The edge of darkness, and other halo surprises

Size: px
Start display at page:

Download "The edge of darkness, and other halo surprises"

Transcription

1 The edge of darkness, and other halo surprises Benedikt Diemer ITC Fellow, Harvard-Smithsonian Center for Astrophysics (in collaboration with Andrey Kravtsov and Surhud More) APEC Seminar IPMU 4/7/26

2 Strength of density fluctuations Dark matter power spectrum 4 2 P (k) [(Mpc/h) 3 ] k [Mpc h] Large < Scale > Small CAMB, Lewis et al. 2

3 Dark matter power spectrum P (k) [(Mpc/h) 3 ] Mpc/h δ = ρ/ρ m P (k) [(Mpc/h) 3 ] k [Mpc h] k [Mpc h] P (k) [(Mpc/h) 3 ] k [Mpc h]

4 N-body simulations P (k) [(Mpc/h) 3 ] k [Mpc h] Crocce et al. 26

5 89 Mpc Visualization code: Phil Mansfield

6 Mpc

7 N-body simulations 2 Mpc/h 3 Density at z = y (h Mpc) y (h Mpc) log ( / m ) 25 log ( / m ) 3 z (h Mpc) 2 2 log ( / m ) z (h Mpc) Mpc/h 4 25 Mpc/h 5 z (h Mpc) 6 log ( / m ) 2 25 Mpc/h z (h Mpc) 8 3 z (h Mpc) log ( / m ) Mpc/h 5 Mpc/h log ( / m ) y (h Mpc) y (h Mpc) y (h Mpc) y (h Mpc) 5 6 Diemer & Kravtsov 24, 25 Springel 25 Crocce et al. 26 Behroozi et al. 23ab

8 Mpc/h Mpc/h z (h Mpc) log ( / m ) z (h Mpc) y (h Mpc) Mpc/h log ( / m ) y (h Mpc) 5 y (h Mpc) y (h Mpc) y (h Mpc) Mpc/h y (h Mpc) z (h Mpc) Mpc/h log ( / m ) z (h Mpc) 6 5 log ( / m ) 8 2 Mpc/h z (h Mpc) 3 log ( / m ) y (h Mpc) 5 6 Springel 25 Crocce et al. 26 Behroozi et al. 23ab

9 Initial peaks δ Top hat Real peak Gaussian r Bardeen et al. 986 Dalal et al. 28

10 Mass accretion history M(z) δ r Slow accretion regime Fast accretion regime Formation time time Wechsler et al. 22 van den Bosch 22 Zhao et al. 23/29 Dalal et al. 28

11 Density profile δ log ρ r Shallow inner profile M(z) time Steep outer profile log r Dalal et al. 28 Ludlow et al. 23

12 Density profile log ρ Scale radius: d log(ρ) / d log(r) = -2 Outer radius (enclosing some mean overdensity) Mass: M Δ = 4π/3 Δ ρ ref R Δ 3 rs R2c Rvir R2m log r

13 Navarro-Frenk-White profile log ρ ρ r - ρ r -2 ρ r -3 Concentration: c Δ = R Δ / r s rs R2c Rvir R2m log r Navarro et al. 995/996/997

14 Navarro-Frenk-White profile log ρ high concentration low concentration rs rs R2m log r Navarro et al. 995/996/997

15 Questions. Can we find a universal concentration-mass relation? 2. Are the outer profiles universal? 3. Is there a well-defined edge to a halo?

16 Concentration-mass models Navarro et al. 996 Navarro et al. 997 Avila-Reese et al. 999 Jing 2 Bullock et al. 2 Eke et al. 2 Wechsler et al. 22 Zhao et al. 23 Colin et al. 24 Dolag et al. 24 Neto et al. 27 Duffy et al. 28 Maccio et al. 28 Gao et al. 28 Zhao et al. 29 Klypin et al. 2 Munoz-Cuartas et al. 2 Prada et al. 22 Giocoli et al. 22 Bhattacharya et al. 23 Ludlow et al. 24 Dutton & Maccio 24 Klypin et al. 25

17 Power-law fits Munoz-Cuartas et al. 2 log (c) log (M) Avila-Reese et al. 999 Jing 2 Neto et al. 27 Duffy et al. 28 Maccio et al. 28 Gao et al. 28 Klypin et al. 2 Munoz-Cuartas et al. 2 Dutton & Maccio 24

18 History-based models Wechsler et al. 22 cvir = Rvir / rs Formation scale Navarro et al. 997 Bullock et al. 2 Eke et al. 2 Wechsler et al. 22 Zhao et al. 29 Giocoli et al. 22 Ludlow et al. 24

19 Concentration-mass relation Concentration c2c 5 4 z =. z =.5 z =. z =.5 z =2. z =4. z = M 2c (h M ) Halo mass Diemer & Kravtsov 25

20 Is there an upturn? All Relaxed Ludlow et al. 22 Prada et al. 22 Ludlow et al. 22 Meneghetti & Rasia 23

21 Concentration-mass relation Concentration c2c 5 4 z =. z =.5 z =. z =.5 z =2. z =4. z = M 2c (h M ) Halo mass Diemer & Kravtsov 25 Dutton & Maccio 25

22 Peak height ν δ / σ Bardeen et al. 986

23 Peak height ν δ / σ Bardeen et al. 986

24 Concentration-peak height relation Concentration c2c 5 4 z =. z =.5 z =. z =.5 z =2. z =4. z =6. c2c 5 4 z =. z =.5 z =. z =.5 z =2. z =4. z = M 2c (h M ) 2c Halo mass Peak height Prada et al. 22 Ludlow et al. 23 Diemer & Kravtsov 25

25 Power spectrum slope Halo mass (h M ) 5 5 P (k) [(Mpc/h) 3 ] Eisenstein & Hu 998, no BAO c2c 5 z =. z =.5 z =. z =.5 z =2. z =4. z =6. 4 n = d ln P/d ln k c k [h/mpc] Eisenstein & Hu 998 Diemer & Kravtsov 25

