Phase Space Structure of Dark Matter Halos

Size: px
Start display at page:

Download "Phase Space Structure of Dark Matter Halos"

Transcription

1 Phase Space Structure of Dark Matter Halos Monica Valluri University of Michigan

2 Collaborators Ileana Vass (U. Florida, Gainesville) Andrey Kravtsov (KICP, U. Chicago) Stelios Kazantzidis (CCAPP, Ohio State U.) Victor Debattista (U. Central Lancashire) Tom Quinn (U. Washington) Ben Moore (U. Zürich)

3 Outline Evolution of phase space density in dark matter halos (Vass, Valluri, Kravtsov & Kazantzidis 2009 MNRAS, in press) (Vass, Kazantzidis,Valluri & Kravtsov 2009 ApJ, in press) Evolution of orbital structure of dark matter halos in response to the growth of baryonic structures (Valluri, Debattista, Quinn & Moore, MNRAS, in preparation)

4 Phase-Space density profiles Taylor & Navarro 2001 Q(r) ~ (r)/ 3 (r) ( (r) = f(r, v) d 3 v) CDM halos: have power-law Q(r) profiles over 2.5 decades in radius: Q = r/s 3 (r/r 200 ) - ~ 1.9±0.1 (Taylor & Navarro 2001, Dehnen & McLaughlin 2005) Power-law profiles also result from simple self-similar spherical infall models (Bertschinger 1985)

5 Evolution of Q in cosmological halos Q r - from z~5 to z~0 inside ~0.25r vir = 1.9 ± 0.1 Q is robust to mergers/infall (Hoffman et al. 2007)

6 Evolution of Collisionless Systems The true phase space distribution function is defined by (r) = f(x, v) d 3 v Fine grained phase space distribution function f(x, v) is described by collisionless Boltzmann equation (Liouville s Theorem): df dt = f t + vi f x i f v = 0 In the absence of collisions mass per unit volume of phase space f(x, v) is conserved But f (x,v) is never measured. Only possible to measure coarse grained density = <f(x,v)>

7 Evolution of the phase space density of dark matter How do power-law Q(r) profiles arise? How does Q(r) relate to the real phase-space distribution function f(x, v) of dark matter? (r) = f(r, v) d 3 v We address these questions using a series of N- body simulations

8 N-body simulations t Galaxies from hierarchically: major mergers accretion of sub halos or distributed material (quiescent infall) (Vass, Valluri, Kravtsov & Kazantzidis 2009 MNRAS, in press Arxiv: )) (Vass, Kazantzidis,Valluri & Kravtsov 2009 ApJ, in press Arxiv: )

9 Numerical computation of coarse grained phase-space density Binary Tree methods are accurate and metric-free FiEstAS (Ascasibar & Binney 2005) EnbiD (Sharma & Steinmetz 2006) 6-D density estimation problem. Need appropriate adaptive smoothing kernel

10 (Ir)Relevance of R vir Mass profile of a DM halo changes little from z=1 to z=0 but virial radius doubles static mass radius ~ 2r vir Also 40% of mass of progenitors in a merger major lies outside the formal virial radius (Kazantzidis et al. 2006, Valluri et al. 2007) Cuesta et al. 2008

11 Comparison of phase space density estimators in CDM halos z=0 Q(r) r - ( = -1.9±0.1) Mean (f) - sensitive to substructure Median (f) = F(r) Power law (r - ) => poor fit (Stadel et al. 2008, Maciejewski et al., 2009, Vass et al. 09a)

12 Evolution of z=0 all particles r < 2r vir are tracked back to z~9 F(r) not power-law at any redshift! F decreases: Central F by factor ~10 F(0.6 r vir ) by factor ~105 Mixing in phase space

13 Phase Mixing (Lynden-Bell 1967) Particle orbits to spread out because of spread in initial conditions The timescale for phase mixing depends on size of patch coarse grained density = <f(x,v)>

14 Violent Relaxation (Lynden-Bell 1967) Potential Energy A system out of equilibrium undergoes violent oscillations Particles exchange energy with rapidly changing background potential t [Gyr] T oscillation ~ T dynamical Relaxation time ~ orbital period

15 Evolution of Q and F within r vir (z) Q (r< r vir ) power-law F ~ decreases monotonically up to 0.6r vir (z) and increases thereafter

16 f(x,v) in CDM halos z=0 Sub halos have highest f values f(x,v) has range of 4-9 orders of magnitude at each radius (Arad et al. 2004)

17 Evolution of f(x,v) Large number of particles Small number of particles wiggles in F => subhalos streams from tidal shredding of subhalos At all z highest f values are in subhalos

18 Via Lactea II projected dark matter squared-density map Coarse-grained phase-space density f(x,v) Real space Density (r) J Diemand et al. Nature 454, (2008) doi: /nature07153

19 Evolution of N(f) Histograms of log(f) approximately lognormal f peak shifts to lower f f max today representative of the median f at z 9.

