed Double Source Plane Lens in the HSC SSP Tanaka, Wong, et al. 2016, ApJ, 826, L19 A Spectroscopically-Confirmed Double Source Plane Lens in the HSC SSP Tanaka, Wong, et al. 2016, ApJ, 826, L19 Kenneth Wong EACOA Fellow National Astronomical Observatory of Japan Masayuki Tanaka (NAOJ)

More information

Volume-limited limited sample

Volume-limited limited sample Masses of Early-Type Galaxies from Atlas 3D Michele Cappellari Mass DF degeneracy SAURON Data Model Cap ppellari+07 Both orbital distribution (DF) and kinematics are 3D Given gravitational potential one

More information

Summary So Far! M87van der Maerl! NGC4342! van den Bosch! rotation velocity!

Summary So Far! M87van der Maerl! NGC4342! van den Bosch! rotation velocity! Summary So Far Fundamental plane connects luminosity, scale length, surface brightness, stellar dynamics. age and chemical composition Elliptical galaxies are not randomly distributed within the 3D space

More information

Systematic variations of central mass density slopes in early-type galaxies

Systematic variations of central mass density slopes in early-type galaxies doi:10.1093/mnras/stu1616 Systematic variations of central mass density slopes in early-type galaxies C. Tortora, 1 F. La Barbera, 1 N. R. Napolitano, 1 A. J. Romanowsky, 2,3 I. Ferreras 4 andr.r.decarvalho

More information

arxiv: v1 [astro-ph.co] 6 Sep 2012

arxiv: v1 [astro-ph.co] 6 Sep 2012 Preprint typeset using L A TEX style emulateapj v. 5/2/11 THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS: II. SEPARATING LUMINOUS AND DARK MATTER IN CLUSTER CORES Andrew B. Newman 1, Tommaso

More information

The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS)

The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) Russell J. Smith 1 John R. Lucey 1 Charlie Conroy 2 1 Centre for Extragalactic Astronomy, Durham University, United Kingdom 2 Harvard Smithsonian

More information

Gravitational Lensing. A Brief History, Theory, and Applications

Gravitational Lensing. A Brief History, Theory, and Applications Gravitational Lensing A Brief History, Theory, and Applications A Brief History Einstein (1915): light deflection by point mass M due to bending of space-time = 2x Newtonian light tangentially grazing

More information

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch. Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS In collaboration with: Marcello Cacciato (Leiden), Surhud More (IPMU), Houjun Mo (UMass), Xiaohu Yang

More information

Cosmology and Strongly Lensed QSOs

Cosmology and Strongly Lensed QSOs Cosmology and Strongly Lensed QSOs Andy Friedman Astronomy 200, Harvard University, Spring 2004 http://cfa-www.harvard.edu/~kstanek/astro200/spring2004.html Ho Outline ΩΛ Determining Ho from Time Delays

More information

The Radial Distribution of Galactic Satellites. Jacqueline Chen

The Radial Distribution of Galactic Satellites. Jacqueline Chen The Radial Distribution of Galactic Satellites Jacqueline Chen December 12, 2006 Introduction In the hierarchical assembly of dark matter (DM) halos, progenitor halos merge to form larger systems. Some

More information

Probabilistic Catalogs and beyond...

Probabilistic Catalogs and beyond... Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ Probabilistic catalogs So, what is a probabilistic catalog? And what s beyond? Finite Mixture Models Finite

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More (MPIA) Kunming,

More information

Cosmology on the Beach: Experiment to Cosmology

Cosmology on the Beach: Experiment to Cosmology Image sky Select targets Design plug-plates Plug fibers Observe! Extract spectra Subtract sky spec. Cosmology on the Beach: Experiment to Cosmology Fit redshift Make 3-D map Test physics! David Schlegel!1