26 Effects of power spectrum slope Substructure Peak shape Isolated halo Accreted subhalos Smooth accretion Bardeen et al. 986 Moore et al. 998 Dalal et al. 2

27 3 n = -2.5 n = -2 2 log ( / m) z (h Mpc) 6 n = -.5 n = - 4 log ( / m) y (h Mpc)

28 Simulation Model z =. z =.5 z =. z =.5 z =2. z =4. z =6. c2c 5 c = c(m, z, Ω x, ) 4 3 c 2c = c 2c (ν, n) c/cfit M 2c (h M ) Diemer & Kravtsov 25

29 Comparison to CLASH observations 7 6 This work, z=.4 CLASH, This work, weak z= and strong, Merten + 4 CLASH, weak, and Umetsu strong, + 4 Merten + 4 CLASH, weak, Umetsu + 4 c2c cobs/cmodel M 2c (h M ) Umetsu et al. 24 Merten et al. 24 Meneghetti et al. 24

30 Micro-halos at high redshift z 3 M M earth -M 6 Simulation, z= 26 (Diemand + 25) Simulation, z= 3 (Anderhalden + 23) Simulation, z= 32 (Ishiyama 24) 4 c2c Diemand et al. 25 Anderhalden & Diemand 23 Ishiyama 24

31 Micro-halos at high redshift z 3 M M earth -M 6 orders of mag. below calibrated masses! c2c 6 4 Simulation, This work, z= 3 26 (Diemand + 25) Simulation, This work, n= z= 33.5 (Anderhalden + 23) Simulation, z= (Ishiyama (Diemand + 24) 25) Simulation, z= 3 (Anderhalden + 23) Simulation, z= 32 (Ishiyama 24) Diemand et al. 25 Anderhalden & Diemand 23 Ishiyama 24

32 Mass accretion history Ω x, σ 8, P(k) c

33 We found a universal c-m relation, and thus a universal inner profile. But what about the outer profile?

34 4 Small halos ( <M<3 ) / m 3 2 = d log /d log r r/r vir 4 NFW fit Einasto fit..5 5 r/r vir Large halos (M> 5 ) / m = d log /d log r NFW fit Einasto fit..5 5 Diemer & Kravtsov 24 r/r vir r/r vir

35 3 3 < M < 4 (r/r2m) 2 / m 2 < < < < 2 2 < < 3 > = d log /d log r r/r 2m r/r 2m Γ = Δ log(m vir ) / Δ log(a) Diemer & Kravtsov 24

36 New fitting function M> <M< <M<2.6 (r/r2m) 2 / m 2 = d log /d log r r/r 2m..5 5 r/r 2m % accuracy (selected by mass or accretion rate) Valid between. and 9 R vir

37 The outer profiles are not universal, they exhibit a steepening that depends on the mass accretion rate Is there an edge to a halo?

38 R 2c Halo finder: Rockstar (Behroozi et al. 23)

39 R vir Halo finder: Rockstar (Behroozi et al. 23)

40 Spherical collapse model Turnaround radius, r ta Outermost infalling shell Fillmore & Goldreich 984 Bertschinger 985 Diemand & Kuhlen 28 Vogelsberger et al. 2 Lithwick & Dalal 2 Adhikari et al. 24

41 Spherical collapse model Secondary infall ( = 3.) ρ r -9/4 / m 2 2 r/r ta Fillmore & Goldreich 984 Bertschinger 985 Diemand & Kuhlen 28 Vogelsberger et al. 2 Lithwick & Dalal 2 Adhikari et al. 24

42 Spherical collapse model Adhikari et al. 24 cf. Diemand & Kuhlen 28

43 The Splashback Radius 5 4 Secondary infall ( = 3.) Diemer & Kravtsov 24 / m 3 2 Edge in self-similar model 2 r/r ta Fillmore & Goldreich 984 Bertschinger 985 Diemand & Kuhlen 28 Vogelsberger et al. 2 Lithwick & Dalal 2 Adhikari et al. 24

44 The Splashback Radius R vir R 2m R splashback R splashback = f(γ, z) R 2m.8 f.6 2 =.8 2 = y (h Mpc) z (h Mpc) log ( / m) x (h Mpc) 2 2 x (h Mpc) Low accretion rate High accretion rate Diemer & Kravtsov 24 More, Diemer & Kravtsov 25

45 R sp /M sp as a function of MAR.6.4 z =. z =.5 z =. z =2. z =4..4 Rsp/R2m.2 Msp/M2m More, Diemer & Kravtsov 25 cf. Vogelsberger et al. 2 cf. Adhikari et al. 24

46 Do the Milky Way and Andromeda halos overlap? R sp 425 kpc R vir = 244 kpc R sp 54 kpc R vir = 33 kpc Milky Way, M vir = 8 M Andromeda, M vir =.7 2 M distance = 78 kpc More, Diemer & Kravtsov 25 Diaz et al. 24

47 Mass accretion rate dm 2c /dt dm sp /dt dm 4r s /dt M vir () = 9 M /h M vir () = 2 M /h M vir () = 5 M /h dm/dt/mvir, [Gyr ] z More, Diemer & Kravtsov 25

48 R sp in cluster member profiles Patej & Loeb 25 cf. Tully 25

49 R sp in cluster member profiles More et al. 25 Miyatake et al. 25

50 R sp in cluster member profiles More et al. 25 Miyatake et al. 25

51 R sp in cluster member profiles More et al. 25

52 Can we measure R sp in individual simulated halos?

53 R sp in individual halos 3 R 2m 2 [ m] r [Mpc/h] Mansfield et al. 26 (in prep.)

54 SHELLFISH Mansfield et al. 26 (in prep.)

55 Finding R sp in trajectories R 2m Particle 8 7 R 2m Particle 8 7 R 2m Particle R 2m Particle r (h kpc) 5 4 r (h kpc) 5 4 r (h kpc) 5 4 r (h kpc) vr (h kpc/gyr) 2 2 vr (h kpc/gyr) 2 2 vr (h kpc/gyr) 2 vr (h kpc/gyr) t (Gyr) t (Gyr) t (Gyr) t (Gyr)

56 Finding R sp in trajectories R 2m Particle 3 R 2m Particle 25 R 2m Particle 25 R 2m Particle r (h kpc) 2 5 r (h kpc) r (h kpc) 2 5 r (h kpc) vr (h kpc/gyr) 5 5 vr (h kpc/gyr) vr (h kpc/gyr) vr (h kpc/gyr) t (Gyr) t (Gyr) t (Gyr) t (Gyr)

57 Finding R sp in trajectories R 2m 5th percentile r (h kpc) log (N + ) t (Gyr).

58 Finding R sp in trajectories 2 R 2m 5th percentile, smr. 5th percentile, smr. 5th percentile, smr r (h kpc) log (N + ).5 log (msub/mhost) t (Gyr). 3.