20 Evolution of f peak Evolution of f peak for 4 different galactic sized halos f peak (a) a 4.3±1.1

21 Physical implication of Q(r)? Q(r) = (r)/ 3 (r) 2 ~ measure of DM temperature Entropy 2/3 K gas = T / gas K DM = 2 / 2/3 dm Q 2/3 For Q r 1.8 K r 1.2 (Faltenbacher et al. 2007) (Hoffman et al. 2007) Power-law slope and entropy profile are very similar to that found for gas in the outer regions of clusters (also arises from spherical collapse/ spherical accretion) (Tozzi & Norman 07, Borgani et al 04, Voit et al. 05) Q(r) reflects average inverse entropy profile of DM not phase-space density!

22 Part1: Summary & Implications F(r) is not a simple power-law at any z! (not even monotonically decreasing) F(r) decreases by 1-5 orders of magnitude f(x,v) varies by 4-8 orders of magnitude at a given radius but is highest in subhalos (possibly also in DM streams) N(f) approx log-normal f peak (z) (1+z)( ) Measuring f at center of dsph galaxies (Strigari et al. 2007) and in tidal streams (Freese et al. 2004) will put tighter constraints primordial phase space density of DM/ nature of DM particle (e.g. Tremaine-Gunn 79) Q(r) is related to entropy and not a measure of phasespace density at all!

23 Part II: The shapes of DM halos Collisionless DM halos are triaxial: (Dubinski & Carlberg 91, Jing & Suto 02, Kasun & Evrard 05) <c/a> ~0.6 <b/a> ~0.8 Observationally preferred: oblate c/a > 0.8 b/a ~1 [polar rings (Sackett & Sparke 90), tidal streams (Johnston et al. 05), X-ray halos (Buote et al. 02), lensing (Kochenek 95, Oguri et al. 03)] prolate oblate b c a triaxial

24 Simulations with gas, star formation, cooling Kazantzidis et al prolate CDM simulations with gas cooling & SF spherical halos mergers of disk galaxies with gas spherical halos (caution: degree of shape change could be over-estimated due to over-cooling)

25 What causes the change in shape? Two possible options growth of central potential can deform orbits to make them rounder (Hernquist & Barnes 1987, Holley-Bockelmann et al. 2002) chaotic scattering by central deepened potential (Merritt & Quinlan 1998, Maccio et al. 2007) The goal of this study: distinguish between these possible mechanisms How does a baryonic disk change the phase space structure of DM particles locally?

26 Orbits in Triaxial Galaxies (de Zeeuw 1985, Statler 1987) Boxes Short axis Tubes (SAT) Inner long-axis Tubes (ILT) Outer long-axis Tubes (OLT) Triaxial figures are supported by 4 major orbit families. Box orbits and ILT dominate provide density along the major axis

27 Supermassive Black Holes Chaotic scattering by a central BH In a barred galaxy a BH with ~5% disk mass (Norman et al. 1996, Shen & Sellwood 2004) In a triaxial galaxy a BH with ~3% galaxy mass (Merritt & Quinlan 1998) Athanassoula, Lambert & Dehnen 2006

28 Chaotic Scattering => Mixing Strongly chaotic orbits diffuse ( T dyn ) Equipotential surface is rounder than the density distribution Diffusion of ensembles of 10,000 orbits near a chaotic orbit (Merritt & Valluri 1996)

29 Chaotic evolution => Irreversibility Chaotic evolution => exponential divergence Chaos => mixing Regular evolution => linear (adiabatic) response

30 Adiabatic growth of a baryonic (Debattista et al. 2008) component collisionless merger remnant After adiabatic growth of baryonic component Even a small central baryonic component ( %) makes halos rounder

31 Testing Reversibility Debattista et al Phase a : initial halo merger of two spherical NFW halos Halo B (prolate ; M ; 4 million particles) merger of two prolate merger remnants Halo A (triaxial; M ; 4 million particles) Phase b : after growth of baryonic component Disk galaxy (R d =3 kpc) Spherical galaxy (R s = 3kpc, R s = 1kpc) dense star cluster+smbh=cmc (R s = 0.1kpc) Phase c : baryonic component is evaporated Most models reverted to original shape

32 Orbits of DM particles in an equilibrium potential mostly regular Conserve integrals of motion Are quasi-periodic Characterized by fundamental frequencies of oscillation

33 Numerical Recovery of Fundamental Frequencies All oscillation frequencies are integer linear combinations three fundamental frequencies Frequencies can be used: To classify regular orbits into major orbit families To identify Resonant and Periodic orbits Map the phase space To identify chaotic orbits A k X(t) = A k e i kt k = k 1 + l 2 + m 3 Binney & Spergel 1984, Laskar 1990, 1996, Valluri & Merritt 1998 k

34 Application to N-body simulations Grainy N-body potential => noisy orbits Orbits in a spherical potential are regular Frequency drift: log( f) = log [ (t 1 )- (t 2 )]/ (t 1 ). 99.5% of orbits in spherical NFW halo have log( f) < -1.0 Defined as chaotic if Log( f) > -1. Analyze orbits in each halo potential in each phase of evolution