More information

CALAR ALTO LEGACY INTEGRAL FIELD AREA SURVEY OVERVIEW, STATUS & LATEST RESULTS

CALAR ALTO LEGACY INTEGRAL FIELD AREA SURVEY OVERVIEW, STATUS & LATEST RESULTS CALAR ALTO LEGACY INTEGRAL FIELD AREA SURVEY OVERVIEW, STATUS & LATEST RESULTS Jesús Falcón-Barroso www.iac.es/project/traces THE CALIFA TEAM THE CALIFA SURVEY www.caha.es/califa IFU survey using the PPAK@3.5m

More information

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies Anton M. Koekemoer (STScI) Dan Batcheldor (RIT) Marc Postman (STScI) Rachel Somerville (STScI)

More information

Inner dynamics of massive galaxies (ETG) Michele Cappellari

Inner dynamics of massive galaxies (ETG) Michele Cappellari Inner dynamics of massive galaxies (ETG) Michele Cappellari First rotation curve of an elliptical (Bertola+Capaccioli75) Elliptical galaxy NGC4697 2 hr of observations at 5-m Palomar Angular momentum much

More information

Quantifying dwarf satellites through gravitational imaging: the case of SDSS J

Quantifying dwarf satellites through gravitational imaging: the case of SDSS J Mon. Not. R. Astron. Soc. 407, 225 231 (2010) doi:10.1111/j.1365-2966.2010.16952.x Quantifying dwarf satellites through gravitational imaging: the case of SDSS J120602.09+514229.5 Simona Vegetti, Oliver

More information

Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses

Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses doi:10.1093/mnras/stu943 Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses S. Vegetti, 1,2 L. V. E. Koopmans, 3 M. W. Auger, 4 T. Treu 5 anda.s.bolton

More information

arxiv: v3 [astro-ph.co] 17 Aug 2013

arxiv: v3 [astro-ph.co] 17 Aug 2013 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 10 October 2018 (MN LATEX style file v2.2) A low-mass cut-off near the hydrogen burning limit for Salpeter-like initial mass functions in early-type

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

Dark Matter Halos of M31. Joe Wolf

Dark Matter Halos of M31. Joe Wolf Dark Matter Halos of M31 Galaxies Joe Wolf TASC October 24 th, 2008 Dark Matter Halos of M31 Galaxies Joe Wolf Team Irvine: Louie Strigari, James Bullock, Manoj Kaplinghat TASC October 24 th, 2008 Dark

More information

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M NMAGIC Made-to-Measure Modeling of Elliptical Galaxies Ortwin Gerhard, MPE, Garching gerhard@mpe.mpg.de I. Made-to-measure dynamical modeling with NMAGIC II Elliptical galaxy halo kinematics with planetary

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More, Simone Weinmann

More information

DYNAMICAL MODELS OF ELLIPTICAL GALAXIES IN z = 0.5 CLUSTERS. II. MASS-TO-LIGHT RATIO EVOLUTION WITHOUT FUNDAMENTAL PLANE ASSUMPTIONS

DYNAMICAL MODELS OF ELLIPTICAL GALAXIES IN z = 0.5 CLUSTERS. II. MASS-TO-LIGHT RATIO EVOLUTION WITHOUT FUNDAMENTAL PLANE ASSUMPTIONS The Astrophysical Journal, 668:756Y771, 2007 October 20 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. DYNAMICAL MODELS OF ELLIPTICAL GALAXIES IN z = 0.5 CLUSTERS. II.

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Goals: Galaxies To determine the types and distributions of galaxies? How do we measure the mass of galaxies and what comprises this mass? How do we measure distances to galaxies and what does this tell

More information

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Masato Shirasaki (Univ. of Tokyo) with Shunsaku Horiuchi (UCI), Naoki Yoshida (Univ. of Tokyo, IPMU) Extragalactic Gamma-Ray Background

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

Statistics of flux ratios in strong lenses: probing of dark matter on small scales

Statistics of flux ratios in strong lenses: probing of dark matter on small scales Statistics of flux ratios in strong lenses: probing of dark matter on small scales Daniel Gilman (UCLA) With: Simon Birrer, Tommaso Treu, Anna Nierenberg, Chuck Keeton, Andrew Benson image: ESA/Hubble,

More information

Hypervelocity Stars. A New Probe for Near-Field Cosmology. Omar Contigiani. Supervisor: Dr. E.M. Rossi. Co-supervisor: Msc. T.