59 Finding R sp in trajectories 2 R 2m 5th percentile 75th percentile 9th percentile r (h kpc) log (N + ).5 log (msub/mhost) t (Gyr). 3.

60 Finding M sp in trajectories 4 3 M 2m 5th percentile, smr. 5th percentile, smr. 5th percentile, smr M (h M ) log (N + ).5 log (msub/mhost) t (Gyr). 3.

61 Finding M sp in trajectories 4 3 M 2m 5th percentile 75th percentile 9th percentile M (h M ) log (N + ).5 log (msub/mhost) t (Gyr). 3.

62 Results: R sp -Γ relation 2.5 SPLASH (75th pcntl.) MDK5 2. Rsp/R2m z =. z =.5 z =. z =2. z =4. Msp/M2m m 2m 2m 2m 2m

63 Results: Δ sp 5 z =., SPARTA z =2., SPARTA sp m

64 Spherical collapse model Shi 26

65 Results: Δ sp 5 4 z =., SPARTA Shi 26 z =2., SPARTA 3 75 sp m Shi 26

66 Results: Δ sp 5 4 z =., SPARTA Adhikari et al. 24 z =2., SPARTA 3 75 sp m Adhikari et al. 24

67 Future directions Measure R sp in individual halos Quantify the mass function and accretion rates of M sp Create halo catalogs and merger trees based on R sp Find more observational signatures of R sp

68 The Colossus Code Cosmology from colossus.cosmology import cosmology cosmo = cosmology.setcosmology('wmap9') xi = cosmo.correlationfunction(.) Concentration from colossus.halo import concentration as hc c = hc.concentration(e2, 'vir',., model = diemer5') Density profiles from colossus.halo import profile_nfw as nfw from colossus.halo import profile_dk4 as dk4 p = nfw.nfwprofile(m = E4, mdef = 'vir', c = 4., z =.) Sigma = p.surfacedensity(5.) p2 = dk4.dk4profile(m = E4, mdef = 'vir', c = 4., z =.) splashback_radius = p2.rsp()

69 Conclusions Concentrations are universal when expressed as a function of peak properties The outer profiles are not universal, they depend on the mass accretion rate and are not well described by the NFW form The splashback radius provides a physical halo boundary Diemer & Kravtsov 24 ApJ 789, arxiv 4.26 Diemer & Kravtsov 25 ApJ 799, 8 arxiv More, Diemer & Kravtsov 25 arxiv

cluster scaling relations and mass definitions

cluster scaling relations and mass definitions cluster scaling relations and mass definitions Andrey Kravtsov Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics The University of Chicago Abell 85 SDSS Abell 85 SDSS/ Abell

More information

Splashback radius as a physical boundary of clusters

Splashback radius as a physical boundary of clusters Splashback radius as a physical boundary of clusters Andrey Kravtsov Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics The University of Chicago Abell 85 SDSS/ Chandra galaxy

More information

THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS

THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS SURHUD MORE (KAVLI IPMU) Collaborators : Benedikt Diemer, Andrey Kravtsov, Philip Mansfield, Masahiro Takada, Hironao Miyatake, Neal Dalal, Rachel

More information

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago The Milky Way in the cosmological context Andrey Kravtsov The University of Chicago Milky Way and Its Stars, KITP, 2 February 2015 Cosmological context: hierarchical structure formation from a Gaussian

More information

halo merger histories

halo merger histories Physics 463, Spring 07 Lecture 5 The Growth and Structure of Dark Mater Halos z=7! z=3! z=1! expansion scalefactor z=0! ~milky way M>3e12M! /h c vir ~13 ~virgo cluster M>3e14M! /h, c vir ~6 halo merger

More information

DETECTION OF HALO ASSEMBLY BIAS AND THE SPLASHBACK RADIUS

DETECTION OF HALO ASSEMBLY BIAS AND THE SPLASHBACK RADIUS DETECTION OF HALO ASSEMBLY BIAS AND THE SPLASHBACK RADIUS Surhud More (Kavli-IPMU) Collaborators: Hironao Miyatake (JPL), Masahiro Takada (Kavli IPMU), David Spergel (Princeton), Rachel Mandelbaum (CMU),

More information

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY N-body Simulations N-body Simulations N-body Simulations Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY Final distribution of dark matter.