35 Baryons cause frequency changes Disk Point mass Almost perfect reversibility Irreversible scattering Extended baryonic distribution => frequencies increase Frequency change is nonlinear Point mass => scattering disk (elliptical) galaxy => frequency in phase a and phase c are correlated

36 Frequency change: distribution Disk Hard point mass Frequency change from phase a to b Frequency change from phase a to c Only a very hard point mass causes significant irreversibly scattering (i.e. black holes cause chaotic evolution) Extended distribution produce regular evolution

37 Orbit populations Phase a Phase b A+disk B+point

38 Orbital shapes s = y z x z Orbital shape parameter: s > 0 elongated along long axis s 0 for orbits with round shapes z x y

39 The same orbital type can change shape A+disk A+Sph 1.0 B+Sph 3.0 B+Sph 0.1 Pericenter radius Pericenter radius In all cases orbits with the smallest pericenter radii become round in phase b Short axis tubes always round Halo orbits respond to the baryonic component by becoming rounder within several R s

40 Frequency maps Orbits cluster around stable resonances Plot frequency ratios for ~10,000 different orbits at a single energy Gives a map of phase space (Like a Poincare surface of section) Resonant orbit condition: l x + m y + n z =0 (l, m, n) are small integers Unstable resonances depopulated Valluri & Merritt 1998

41 Frequency maps of N-body halos Halo A A+disk O,1,-1 ILT orbit family 1:-1,0 SAT orbit family 3,0,-2 fish family x z x z 2,0,-1 banana family Most bound particles Least bound particles Only 6000 orbits spanning full range of energies are plotted several global resonances appear following the growth of a disk

42 Resonant orbits In the presence of a baryonic component the resonances are stronger. Resonant orbits are two dimensional surfaces.

43 Sample of box-orbits in triaxial Halo A at different energies Y Z Y Z X Y X Y Y Z Z X Y X Y

44 Box Orbits =>Short Axis Tube orbits Baryonic disk and central bulge significantly alter phase space structure of DM particles

45 Part II: summary/implications Growth of disk (or elliptical galaxy) causes: REGULAR/ reversible change in shape Growth of central point mass causes CHAOTIC scattering of orbits Orbital shape changes are more significant than orbital type changes Centrally concentrated orbits tend to change shape Baryonic components enhance the fraction of DM particles trapped around resonances Future: How does this affect DAMA interaction cross sections for direct detection of DM particles? (upcoming with Savage & Freese)

46

arxiv: v2 [astro-ph] 25 Jun 2009

arxiv: v2 [astro-ph] 25 Jun 2009 Mon. Not. R. Astron. Soc. 000,???? (2009w) Printed 28 October 2018 (MN LATEX style file v2.2) Evolution of the Dark Matter Phase-Space Density Distributions of ΛCDM Halos arxiv:0810.0277v2 [astro-ph] 25

More information

arxiv: v2 [astro-ph.co] 28 Feb 2013

arxiv: v2 [astro-ph.co] 28 Feb 2013 ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 5/2/11 HALO ORBITS IN COSMOLOGICAL DISK GALAXIES: TRACERS OF FORMATION HISTORY MONICA VALLURI 1, VICTOR P. DEBATTISTA 2, GREGORY S.

More information

The Los Cabos Lectures

The Los Cabos Lectures January 2009 The Los Cabos Lectures Dark Matter Halos: 2 Simon White Max Planck Institute for Astrophysics EPS statistics for the standard ΛCDM cosmology Millennium Simulation cosmology: Ωm = 0.25, ΩΛ

More information

arxiv: v2 [astro-ph] 22 Aug 2008

arxiv: v2 [astro-ph] 22 Aug 2008 Mon. Not. R. Astron. Soc. 000, 1 6 (2008) Printed 14 August 2018 (MN LATEX style file v2.2) Quantifying the heart of darkness with GHALO - a multi-billion particle simulation of our galactic halo arxiv:0808.2981v2

More information

Exact potential density pairs for flattened dark haloes

Exact potential density pairs for flattened dark haloes Mon. Not. R. Astron. Soc. 3, 1503 1508 00) doi:10.1111/j.1365-66.008.14174.x Exact potential density pairs for flattened dark haloes Maarten Baes Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan

More information

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov Elad Zinger Hebrew University Jerusalem IGM@50, Spineto, 12 June 2015 Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov They re still there! Account for most of the accretion.