Hypervelocity Stars. A New Probe for Near-Field Cosmology. Omar Contigiani. Supervisor: Dr. E.M. Rossi. Co-supervisor: Msc. T. Hypervelocity Stars A New Probe for Near-Field Cosmology Omar Contigiani Student Colloquium, 20/06/2017, Leiden Co-supervisor: Msc. T. Marchetti Supervisor: Dr. E.M. Rossi Cosmic Web Near-Field Cosmology

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Homework 9 due Nov. 26 (after Thanksgiving)

Homework 9 due Nov. 26 (after Thanksgiving) Homework 9 due Nov. 26 (after Thanksgiving) [CO 17.6 parts (a), (b)] [16.6 1 st ed., parts (a), (b)] Derive the deflection of the light ray passing a massive object. Note that your answer will come out

More information

Dark matter from cosmological probes

Dark matter from cosmological probes PLANCK 2014 Ferrara Dark matter from cosmological probes Simon White Max Planck Institute for Astrophysics Dark matter was discovered in the Coma Cluster by Zwicky (1933) Fritz Zwicky Abell 2218 Corbelli

More information

GALAXY-SCALE STRONG-LENSING TESTS OF GRAVITY AND GEOMETRIC COSMOLOGY: CONSTRAINTS AND SYSTEMATIC LIMITATIONS

GALAXY-SCALE STRONG-LENSING TESTS OF GRAVITY AND GEOMETRIC COSMOLOGY: CONSTRAINTS AND SYSTEMATIC LIMITATIONS GALAXY-SCALE STRONG-LENSING TESTS OF GRAVITY AND GEOMETRIC COSMOLOGY: CONSTRAINTS AND SYSTEMATIC LIMITATIONS The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Extragalactic DM Halos and QSO Properties Through Microlensing

Extragalactic DM Halos and QSO Properties Through Microlensing Extragalactic DM Halos and QSO Properties Through Micro Eduardo Guerras (student) - Evencio Mediavilla (supervisor) Instituto de Astrofísica de Canarias Photon deflection by gravitating mass α = 4GM 2

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More, Simone Weinmann

More information

Galaxies: Structure, Dynamics, and Evolution. Dark Matter Halos and Large Scale Structure

Galaxies: Structure, Dynamics, and Evolution. Dark Matter Halos and Large Scale Structure Galaxies: Structure, Dynamics, and Evolution Dark Matter Halos and Large Scale Structure Layout of the Course Feb 5: Review: Galaxies and Cosmology Feb 12: Review: Disk Galaxies and Galaxy Formation Basics

More information

Gravitational lensing at the highest angular resolution

Gravitational lensing at the highest angular resolution Gravitational lensing at the highest angular resolution John McKean! (SHARP) Matus Rybak, Cristiana Spingola, Simona Vegetti, Matt Auger, Chris Fassnacht, Neal Jackson, David Lagattuta, Leon Koopmans!

More information

Overview of Dynamical Modeling. Glenn van de Ven

Overview of Dynamical Modeling. Glenn van de Ven Overview of Dynamical Modeling Glenn van de Ven glenn@mpia.de 1 Why dynamical modeling? -- mass total mass stellar systems key is to their evolution compare luminous mass: constrain DM and/or IMF DM radial

More information

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching gerhard@mpe.mpg.de 1. Preamble Arnaboldi et al 2013 2. Predictions: ETG halos in cosmological simulations 3.