More information

Beyond the spherical dust collapse model

Beyond the spherical dust collapse model Beyond the spherical dust collapse model 1.5M 1.0M M=1.66 10 15 M 0.65M 0.4M 0.25M Evolution of radii of different mass shells in a simulated halo Yasushi Suto Department of Physics and RESCEU (Research

More information

The Los Cabos Lectures

The Los Cabos Lectures January 2009 The Los Cabos Lectures Dark Matter Halos: 2 Simon White Max Planck Institute for Astrophysics EPS statistics for the standard ΛCDM cosmology Millennium Simulation cosmology: Ωm = 0.25, ΩΛ

More information

arxiv: v1 [astro-ph.co] 26 Mar 2014

arxiv: v1 [astro-ph.co] 26 Mar 2014 Accepted to ApJ Preprint typeset using L A TEX style emulateapj v. 5/2/11 THE EFFECTS OF VARYING COSMOLOGICAL PARAMETERS ON HALO SUBSTRUCTURE Gregory A. Dooley 1, Brendan F. Griffen 1, Phillip Zukin 2,3,

More information

A.Klypin. Dark Matter Halos

A.Klypin. Dark Matter Halos A.Klypin Dark Matter Halos 1 Major codes: GADET N-body Hydro Cooling/Heating/SF Metal enrichment Radiative transfer Multistepping/Multiple masses Springel, SDM White PKDGRAV - GASOLINE ART ENZO Quinn,

More information

arxiv: v2 [astro-ph.co] 3 Feb 2016

arxiv: v2 [astro-ph.co] 3 Feb 2016 Mon. Not. R. Astron. Soc. 000, 1 21 (0000) Printed 5 February 2016 (MN LATEX style file v2.2) MultiDark simulations: the story of dark matter halo concentrations and density profiles. arxiv:1411.4001v2

More information

arxiv:astro-ph/ v3 13 May 2008

arxiv:astro-ph/ v3 13 May 2008 Preprint typeset using L A TEX style emulateapj v. 0/09/06 FORMATION AND EOLUTION OF GALAXY DARK MATTER HALOS AND THEIR SUBSTRUCTURE Jürg Diemand,, Michael Kuhlen, & Piero Madau, arxiv:astro-ph/0707v May

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

arxiv: v1 [astro-ph.co] 27 Apr 2011

arxiv: v1 [astro-ph.co] 27 Apr 2011 Mon. Not. R. Astron. Soc. 000, 1 14 (2002) Printed 28 April 2011 (MN LATEX style file v2.2) Halo concentrations in the standard ΛCDM cosmology arxiv:1104.5130v1 [astro-ph.co] 27 Apr 2011 Francisco Prada

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-1 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

arxiv: v1 [astro-ph.ga] 21 Aug 2017

arxiv: v1 [astro-ph.ga] 21 Aug 2017 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed August 22, 2017 (MN LATEX style file v2.2) Haloes at the ragged edge: The importance of the splashback radius arxiv:1708.06181v1 [astro-ph.ga] 21 Aug

More information

pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago

pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago Baseline model for cluster scaling relations Kaiser 1986, 1991 If mass is defined within a spherical

More information

ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos

ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos Frank van den Bosch Yale University, spring 2017 The Structure of Dark Matter Haloes In this lecture we examine the detailed

More information

Princeton December 2009 The fine-scale structure of dark matter halos

Princeton December 2009 The fine-scale structure of dark matter halos Princeton December 2009 The fine-scale structure of dark matter halos Simon White Max Planck Institute for Astrophysics The dark matter structure of CDM halos A rich galaxy cluster halo Springel et al

More information

Effects of SN Feedback on the Dark Matter Distribution

Effects of SN Feedback on the Dark Matter Distribution The Galaxy Disk in Cosmological Context c 2008 International Astronomical Union Proceedings IAU Symposium No. IAU Symposium No.254, 2008 A.C. Editor, B.D. Editor & C.E. Editor, eds. Effects of SN Feedback

More information

arxiv: v2 [astro-ph.co] 18 Nov 2009

arxiv: v2 [astro-ph.co] 18 Nov 2009 Draft version November 22, 2013 Preprint typeset using L A TEX style emulateapj v. 11/26/04 ASSEMBLY BIAS AND THE DYNAMICAL STRUCTURE OF DARK MATTER HALOS Andreas Faltenbacher 1,2,3 and Simon D. M. White

More information

arxiv: v2 [astro-ph.co] 10 May 2016

arxiv: v2 [astro-ph.co] 10 May 2016 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 11 May 2016 (MN LATEX style file v2.2) The Mass-Concentration-Redshift Relation of Cold and Warm Dark Matter Halos arxiv:1602624v2 [astro-ph.co] 10

More information

Properties of dark matter haloes as a function of local environment density

Properties of dark matter haloes as a function of local environment density Advance Access publication 2016 December 23 doi:10.1093/mnras/stw3348 Properties of dark matter haloes as a function of local environment density Christoph T. Lee, 1 Joel R. Primack, 1 Peter Behroozi,

More information

The immitigable nature of assembly bias: the impact of halo definition on assembly bias

The immitigable nature of assembly bias: the impact of halo definition on assembly bias Advance Access publication 2017 August 14 doi:10.1093/mnras/stx2045 The immitigable nature of assembly bias: the impact of halo definition on assembly bias Antonio S. Villarreal, 1 Andrew R. Zentner, 1

More information

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation?

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation? Einführung in die beobachtungsorientierte Kosmologie I / Introduction to observational Cosmology I LMU WS 2009/10 Rene Fassbender, MPE Tel: 30000-3319, rfassben@mpe.mpg.de 1. Cosmological Principles, Newtonian

More information

Identifying Star-Forming Clumps in CANDELS Galaxies

Identifying Star-Forming Clumps in CANDELS Galaxies Properties of Dark Matter Halos: Environment Density, Mass Loss, and Connection to Galaxy Size Deep Learning Applied to Galaxy Evolution: Identifying Star-Forming Clumps in CANDELS Galaxies Christoph Lee

More information

Gamma-rays from Earth-Size dark-matter halos

Gamma-rays from Earth-Size dark-matter halos Gamma-rays from Earth-Size dark-matter halos Tomoaki Ishiyama, Jun Makino, Toshikazu Ebisuzaki, and Veniamin Berezinsky Presentation by: JM Bottom line Microhalos (mass earth mass) do survive to the present

More information

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations Physics 463, Spring 07 Bias, the Halo Model & Halo Occupation Statistics Lecture 8 Halo Bias the matter distribution is highly clustered. halos form at the peaks of this distribution 3 2 1 0 halo formation

More information

Origin and Evolution of Disk Galaxy Scaling Relations

Origin and Evolution of Disk Galaxy Scaling Relations Origin and Evolution of Disk Galaxy Scaling Relations Aaron A. Dutton (CITA National Fellow, University of Victoria) Collaborators: Frank C. van den Bosch (Utah), Avishai Dekel (HU Jerusalem), + DEEP2