More information

Princeton December 2009 The fine-scale structure of dark matter halos

Princeton December 2009 The fine-scale structure of dark matter halos Princeton December 2009 The fine-scale structure of dark matter halos Simon White Max Planck Institute for Astrophysics The dark matter structure of CDM halos A rich galaxy cluster halo Springel et al

More information

halo merger histories

halo merger histories Physics 463, Spring 07 Lecture 5 The Growth and Structure of Dark Mater Halos z=7! z=3! z=1! expansion scalefactor z=0! ~milky way M>3e12M! /h c vir ~13 ~virgo cluster M>3e14M! /h, c vir ~6 halo merger

More information

Galaxy interaction and transformation

Galaxy interaction and transformation Galaxy interaction and transformation Houjun Mo April 13, 2004 A lot of mergers expected in hierarchical models. The main issues: The phenomena of galaxy interaction: tidal tails, mergers, starbursts When

More information

cluster scaling relations and mass definitions

cluster scaling relations and mass definitions cluster scaling relations and mass definitions Andrey Kravtsov Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics The University of Chicago Abell 85 SDSS Abell 85 SDSS/ Abell

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

The distribution and kinematics of early high-σ peaks in present-day haloes: implications for rare objects and old stellar populations

The distribution and kinematics of early high-σ peaks in present-day haloes: implications for rare objects and old stellar populations Mon. Not. R. Astron. Soc. 000, 1 19 (2005) Printed 20 April 2006 (MN LATEX style file v2.2) The distribution and kinematics of early high-σ peaks in present-day haloes: implications for rare objects and

More information

The fine-scale structure of dark matter halos

The fine-scale structure of dark matter halos COSMO11, Porto, August 2011 The fine-scale structure of dark matter halos Simon White Max-Planck-Institute for Astrophysics COSMO11, Porto, August 2011 Mark Vogelsberger The fine-scale structure of dark

More information

ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies

ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies Frank van den Bosch Yale University, spring 2017 The Structure & Formation of Disk Galaxies In this lecture we discuss the structure and formation

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

The dark matter crisis

The dark matter crisis The dark matter crisis Ben Moore Department of Physics, Durham University, UK. arxiv:astro-ph/0103100 v2 8 Mar 2001 Abstract I explore several possible solutions to the missing satellites problem that

More information

Time /Gyrs

Time /Gyrs 1 0.8 0.6 0.4 0.2 0 0 20 40 60 80 100 Time /Gyrs 1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 Time /Gyrs On the destruction and over-merging of dark halos in dissipationless N-body simulations Ben Moore, Neal Katz

More information

Supermassive Black Hole Binaries as Galactic Blenders. Balša Terzić

Supermassive Black Hole Binaries as Galactic Blenders. Balša Terzić Supermassive Black Hole Binaries as Galactic Blenders Balša Terzić University of Florida January 30, 2004 Supermassive Black Hole Binaries as Galactic Blenders Kandrup, Sideris, Terzić & Bohn, 2003, ApJ,

More information

Kinetic Theory. Motivation - Relaxation Processes Violent Relaxation Thermodynamics of self-gravitating system

Kinetic Theory. Motivation - Relaxation Processes Violent Relaxation Thermodynamics of self-gravitating system Kinetic Theory Motivation - Relaxation Processes Violent Relaxation Thermodynamics of self-gravitating system negative heat capacity the gravothermal catastrophe The Fokker-Planck approximation Master

More information

simulations - 1 J A Sellwood

simulations - 1 J A Sellwood simulations - 1 J A Sellwood Collisionless stellar systems Manifest a number of complicated collective phenomena spiral arms, bar instabilities, collapses, mergers, etc. too complicated to be calculated

More information

The Los Cabos Lectures

The Los Cabos Lectures January 2009 The Los Cabos Lectures Dark Matter Halos: 3 Simon White Max Planck Institute for Astrophysics Shapes of halo equidensity surfaces Group Jing & Suto 2002 Galaxy δ 100 2500 6250 Shapes of halo

More information

The Role of Dissipation in Spheroid Formation

The Role of Dissipation in Spheroid Formation The Role of Dissipation in Spheroid Formation Philip Hopkins 4/08/08 Lars Hernquist, TJ Cox, John Kormendy, Tod Lauer, Suvendra Dutta, Dusan Keres, Volker Springel Ellipticals & Bulges: Formation in Mergers?

More information

Galaxies: Structure, Dynamics, and Evolution. Elliptical Galaxies (II)

Galaxies: Structure, Dynamics, and Evolution. Elliptical Galaxies (II) Galaxies: Structure, Dynamics, and Evolution Elliptical Galaxies (II) Layout of the Course Feb 5: Review: Galaxies and Cosmology Feb 12: Review: Disk Galaxies and Galaxy Formation Basics Feb 19: Disk Galaxies

More information

Phys/Astro 689: Lecture 11. Tidal Debris

Phys/Astro 689: Lecture 11. Tidal Debris Phys/Astro 689: Lecture 11 Tidal Debris Goals (1) We ll explore whether we can trace the accretion events that should have formed the Milky Way. (2) We ll discuss the impact of tidal debris on direct detection

More information

Ensenada March 2008 Galaxy halos at (very) high resolution

Ensenada March 2008 Galaxy halos at (very) high resolution Ensenada March 2008 Galaxy halos at (very) high resolution Simon White & Mark Vogelsberger Max Planck Institute for Astrophysics Milky Way halo seen in DM annihilation radiation Aquarius simulation: N200

More information

arxiv: v2 [astro-ph.co] 7 Aug 2009

arxiv: v2 [astro-ph.co] 7 Aug 2009 to be published by the Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 6/22/04 DISSECTING GALAXY FORMATION: I. COMPARISON BETWEEN PURE DARK MATTER AND BARYONIC MODELS Emilio Romano-Díaz