More information

Dark Matter Structures in the Universe:

Dark Matter Structures in the Universe: : Prospects for Optical Astronomy in the Next Decade Submitted to the 2010 Astronomy & Astrophysics Decadal Survey panel P. J. Marshall, 1,2 M. Auger, 1 J. G. Bartlett, 3 M. Bradač, 1 A. Cooray, 4 N. Dalal,

More information

MOdified Newtonian Dynamics an introductory review. Riccardo Scarpa European Southern Observatory

MOdified Newtonian Dynamics an introductory review. Riccardo Scarpa European Southern Observatory MOdified Newtonian Dynamics an introductory review By Riccardo Scarpa European Southern Observatory Everything started in 1933 with the work by Zwicky on the Coma cluster of galaxies, but were galaxy rotation

More information

Evidence for/constraints on dark matter in galaxies and clusters

Evidence for/constraints on dark matter in galaxies and clusters Nov 11, 2015 Evidence for/constraints on dark matter in galaxies and clusters HW#9 is due; please hand in your summaries; then you get to talk (I have slides of the different facilities/telescopes. HW#10

More information

A tool to test galaxy formation theories. Joe Wolf (UC Irvine)

A tool to test galaxy formation theories. Joe Wolf (UC Irvine) A tool to test galaxy formation theories Joe Wolf (UC Irvine) SF09 Cosmology Summer Workshop July 7 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Frank Avedo KIPAC: Louie Strigari Haverford:

More information

The X-Shooter Lens Survey I. Dark matter domination and a Salpeter-type initial mass function in a massive early-type galaxy

The X-Shooter Lens Survey I. Dark matter domination and a Salpeter-type initial mass function in a massive early-type galaxy Mon. Not. R. Astron. Soc. 417, 3000 3009 (2011) doi:10.1111/j.1365-2966.2011.19458.x The X-Shooter Lens Survey I. Dark matter domination and a Salpeter-type initial mass function in a massive early-type

More information

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics LARGE QUASAR GROUPS Kevin Rahill Astrophysics QUASARS Quasi-stellar Radio Sources Subset of Active Galactic Nuclei AGNs are compact and extremely luminous regions at the center of galaxies Identified as

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

arxiv: v2 [astro-ph.co] 1 Dec 2009

arxiv: v2 [astro-ph.co] 1 Dec 2009 DRAFT VERSION SEPTEMBER 5, 2018 Preprint typeset using LATEX style emulateapj v. 08/22/09 GALAXY-SCALE STRONG LENSING TESTS OF GRAVITY AND GEOMETRIC COSMOLOGY: CONSTRAINTS AND SYSTEMATIC LIMITATIONS *

More information

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe?

Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? Modified Gravity (MOG) and Dark Matter: Can Dark Matter be Detected in the Present Universe? John Moffat Perimeter Institute, Waterloo, Ontario, Canada Talk given at the Miami 2014 topical conference on

More information

arxiv: v3 [astro-ph.co] 6 Nov 2018

arxiv: v3 [astro-ph.co] 6 Nov 2018 Mon. Not. R. Astron. Soc., 1?? () Printed 7 November 218 (MN LATEX style file v2.2) arxiv:189.9845v3 [astro-ph.co] 6 Nov 218 Assessing the effect of lens mass model in cosmological application with updated

More information

The Role of Dissipation in Spheroid Formation

The Role of Dissipation in Spheroid Formation The Role of Dissipation in Spheroid Formation Philip Hopkins 4/08/08 Lars Hernquist, TJ Cox, John Kormendy, Tod Lauer, Suvendra Dutta, Dusan Keres, Volker Springel Ellipticals & Bulges: Formation in Mergers?

More information

Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1

Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1 Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1 Speaker: Shuo Cao Department of Astronomy Beijing Normal University Collaborators: Giovanni

More information

Rotation curves of spiral galaxies

Rotation curves of spiral galaxies Rotation curves of spiral galaxies Rotation curves Mass discrepancy Circular velocity of spherical systems and disks Dark matter halos Inner and outer regions Tully-Fisher relation From datacubes to rotation

More information

Refining Photometric Redshift Distributions with Cross-Correlations

Refining Photometric Redshift Distributions with Cross-Correlations Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White Introduction Talk Overview Weak lensing tomography can improve

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-1 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

Black Hole and Host Galaxy Mass Estimates

Black Hole and Host Galaxy Mass Estimates Black Holes Black Hole and Host Galaxy Mass Estimates 1. Constraining the mass of a BH in a spectroscopic binary. 2. Constraining the mass of a supermassive BH from reverberation mapping and emission line