More information

Simulating non-linear structure formation in dark energy cosmologies

Simulating non-linear structure formation in dark energy cosmologies Simulating non-linear structure formation in dark energy cosmologies Volker Springel Distribution of WIMPS in the Galaxy Early Dark Energy Models (Margherita Grossi) Coupled Dark Energy (Marco Baldi) Fifth

More information

Non-universality of halo profiles and implications for dark matter experiments

Non-universality of halo profiles and implications for dark matter experiments Mon. Not. R. Astron. Soc. 415, 3177 3188 (2011) doi:10.1111/j.1365-2966.2011.18930.x Non-universality of halo profiles and implications for dark matter experiments Darren S. Reed, 1 Savvas M. Koushiappas

More information

The fine-scale structure of dark matter halos

The fine-scale structure of dark matter halos COSMO11, Porto, August 2011 The fine-scale structure of dark matter halos Simon White Max-Planck-Institute for Astrophysics COSMO11, Porto, August 2011 Mark Vogelsberger The fine-scale structure of dark

More information

arxiv:astro-ph/ v3 10 Oct 2000

arxiv:astro-ph/ v3 10 Oct 2000 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 1 February 2008 (MN LATEX style file v1.4) Profiles of dark haloes: evolution, scatter, and environment arxiv:astro-ph/9908159v3 10 Oct 2000 J. S.

More information

RHAPSODY: I. HALO PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS

RHAPSODY: I. HALO PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS Draft version July 24, 2012 Preprint typeset using L A TEX style emulateapj v. 12/16/11 RHAPSODY: I. HALO PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS Hao-Yi

More information

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY

MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY MASSIVE FAILURES IN THE WMAP-7 COSMOLOGY Shea Garrison-Kimmel (UCI) Santa Cruz 2011 Collaborators: Jose Oñorbe (UCI), James Bullock (UCI), Mike Boylan-Kolchin (UCI), Ari Maller (CUNY) Majority of halos

More information

Dependence of the inner dark matter profile on the halo mass

Dependence of the inner dark matter profile on the halo mass Mon. Not. R. Astron. Soc. 344, 1237 1249 (2003) Dependence of the inner dark matter profile on the halo mass Massimo Ricotti Institute of Astronomy, Madingley Road, Cambridge CB3 0HA Accepted 2003 June

More information

The friends-of-friends algorithm: A percolation theory perspective

The friends-of-friends algorithm: A percolation theory perspective THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION Surhud More 1,2,Andrey V. Kravtsov 2,3,4,Neal Dalal 5,Stefan Gottlöber 6 Draft version February 28, 2011

More information

QUENCHING AND MORPHOLOGICAL TRANSFORMATIONS. Physics of Groups IAP Mike Hudson, U. Waterloo

QUENCHING AND MORPHOLOGICAL TRANSFORMATIONS. Physics of Groups IAP Mike Hudson, U. Waterloo QUENCHING AND MORPHOLOGICAL TRANSFORMATIONS Physics of Groups Conference @ IAP Mike Hudson, U. Waterloo 1 EFFECT OF THE ENVIRONMENT Star-formation quenching via:! Ram-pressure stripping cold gas hot gas

More information

Non-linear structure in the Universe Cosmology on the Beach

Non-linear structure in the Universe Cosmology on the Beach Non-linear structure in the Universe Cosmology on the Beach Puerto Vallarta January, 2011 Martin White UC Berkeley/LBNL (http://mwhite.berkeley.edu/talks) Strong non-linearity Martin White UCB/LBNL Limited

More information

Structure and substructure in dark matter halos

Structure and substructure in dark matter halos Satellites and Tidal Streams ING IAC joint Conference La Palma, May 2003 Structure and substructure in dark matter halos Simon D.M. White Max Planck Institute for Astrophysics 500 kpc A CDM Milky Way Does

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

The statistics of ΛCDM halo concentrations

The statistics of ΛCDM halo concentrations Mon. Not. R. Astron. Soc. 381, 1450 1462 (2007) doi:10.1111/j.1365-2966.2007.12381.x The statistics of ΛCDM halo concentrations Angelo F. Neto, 1,2 Liang Gao, 2 Philip Bett, 2 Shaun Cole, 2 Julio F. Navarro,

More information

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov Elad Zinger Hebrew University Jerusalem IGM@50, Spineto, 12 June 2015 Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov They re still there! Account for most of the accretion.

More information

Dark matter. Anne Green University of Nottingham

Dark matter. Anne Green University of Nottingham Dark matter Anne Green University of Nottingham anne.green@nottingham.ac.uk 1. Observational evidence for DM and constraints on its properties Alternatives to dark matter (modified gravity) 2. The DM distribution

More information

The dark matter crisis

The dark matter crisis The dark matter crisis Ben Moore Department of Physics, Durham University, UK. arxiv:astro-ph/0103100 v2 8 Mar 2001 Abstract I explore several possible solutions to the missing satellites problem that

More information

A Self-Consistent, Dynamic Model for the Evolution of the Galaxy-Dark Matter Connection across Cosmic Time. Frank van den Bosch.