More information

pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago

pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago pseudo- evolution of halo mass and observable-mass relations Andrey Kravtsov The University of Chicago Baseline model for cluster scaling relations Kaiser 1986, 1991 If mass is defined within a spherical

More information

arxiv: v3 [astro-ph.co] 2 Apr 2010

arxiv: v3 [astro-ph.co] 2 Apr 2010 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 6 August 2013 (MN LATEX style file v2.2) Dark matter response to galaxy formation arxiv:0911.2316v3 [astro-ph.co] 2 Apr 2010 Patricia B. Tissera 1,2,

More information

arxiv:astro-ph/ v3 13 May 2008

arxiv:astro-ph/ v3 13 May 2008 Preprint typeset using L A TEX style emulateapj v. 0/09/06 FORMATION AND EOLUTION OF GALAXY DARK MATTER HALOS AND THEIR SUBSTRUCTURE Jürg Diemand,, Michael Kuhlen, & Piero Madau, arxiv:astro-ph/0707v May

More information

Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation Numerical Cosmology & Galaxy Formation Lecture 13: Example simulations Isolated galaxies, mergers & zooms Benjamin Moster 1 Outline of the lecture course Lecture 1: Motivation & Historical Overview Lecture

More information

The tidal stirring model and its application to the Sagittarius dwarf

The tidal stirring model and its application to the Sagittarius dwarf The tidal stirring model and its application to the Sagittarius dwarf Ewa L. Łokas Copernicus Center, Warsaw Stelios Kazantzidis (Ohio State) Lucio Mayer (University of Zurich) Collaborators: Steven Majewski

More information

arxiv: v1 [astro-ph] 1 Oct 2007

arxiv: v1 [astro-ph] 1 Oct 2007 Draft version August 4, 28 Preprint typeset using L A TEX style emulateapj v. 1/9/6 SIGNATURES OF ΛCDM SUBSTRUCTURE IN TIDAL DEBRIS Jennifer M. Siegal-Gaskins 1,2 and Monica Valluri 1,3,4 Draft version

More information

The edge of darkness, and other halo surprises

The edge of darkness, and other halo surprises The edge of darkness, and other halo surprises Benedikt Diemer ITC Fellow, Harvard-Smithsonian Center for Astrophysics (in collaboration with Andrey Kravtsov and Surhud More) APEC Seminar IPMU 4/7/26 Strength

More information

THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS

THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS THE EDGES OF DARK MATTER HALOS: THEORY AND OBSERVATIONS SURHUD MORE (KAVLI IPMU) Collaborators : Benedikt Diemer, Andrey Kravtsov, Philip Mansfield, Masahiro Takada, Hironao Miyatake, Neal Dalal, Rachel

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

Beyond the spherical dust collapse model

Beyond the spherical dust collapse model Beyond the spherical dust collapse model 1.5M 1.0M M=1.66 10 15 M 0.65M 0.4M 0.25M Evolution of radii of different mass shells in a simulated halo Yasushi Suto Department of Physics and RESCEU (Research

More information

The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs

The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs Avishai Dekel The Hebrew University of Jerusalem & UCSC Silk 75, December 2017 A Characteristic Mass for Galaxy Formation Efficiency

More information

arxiv: v1 [astro-ph] 13 Jul 2007

arxiv: v1 [astro-ph] 13 Jul 2007 Figure Rotation of Dark Matter Halos Figure Rotation of Dark Halos in Cold Dark Matter Simulations S. E. Bryan and C. M. Cress,2 Astrophysics and Cosmology Research Unit, University of KwaZulu-Natal, Westville,

More information

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009 The theoretical view of high-z Clusters Nelson Padilla, PUC, Chile Pucón, November 2009 The Plan: 1) To see what the observations are telling us using models that agree with the cosmology, and with other

More information

Cluster density profiles and orbits of galaxies from dynamical analysis. Andrea Biviano, INAF/Oss.Astr.Trieste

Cluster density profiles and orbits of galaxies from dynamical analysis. Andrea Biviano, INAF/Oss.Astr.Trieste Cluster density profiles and orbits of galaxies from dynamical analysis Andrea Biviano, INAF/Oss.Astr.Trieste Collaborators & papers: on the observational side: A.B. & M. Girardi 2003, P. Katgert, A.B.