More information

Splashback radius as a physical boundary of clusters

Splashback radius as a physical boundary of clusters Splashback radius as a physical boundary of clusters Andrey Kravtsov Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics The University of Chicago Abell 85 SDSS/ Chandra galaxy

More information

BAO and Lyman-α with BOSS

BAO and Lyman-α with BOSS BAO and Lyman-α with BOSS Nathalie Palanque-Delabrouille (CEA-Saclay) BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass

More information

Observations of galaxy evolution. Pieter van Dokkum

Observations of galaxy evolution. Pieter van Dokkum Observations of galaxy evolution Pieter van Dokkum Overview Broad topic! Split in three conceptually-different parts: ç ç low redshift high redshift 1. Census: what is out there? N (z, L, Mstars, Mdark,

More information

Quantifying the (Late) Assembly History of Galaxies. Michael Pierce (University of Wyoming)

Quantifying the (Late) Assembly History of Galaxies. Michael Pierce (University of Wyoming) Quantifying the (Late) Assembly History of Galaxies Michael Pierce (University of Wyoming) What I Think We Already Know: Morphology Density Relation (Assembly Depends on Environment) (Dressler 1980) Ratio

More information

Brief update (3 mins/2 slides) on astrophysics behind final project

Brief update (3 mins/2 slides) on astrophysics behind final project Nov 1, 2017 Brief update (3 mins/2 slides) on astrophysics behind final project Evidence for Dark Matter Next Wed: Prelim #2, similar to last one (30 mins). Review especially lecture slides, PEs and non-project

More information

PHY323:Lecture 7 Dark Matter with Gravitational Lensing

PHY323:Lecture 7 Dark Matter with Gravitational Lensing PHY323:Lecture 7 Dark Matter with Gravitational Lensing Strong Gravitational Lensing Theory of Gravitational Lensing Weak Gravitational Lensing Large Scale Structure Experimental Evidence for Dark Matter

More information

arxiv:astro-ph/ v1 30 Nov 2004

arxiv:astro-ph/ v1 30 Nov 2004 Probing Halos with PNe: Mass and Angular Momentum in Early-Type Galaxies Aaron J. Romanowsky arxiv:astro-ph/0411797v1 30 Nov 2004 School of Physics and Astronomy, University of Nottingham, University Park,

More information

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Overview Stellar Mass-to-Light (M/L) ratios from SEDs Comparing different SED fitting techniques Comparing

More information

arxiv:astro-ph/ v1 10 Nov 1999

arxiv:astro-ph/ v1 10 Nov 1999 Clustering at High Redshift ASP Conference Series, Vol., 1999 A. Mazure and O. Le Fevre, eds. Weak Lensing Observations of High-Redshift Clusters of Galaxies arxiv:astro-ph/9911169v1 10 Nov 1999 D. Clowe

More information

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University What can we learn from galaxy clustering measurements II Shaun Cole Institute for Computational Cosmology Durham University Introduction Galaxy clustering has two distinct uses: 1. Large scale tracers

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Galaxy Group Masses: Lensing, Dynamics & Xrays

Galaxy Group Masses: Lensing, Dynamics & Xrays Galaxy Group Masses: Lensing, Dynamics & Xrays Laura Parker Michael Balogh Richard Bower Ray Carlberg Jennifer Connelly Alexis Finoguenov Robbie Henderson Annie Hou Mike Hudson Sean McGee John Mulchaey

More information

Mapping Baryonic & Dark Matter in the Universe

Mapping Baryonic & Dark Matter in the Universe Mapping Baryonic & Dark Matter in the Universe Jean-Paul KNEIB Laboratoire d Astrophysique de Marseille, France A. Leauthaud, R. Massey, J. Rhodes, the COSMOS team, and many others Outline Motivation Basics

More information

Cluster strong lensing as a probe of the high redshift Universe

Cluster strong lensing as a probe of the high redshift Universe Cluster strong lensing as a probe of the high redshift Universe Jean-Paul KNEIB Laboratoire Astrophysique de Marseille (LAM) now on leave at: LASTRO - EPFL Mont-Blanc 1 Chapters Introduction on cluster