A Self-Consistent, Dynamic Model for the Evolution of the Galaxy-Dark Matter Connection across Cosmic Time. Frank van den Bosch. A Self-Consistent, Dynamic Model for the Evolution of the Galaxy-Dark Matter Connection across Cosmic Time Frank van den Bosch Yale University In collaboration with: Marcello Cacciato (HU), Surhud More

More information

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA)

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA) Dark Matter Substructure and their associated Galaxies Frank C. van den Bosch (MPIA) Outline PART I: The Subhalo Mass Function (van den Bosch, Tormen & Giocoli, 2005) PART II: Statistical Properties of

More information

Future evolution of bound supercluster in an accelerating Universe

Future evolution of bound supercluster in an accelerating Universe Future evolution of bound supercluster in an accelerating Universe P.A. Araya-Melo, A. Reisenegger, A. Meza, R. van de Weygaert, R. Dünner and H. Quintana August 27, 2010 Mon. Not. R. Astron. Soc. 399,97-120

More information

arxiv: v1 [astro-ph.co] 26 Mar 2014

arxiv: v1 [astro-ph.co] 26 Mar 2014 Mon. Not. R. Astron. Soc. 000, 1 15 (2013) Printed 28 March 2014 (MN LATEX style file v1.4) Statistics of Dark Matter Substructure: II. Comparison of Model with Simulation Results Frank C. van den Bosch

More information

arxiv: v2 [astro-ph] 22 Aug 2008

arxiv: v2 [astro-ph] 22 Aug 2008 Mon. Not. R. Astron. Soc. 000, 1 6 (2008) Printed 14 August 2018 (MN LATEX style file v2.2) Quantifying the heart of darkness with GHALO - a multi-billion particle simulation of our galactic halo arxiv:0808.2981v2

More information

Central dark matter distribution in dwarf galaxies

Central dark matter distribution in dwarf galaxies Central dark matter distribution in dwarf galaxies Se-Heon Oh (ICRAR/UWA) Content cusp/core controversy in ΛCDM simulations Dark matter distribution of THINGS dwarf galaxies High-resolution N-body+SPH

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

arxiv: v3 [astro-ph.co] 14 Sep 2010

arxiv: v3 [astro-ph.co] 14 Sep 2010 Mon. Not. R. Astron. Soc. 000, 1 11 (2010) Printed 28 May 2018 (MN LATEX style file v2.2) The redshift evolution of ΛCDM halo parameters: concentration, spin and shape arxiv:1007.0438v3 [astro-ph.co] 14

More information

arxiv: v2 [astro-ph.co] 20 Jul 2018

arxiv: v2 [astro-ph.co] 20 Jul 2018 Splashback radius of nonspherical dark matter halos from cosmic density and velocity fields arxiv:1807.02669v2 [astro-ph.co] 20 Jul 2018 Teppei Okumura, 1, 2, Takahiro Nishimichi, 2, 3 Keiichi Umetsu,

More information

arxiv: v1 [astro-ph.co] 5 May 2017

arxiv: v1 [astro-ph.co] 5 May 2017 Draft version May 8, 2017 Preprint typeset using L A TEX style emulateapj v. 01/23/15 PROPERTIES AND ORIGIN OF GALAXY VELOCITY BIAS IN THE ILLUSTRIS SIMULATION Jia-Ni Ye 1,2,Hong Guo 1,Zheng Zheng 3, Idit

More information

Astronomy 233 Winter 2009 Physical Cosmology Week 10 Simulations and Semi-Analytic Models Joel Primack University of California, Santa Cruz

Astronomy 233 Winter 2009 Physical Cosmology Week 10 Simulations and Semi-Analytic Models Joel Primack University of California, Santa Cruz Astronomy 233 Winter 2009 Physical Cosmology Week 10 Simulations and Semi-Analytic Models Joel Primack University of California, Santa Cruz Cosmological Simulation Methods Dissipationless Simulations Particle-Particle

More information

The halo-galaxy connection KITP, May 2017` Assembly bias. Simon White Max Planck Institute for Astrophysics

The halo-galaxy connection KITP, May 2017` Assembly bias. Simon White Max Planck Institute for Astrophysics The halo-galaxy connection KITP, May 2017` Assembly bias Simon White Max Planck Institute for Astrophysics Halo clustering depends on formation history Gao, Springel & White 2005 The 20% of halos with

More information

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University What can we learn from galaxy clustering measurements II Shaun Cole Institute for Computational Cosmology Durham University Introduction Galaxy clustering has two distinct uses: 1. Large scale tracers

More information

Astrometric Microlensing by Local Dark Matter Subhalos

Astrometric Microlensing by Local Dark Matter Subhalos Astrometric Microlensing by Local Dark Matter Subhalos Adrienne Erickcek CITA & Perimeter Institute with Nicholas Law University of Toronto Dunlap Institute arxiv: 17.4228 ApJ in press Dark Matter Halos

More information

arxiv: v1 [astro-ph.co] 7 Jul 2018

arxiv: v1 [astro-ph.co] 7 Jul 2018 Splashback radius of non-spherical dark matter halos from cosmic density and velocity fields arxiv:1807.02669v1 [astro-ph.co] 7 Jul 2018 Teppei Okumura, 1, 2, Takahiro Nishimichi, 2, 3 Keiichi Umetsu,

More information

Galaxies: Structure, Dynamics, and Evolution. Dark Matter Halos and Large Scale Structure

Galaxies: Structure, Dynamics, and Evolution. Dark Matter Halos and Large Scale Structure Galaxies: Structure, Dynamics, and Evolution Dark Matter Halos and Large Scale Structure Layout of the Course Feb 5: Review: Galaxies and Cosmology Feb 12: Review: Disk Galaxies and Galaxy Formation Basics

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

The mass of a halo. M. White

The mass of a halo. M. White A&A 367, 27 32 (2001) DOI: 10.1051/0004-6361:20000357 c ESO 2001 Astronomy & Astrophysics The mass of a halo M. White Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA e-mail: mwhite@cfa.harvard.edu

More information

RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS

RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS Draft version October 23, 212 Preprint typeset using L A TEX style emulateapj v. 12/16/11 SLAC-PUB-15314 RHAPSODY: II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF

More information

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009 The theoretical view of high-z Clusters Nelson Padilla, PUC, Chile Pucón, November 2009 The Plan: 1) To see what the observations are telling us using models that agree with the cosmology, and with other

More information

The inside-out Growth of the Stellar Mass Distribution in Galaxy Clusters since z 1

The inside-out Growth of the Stellar Mass Distribution in Galaxy Clusters since z 1 The inside-out Growth of the Stellar Mass Distribution in Galaxy Clusters since z 1 Remco van der Burg CEA Saclay, France A&A in press (ArXiv:1412.2137) Henk Hoekstra, Adam Muzzin, Cristóbal Sifón, Michael