More information

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA)

Dark Matter Substructure and their associated Galaxies. Frank C. van den Bosch (MPIA) Dark Matter Substructure and their associated Galaxies Frank C. van den Bosch (MPIA) Outline PART I: The Subhalo Mass Function (van den Bosch, Tormen & Giocoli, 2005) PART II: Statistical Properties of

More information

The impact of Sagittarius on the disk of the Milky Way

The impact of Sagittarius on the disk of the Milky Way The impact of Sagittarius on the disk of the Milky Way David Law James Bullock (UC Irvine) The impact of Sagittarius on the disk of the Milky Way Chris Purcell (Irvine U Pittsburgh) Erik Tollerud (Irvine)

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-1 13-4-12see http://www.strw.leidenuniv.nl/ franx/college/galaxies12 12-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

arxiv:astro-ph/ v1 7 Aug 2006

arxiv:astro-ph/ v1 7 Aug 2006 Draft version May 17, 2008 Preprint typeset using L A TEX style emulateapj v. 6/22/04 SATELLITE ACCRETION ONTO MASSIVE GALAXIES WITH CENTRAL BLACK HOLES Michael Boylan-Kolchin 1 and Chung-Pei Ma 2 Draft

More information

Galaxy Evolution & Black-Hole Growth (review)

Galaxy Evolution & Black-Hole Growth (review) Galaxy Evolution & Black-Hole Growth (review) Avishai Dekel The Hebrew University of Jerusalem & UCSC Delivered by Fangzhou Jiang Dali, China, November 2018 See also Claude-Andre s talk and Joel s talk

More information

Dark matter. Anne Green University of Nottingham

Dark matter. Anne Green University of Nottingham Dark matter Anne Green University of Nottingham anne.green@nottingham.ac.uk 1. Observational evidence for DM and constraints on its properties Alternatives to dark matter (modified gravity) 2. The DM distribution

More information

Lucio Mayer ETH Zwicky Prize Fellow

Lucio Mayer ETH Zwicky Prize Fellow The Local Group of galaxies in a cold dark matter Universe Collaborators: Lucio Mayer ETH Zwicky Prize Fellow Fabio Governato (U. of Washinhgton) Beth Willman (NYU) James Wadsley (McMaster) Greg Stinson

More information

The Origin of Supermassive Black Holes. Daniel Whalen. McWilliams Fellow Carnegie Mellon

The Origin of Supermassive Black Holes. Daniel Whalen. McWilliams Fellow Carnegie Mellon The Origin of Supermassive Black Holes Daniel Whalen McWilliams Fellow Carnegie Mellon Mergers Accretion The SMBH Conundrum SDSS quasars of ~ 10 9 Msun have been found at z ~ 6, a Gyr after the Big Bang

More information

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation?

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation? Einführung in die beobachtungsorientierte Kosmologie I / Introduction to observational Cosmology I LMU WS 2009/10 Rene Fassbender, MPE Tel: 30000-3319, rfassben@mpe.mpg.de 1. Cosmological Principles, Newtonian

More information

AGN in hierarchical galaxy formation models

AGN in hierarchical galaxy formation models AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg Castle, June 18, 2009 Outline Brief introduction

More information

Distribution of Mass in the Milky Way Galaxy, Leiden, July Laura V. Sales. Kapteyn Astronomical Institute, Groningen, The Netherlands

Distribution of Mass in the Milky Way Galaxy, Leiden, July Laura V. Sales. Kapteyn Astronomical Institute, Groningen, The Netherlands Distribution of Mass in the Milky Way Galaxy, Leiden, 13-17 July 2009 Laura V. Sales Kapteyn Astronomical Institute, Groningen, The Netherlands Outline - Brief review of thick disk formation scenarios:

More information

arxiv:astro-ph/ v1 19 Apr 2006

arxiv:astro-ph/ v1 19 Apr 2006 On Universal Halos and the Radial Orbit Instability Joseph D. MacMillan, Lawrence M. Widrow, and Richard N. Henriksen Department of Physics, Queen s University, Kingston, Ontario, Canada, K7L 3N6 arxiv:astro-ph/0604418v1

More information

Overview spherical accretion

Overview spherical accretion Spherical accretion - AGN generates energy by accretion, i.e., capture of ambient matter in gravitational potential of black hole -Potential energy can be released as radiation, and (some of) this can

More information

What can M2M do for Milky Way Models?

What can M2M do for Milky Way Models? What can M2M do for Milky Way Models? Ortwin Gerhard Max-Planck-Institut für Extraterrestrische Physik, Garching gerhard@mpe.mpg.de Thanks to F. de Lorenzi, V. Debattista, P. Das, L. Morganti I. Made-to-Measure

More information

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M NMAGIC Made-to-Measure Modeling of Elliptical Galaxies Ortwin Gerhard, MPE, Garching gerhard@mpe.mpg.de I. Made-to-measure dynamical modeling with NMAGIC II Elliptical galaxy halo kinematics with planetary

More information

ON THE CHEMICAL EVOLUTION OF THE MILKY WAY. The Metallicity distribution of the halo in the hierarchical merging paradigm

ON THE CHEMICAL EVOLUTION OF THE MILKY WAY. The Metallicity distribution of the halo in the hierarchical merging paradigm ON THE CHEMICAL EVOLUTION OF THE MILKY WAY The Metallicity distribution of the halo in the hierarchical merging paradigm Halo abundance patterns and stellar yields Standard chemical evolution of solar

More information

Dark Matter Halos of Spiral Galaxies

Dark Matter Halos of Spiral Galaxies Dark Matter Halos of Spiral Galaxies Arunima Banerjee National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune, India email: arunima@ncra.tifr.res.in Web: http://www.ncra.tifr.res.in/~arunima

More information

Angular Momentum Problems in Disk Formation

Angular Momentum Problems in Disk Formation Angular Momentum Problems in Disk Formation MPIA Theory Group Seminar, 07/03/2006 The Standard Picture Disks galaxies are systems in centrifugal equilibrium Structure of disks is governed by angular momentum

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Galaxy Formation! Lecture Seven: Galaxy Formation! Cosmic History. Big Bang! time! present! ...fluctuations to galaxies!