More information

Global Scaling Relations of Spiral Galaxies

Global Scaling Relations of Spiral Galaxies Global Scaling Relations of Spiral Galaxies Aaron A. Dutton Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany IAU 311, Galaxy Masses as constraints to Formation Models, Oxford, July 2014 Outline

More information

12.1 Elliptical Galaxies

12.1 Elliptical Galaxies 12.1 Elliptical Galaxies Elliptical Galaxies Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals formed in a monolithic

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC)

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC) MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC) IGM Conference From Wall to Web, Berlin, 2016 IGM tomography (Lee+ 14, 15, 16; Stark+ 15ab): IGM Tomography a reconstruction

More information

What can M2M do for Milky Way Models?

What can M2M do for Milky Way Models? What can M2M do for Milky Way Models? Ortwin Gerhard Max-Planck-Institut für Extraterrestrische Physik, Garching gerhard@mpe.mpg.de Thanks to F. de Lorenzi, V. Debattista, P. Das, L. Morganti I. Made-to-Measure

More information

Weighing the Giants:

Weighing the Giants: Weighing the Giants: Accurate Weak Lensing Mass Measurements for Cosmological Cluster Surveys Anja von der Linden Tycho Brahe Fellow DARK Copenhagen + KIPAC, Stanford IACHEC, May 14, 2014 1 Hello! Copenhagen

More information

Probing the slope of cluster mass profile with gravitational Einstein rings: application to Abell 1689

Probing the slope of cluster mass profile with gravitational Einstein rings: application to Abell 1689 Mon. Not. R. Astron. Soc. 386, 1169 1178 (2008) doi:10.1111/j.1365-2966.2008.12929.x Probing the slope of cluster mass profile with gravitational Einstein rings: application to Abell 1689 H. Tu, 1,2,3

More information

A M BLACK HOLE IN NGC 1277 FROM ADAPTIVE OPTICS SPECTROSCOPY. WALSH et al Akiyama Group M1 Genki Suzuki

A M BLACK HOLE IN NGC 1277 FROM ADAPTIVE OPTICS SPECTROSCOPY. WALSH et al Akiyama Group M1 Genki Suzuki A 5 10 9 M BLACK HOLE IN NGC 1277 FROM ADAPTIVE OPTICS SPECTROSCOPY WALSH et al. 2015 Akiyama Group M1 Genki Suzuki Introduction NGC 1277 is thought to harbor one of the most massive black holes in the

More information

Gravitational Lensing of the Largest Scales

Gravitational Lensing of the Largest Scales What is dark matter? Good question. How do we answer it? Gravitational lensing! Gravitational lensing is fantastic Why Clusters of Galaxies Because they are cool!! Studying empirical properties of dark

More information

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies! 3/6/12 Astro 358/Spring 2012 Galaxies and the Universe Dark Matter in Galaxies Figures + Tables for Lectures (Feb 16-Mar 6) Dark Matter in Spiral Galaxies Flat rotation curve of Milky Way at large radii

More information

ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies

ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies Frank van den Bosch Yale University, spring 2017 The Structure & Formation of Disk Galaxies In this lecture we discuss the structure and formation

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

arxiv: v1 [astro-ph.im] 4 May 2015

arxiv: v1 [astro-ph.im] 4 May 2015 Draft version June 20, 2018 Preprint typeset using L A TEX style emulateapj v. 5/2/11 COMPARISON OF STRONG GRAVITATIONAL LENS MODEL SOFTWARE III. DIRECT AND INDIRECT SEMI-INDEPENDENT LENS MODEL COMPARISONS

More information

Diving into precision cosmology and the role of cosmic magnification

Diving into precision cosmology and the role of cosmic magnification Diving into precision cosmology and the role of cosmic magnification Jose Luis Bernal Institute of Cosmos Science - Barcelona University ICC Winter Meeting 2017 06/02/2017 Jose Luis Bernal (ICCUB) ICC

More information