More information

arxiv:astro-ph/ v1 19 Dec 2003

arxiv:astro-ph/ v1 19 Dec 2003 IAU Symposium 220, Dark Matter in Galaxies ASP Conference Series, Vol. XXX, 2004 Stuart Ryder, D.J. Pisano, Mark Walker, & Ken Freeman Summary talk: How serious are the problems faced by CDM: cusps, thin

More information

The growth and structure of dark matter haloes

The growth and structure of dark matter haloes Mon. Not. R. Astron. Soc. 339, 12 24 (2003) The growth and structure of dark matter haloes D. H. Zhao, 1,2 H. J. Mo, 2 Y. P. Jing 1,2 and G. Börner 2 1 Shanghai Astronomical Observatory, The Partner Group

More information

arxiv: v1 [astro-ph.co] 12 Oct 2010

arxiv: v1 [astro-ph.co] 12 Oct 2010 Mon. Not. R. Astron. Soc., 1 11 (21) Printed 14 October 21 (MN LATEX style file v2.2) Bound and unbound substructures in Galaxy-scale Dark Matter haloes arxiv:11.2491v1 [astro-ph.co] 12 Oct 21 Michal Maciejewski

More information

Halo concentration and the dark matter power spectrum

Halo concentration and the dark matter power spectrum Mon. Not. R. Astron. Soc. 340, 1199 1204 (2003) Halo concentration and the dark matter power spectrum Kevin M. Huffenberger and Uroš Seljak Department of Physics, Jadwin Hall, Princeton University, Princeton,

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

The Los Cabos Lectures

The Los Cabos Lectures January 2009 The Los Cabos Lectures Dark Matter Halos: 3 Simon White Max Planck Institute for Astrophysics Shapes of halo equidensity surfaces Group Jing & Suto 2002 Galaxy δ 100 2500 6250 Shapes of halo

More information

arxiv:astro-ph/ v1 27 Nov 2000

arxiv:astro-ph/ v1 27 Nov 2000 A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 02 (3.13.18) - methods: N-body simulations ASTRONOMY AND ASTROPHYSICS The mass of a halo Martin White arxiv:astro-ph/0011495v1

More information

The Full Strength of Cluster Gravitational Lensing: Mass Distribution in and around Cosmic Giants from the CLASH Survey

The Full Strength of Cluster Gravitational Lensing: Mass Distribution in and around Cosmic Giants from the CLASH Survey The Full Strength of Cluster Gravitational Lensing: Mass Distribution in and around Cosmic Giants from the CLASH Survey Cluster Lensing And Supernova survey with Hubble Keiichi Umetsu (ASIAA, Taiwan) Contents

More information

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Mergers and Mass Assembly of Dark Matter Halos & Galaxies Mergers and Mass Assembly of Dark Matter Halos & Galaxies Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin (MPA --> Southern UC) Claude-Andre Faucher-Giguere Dusan Keres (Harvard

More information

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins

NYU Nov 5, R isa Wechsler. The Dark Matter and Satellites in the Milky Way and its Twins NYU Nov 5, 2010 R isa Wechsler The Dark Matter and Satellites in the Milky Way and its Twins What is the formation history of the Milky Way? Can we understand the population of satellites in the Milky

More information

MOKA: a new tool for Strong Lensing Studies

MOKA: a new tool for Strong Lensing Studies Mon. Not. R. Astron. Soc. 000, 1 14 (2011) Printed 20 August 2018 (MN LATEX style file v2.2) MOKA: a new tool for Strong Lensing Studies Carlo Giocoli 1,2,3, Massimo Meneghetti 1,3, Matthias Bartelmann

More information

Halo formation times in the ellipsoidal collapse model

Halo formation times in the ellipsoidal collapse model Mon. Not. R. Astron. Soc. 000, 1 8 (2006) Printed 7 November 2006 (MN LATEX style file v2.2) Halo formation times in the ellipsoidal collapse model Carlo Giocoli 1,2, Jorge Moreno 1, Ravi K. Sheth 1 &

More information

Dark Matter Halos. They will have a large impact on galaxies

Dark Matter Halos. They will have a large impact on galaxies Dark Matter Halos Dark matter halos form through gravitational instability. Density perturbations grow linearly until they reach a critical density, after which they turn around from the expansion of the

More information

arxiv: v2 [astro-ph.ga] 27 Jul 2015

arxiv: v2 [astro-ph.ga] 27 Jul 2015 Draft version July 28, 215 Preprint typeset using L A TEX style emulateapj v. 5/2/11 MATCHING THE DARK MATTER PROFILES OF DSPH GALAXIES WITH THOSE OF SIMULATED SATELLITES: A TWO PARAMETER COMPARISON Maarten

More information

Phase Space Structure of Dark Matter Halos

Phase Space Structure of Dark Matter Halos Phase Space Structure of Dark Matter Halos Monica Valluri University of Michigan Collaborators Ileana Vass (U. Florida, Gainesville) Andrey Kravtsov (KICP, U. Chicago) Stelios Kazantzidis (CCAPP, Ohio

More information

The Distribution of Stellar Mass in Galaxy Clusters since z=1

The Distribution of Stellar Mass in Galaxy Clusters since z=1 The Distribution of Stellar Mass in Galaxy Clusters since z=1 Remco van der Burg CEA Saclay, France Adam Muzzin, Henk Hoekstra, Monique Arnaud, Hervé Aussel, Gabriel Pratt, JeanBaptiste Melin, Sean McGee,

More information

Satellite Galaxy Evolution in Groups & Clusters

Satellite Galaxy Evolution in Groups & Clusters Satellite Galaxy Evolution in Groups & Clusters Andrew Wetzel Yale University Jeremy Tinker (NYU) & Charlie Conroy (Harvard/CfA) Tinker, Wetzel & Conroy 2011, ArXiv 1107.5046 Wetzel, Tinker & Conroy 2011,