Galaxy Formation! Lecture Seven: Galaxy Formation! Cosmic History. Big Bang! time! present! ...fluctuations to galaxies! Galaxy Formation Lecture Seven: Why is the universe populated by galaxies, rather than a uniform sea of stars? Galaxy Formation...fluctuations to galaxies Why are most stars in galaxies with luminosities

More information

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang Contents 1

More information

ON THE STRUCTURE AND NATURE OF DARK MATTER HALOS ANDREAS BURKERT. Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, GERMANY

ON THE STRUCTURE AND NATURE OF DARK MATTER HALOS ANDREAS BURKERT. Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, GERMANY ON THE STRUCTURE AND NATURE OF DARK MATTER HALOS ANDREAS BURKERT Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, GERMANY JOSEPH SILK Department of Astrophysics, NAPL, Keble Rd, Oxford

More information

Galaxy Luminosity Function. Galaxy Luminosity Function. Schechter Function. Schechter Function by environment. Schechter (1976) found that

Galaxy Luminosity Function. Galaxy Luminosity Function. Schechter Function. Schechter Function by environment. Schechter (1976) found that Galaxy Luminosity Function Count the number of galaxies as a function of luminosity (or absolute magnitude) Useful for: Understanding galaxy formation (distribution by luminosity implies distribution by

More information

The physical origin of stellar envelopes around globular clusters

The physical origin of stellar envelopes around globular clusters The physical origin of stellar envelopes around globular clusters Phil Breen University of Edinburgh in collaboration with A. L. Varri, J. Peñarrubia and D. C. Heggie Current observational evidence Example:

More information

arxiv:astro-ph/ v4 18 Apr 2000

arxiv:astro-ph/ v4 18 Apr 2000 The structure and evolution of weakly self-interacting cold dark matter halos Andreas Burkert arxiv:astro-ph/0002409v4 18 Apr 2000 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg,

More information

Phys/Astro 689: Lecture 8. Angular Momentum & the Cusp/Core Problem

Phys/Astro 689: Lecture 8. Angular Momentum & the Cusp/Core Problem Phys/Astro 689: Lecture 8 Angular Momentum & the Cusp/Core Problem Summary to Date We first learned how to construct the Power Spectrum with CDM+baryons. Found CDM agrees with the observed Power Spectrum

More information

Splashback radius as a physical boundary of clusters

Splashback radius as a physical boundary of clusters Splashback radius as a physical boundary of clusters Andrey Kravtsov Department of Astronomy & Astrophysics Kavli Institute for Cosmological Physics The University of Chicago Abell 85 SDSS/ Chandra galaxy

More information

The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW

The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW Marcel S. Pawlowski (mpawlow@astro.uni-bonn.de) Supervisor: Pavel Kroupa (Bonn) Collaborators: Jan Pflamm-Altenburg

More information

Dwarf galaxies and the formation of the Milky Way

Dwarf galaxies and the formation of the Milky Way Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

A Universe in Motion: Testing the Cosmological Paradigm with Galaxy Dynamics. John Dubinski, Toronto

A Universe in Motion: Testing the Cosmological Paradigm with Galaxy Dynamics. John Dubinski, Toronto A Universe in Motion: Testing the Cosmological Paradigm with Galaxy Dynamics John Dubinski, Toronto Outline Cosmology and galaxy dynamics Tools of the trade and computational challenges Case Studies: Triaxial

More information

Chapter 15 The Milky Way Galaxy. The Milky Way

Chapter 15 The Milky Way Galaxy. The Milky Way Chapter 15 The Milky Way Galaxy The Milky Way Almost everything we see in the night sky belongs to the Milky Way We see most of the Milky Way as a faint band of light across the sky From the outside, our

More information

The Milky Way and Near-Field Cosmology

The Milky Way and Near-Field Cosmology The Milky Way and Near-Field Cosmology Kathryn V Johnston (Columbia University) Collaborators (theorists): James S Bullock (Irvine), Andreea Font (Durham), Brant Robertson (Chicago), Sanjib Sharma (Columbia),

More information

Theorem : Proof... Pavel Kroupa. Pavel Kroupa: AIfA, University of Bonn

Theorem : Proof... Pavel Kroupa. Pavel Kroupa: AIfA, University of Bonn Theorem : dsph = TDG = LCDM Proof... Pavel Kroupa 1 Two Zwicky Conjectures of fundamental importance : 1. Zwicky (1937) galaxies are about 500 times heavier in the Coma galaxy cluster than judged from

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway Disk Formation and the Angular Momentum Problem Presented by: Michael Solway Papers 1. Vitvitska, M. et al. 2002, The origin of angular momentum in dark matter halos, ApJ 581: 799-809 2. D Onghia, E. 2008,