More information

arxiv: v1 [astro-ph] 6 Apr 2008

arxiv: v1 [astro-ph] 6 Apr 2008 Mon. Not. R. Astron. Soc. 000, 1 9 (2008 Printed 21 March 2018 (MN LATEX style file v2.2 The probability distribution of cluster formation times and implied Einstein Radii arxiv:0804.0892v1 [astro-ph]

More information

(Toward) A Solution to the Hydrostatic Mass Bias Problem in Galaxy Clusters. Eiichiro Komatsu (MPA) UTAP Seminar, December 22, 2014

(Toward) A Solution to the Hydrostatic Mass Bias Problem in Galaxy Clusters. Eiichiro Komatsu (MPA) UTAP Seminar, December 22, 2014 (Toward) A Solution to the Hydrostatic Mass Bias Problem in Galaxy Clusters Eiichiro Komatsu (MPA) UTAP Seminar, December 22, 2014 References Shi & EK, MNRAS, 442, 512 (2014) Shi, EK, Nelson & Nagai, arxiv:1408.3832

More information

Angular Momentum Problems in Disk Formation

Angular Momentum Problems in Disk Formation Angular Momentum Problems in Disk Formation MPIA Theory Group Seminar, 07/03/2006 The Standard Picture Disks galaxies are systems in centrifugal equilibrium Structure of disks is governed by angular momentum

More information

arxiv: v2 [astro-ph.co] 25 Jun 2012

arxiv: v2 [astro-ph.co] 25 Jun 2012 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 17 February 2013 (MN LATEX style file v2.2) The Phoenix Project: the Dark Side of Rich Galaxy Clusters arxiv:1201.1940v2 [astro-ph.co] 25 Jun 2012

More information

Ensenada March 2008 Galaxy halos at (very) high resolution

Ensenada March 2008 Galaxy halos at (very) high resolution Ensenada March 2008 Galaxy halos at (very) high resolution Simon White & Mark Vogelsberger Max Planck Institute for Astrophysics Milky Way halo seen in DM annihilation radiation Aquarius simulation: N200

More information

Concentrating the dark matter in galaxy clusters through tidal stripping of baryonically compressed galactic halos

Concentrating the dark matter in galaxy clusters through tidal stripping of baryonically compressed galactic halos Mon. Not. R. Astron. Soc. 405, 1969 1975 (2010) doi:10.1111/j.1365-2966.2010.16587.x Concentrating the dark matter in galaxy clusters through tidal stripping of baryonically compressed galactic halos Rennan

More information

CLUMPY: A public code for γ-ray and ν signals from dark matter structures.

CLUMPY: A public code for γ-ray and ν signals from dark matter structures. CLUMPY: A public code for γ-ray and ν signals from dark matter structures. Moritz Hütten, DESY Zeuthen for the CLUMPY developers: Vincent Bonnivard, Moritz Hütten, Emmanuel Nezri, Aldée Charbonnier, Céline

More information

arxiv: v3 [astro-ph.co] 25 May 2015

arxiv: v3 [astro-ph.co] 25 May 2015 Mon. Not. R. Astron. Soc. 000, 1 21 (2014) Printed 26 May 2015 (MN LATEX style file v2.2) Baryon effects on the internal structure of ΛCDM halos in the EAGLE simulations arxiv:1409.8617v3 [astro-ph.co]

More information

Empirical Models for Dark Matter Halos. I. Model Comparison

Empirical Models for Dark Matter Halos. I. Model Comparison Empirical Models for Dark Matter Halos. I. Model Comparison David Merritt Department of Physics, Rochester Institute of Technology, Rochester, NY 14623, USA. Alister W. Graham Mount Stromlo and Siding

More information

NUMERICAL STUDY OF HALO CONCENTRATIONS IN DARK-ENERGY COSMOLOGIES

NUMERICAL STUDY OF HALO CONCENTRATIONS IN DARK-ENERGY COSMOLOGIES NUMERICAL STUDY OF HALO CONCENTRATIONS IN DARK-ENERGY COSMOLOGIES KLAUS DOLAG 1, MATTHIAS BARTELMANN, FRANCESCA PERROTTA,, CARLO BACCIGALUPI,, LAURO MOSCARDINI, MASSIMO MENEGHETTI 1 AND GIUSEPPE TORMEN

More information

Some useful spherically symmetric profiles used to model galaxies

Some useful spherically symmetric profiles used to model galaxies Some useful spherically symmetric profiles used to model galaxies de Vaucouleurs R 1/4 law for ellipticals and bulges A good fit to the light profile of many ellipticals and bulges: (constant such that

More information

arxiv: v2 [astro-ph.co] 11 Apr 2018

arxiv: v2 [astro-ph.co] 11 Apr 2018 Preprint 12 April 2018 Compiled using MNRAS LATEX style file v3.0 arxiv:1712.00094v2 [astro-ph.co] 11 Apr 2018 Strong orientation dependence of surface mass density profiles of dark haloes at large scales

More information

The impact of Sagittarius on the disk of the Milky Way

The impact of Sagittarius on the disk of the Milky Way The impact of Sagittarius on the disk of the Milky Way David Law James Bullock (UC Irvine) The impact of Sagittarius on the disk of the Milky Way Chris Purcell (Irvine U Pittsburgh) Erik Tollerud (Irvine)

More information

Effects of baryons on the circular velocities of dwarf satellites

Effects of baryons on the circular velocities of dwarf satellites Effects of baryons on the circular velocities of dwarf satellites Anatoly Klypin, Kenza Arraki, Surhud More NMSU, U. Chicago August 15, 2012; Santa Cruz Galaxy Workshop LCDM and dwarfs: love to hate Missing

More information

Calibrating the Planck Cluster Mass Scale with CLASH

Calibrating the Planck Cluster Mass Scale with CLASH Calibrating the Planck Cluster Mass Scale with CLASH Mariana Penna-Lima Centro Brasileiro de Pesquisas Físicas - CBPF in collaboration with J. Bartlett, E. Rozo, J.-B. Melin, J. Merten, A. Evrard, M. Postman,

More information