More information

Dark Matter in Disk Galaxies

Dark Matter in Disk Galaxies Chapter 14 Dark Matter in Disk Galaxies Rotation curves of disk galaxies rise steeply in their inner regions and then remain roughly flat out to the last point measured. To explain these observations within

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

Fundamental Planes and Galaxy Formation

Fundamental Planes and Galaxy Formation Fundamental Planes and Galaxy Formation Philip Hopkins, NoviCosmo 2007 Fundamental Planes = Scaling Laws Obeyed by Galaxies vs Origin of scaling laws: Ideally, we d understand every galaxy as an individual:

More information

ON UNIVERSAL HALOS AND THE RADIAL ORBIT INSTABILITY

ON UNIVERSAL HALOS AND THE RADIAL ORBIT INSTABILITY The Astrophysical Journal, 653:43Y52, 2006 December 10 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON UNIVERSAL HALOS AND THE RADIAL ORBIT INSTABILITY Joseph D. MacMillan,

More information

ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos

ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos ASTR 610 Theory of Galaxy Formation Lecture 11: Structure of Dark Matter Halos Frank van den Bosch Yale University, spring 2017 The Structure of Dark Matter Haloes In this lecture we examine the detailed

More information

Upcoming class schedule

Upcoming class schedule Upcoming class schedule Thursday March 15 2pm AGN evolution (Amy Barger) th Monday March 19 Project Presentation (Brad) nd Thursday March 22 postponed to make up after spring break.. Spring break March

More information

Mergers between elliptical galaxies and the thickening of the Fundamental Plane

Mergers between elliptical galaxies and the thickening of the Fundamental Plane Mon. Not. R. Astron. Soc. 342, L36 L40 (2003) Mergers between elliptical galaxies and the thickening of the Fundamental Plane A. C. González-García and T. S. van Albada Kapteyn Astronomical Institute,

More information

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Motohiro ENOKI (National Astronomical Observatory of Japan) Kaiki Taro INOUE (Kinki University) Masahiro NAGASHIMA

More information

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-1 6-4-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c04-2 4. Structure of Dark Matter halos Obviously, we cannot

More information

arxiv: v1 [astro-ph.ga] 10 Dec 2015

arxiv: v1 [astro-ph.ga] 10 Dec 2015 DRAFT VERSION AUGUST 21, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS MONICA VALLURI 1 Department of Astronomy,

More information

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago The Milky Way in the cosmological context Andrey Kravtsov The University of Chicago Milky Way and Its Stars, KITP, 2 February 2015 Cosmological context: hierarchical structure formation from a Gaussian

More information

Co-Evolution of Central Black Holes and Nuclear Star Clusters

Co-Evolution of Central Black Holes and Nuclear Star Clusters Co-Evolution of Central Black Holes and Nuclear Star Clusters Oleg Gnedin (University of Michigan) Globular clusters in the Galaxy median distance from the center is 5 kpc Resolved star cluster highest

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies Gerry Gilmore H47 email: gil@ast.cam.ac.uk Lectures: Monday 12:10-13:00 Wednesday 11:15-12:05 Friday 12:10-13:00 Books: Binney & Tremaine Galactic Dynamics Princeton

More information

Formation and evolution of CDM halos and their substructure

Formation and evolution of CDM halos and their substructure Formation and evolution of CDM halos and their substructure 1) cold dark matter and structures on all scales 2) via lactea, z=0 results 3) subhalo evolution Jürg Diemand UC Santa Cruz 4) DM annihilation

More information

Formation and cosmic evolution of supermassive black holes. Debora Sijacki

Formation and cosmic evolution of supermassive black holes. Debora Sijacki Formation and cosmic evolution of supermassive black holes Debora Sijacki Summer school: Black Holes at all scales Ioannina, Greece, Sept 16-19, 2013 Lecture 1: - formation of black hole seeds - low mass

More information

On the Formation of Elliptical Galaxies. George Locke 12/8/09

On the Formation of Elliptical Galaxies. George Locke 12/8/09 On the Formation of Elliptical Galaxies George Locke 12/8/09 Two Opposing Theories Monolithic collapse Global star formation event creates ellipsoidal galaxies Most accrete gas and form disks Hierarchical

More information

Dark matter and galaxy formation

Dark matter and galaxy formation Dark matter and galaxy formation Galaxy rotation The virial theorem Galaxy masses via K3 Mass-to-light ratios Rotation curves Milky Way Nearby galaxies Dark matter Baryonic or non-baryonic A problem with

More information

SEMIANALYTICAL DARK MATTER HALOS AND THE JEANS EQUATION

SEMIANALYTICAL DARK MATTER HALOS AND THE JEANS EQUATION The Astrophysical Journal, 634:756 774, 2005 December 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. SEMIANALYTICAL DARK MATTER HALOS AND THE JEANS EQUATION Crystal

More information

arxiv:astro-ph/ v1 19 Nov 1999

arxiv:astro-ph/ v1 19 Nov 1999 Where are the First Stars now? Simon D.M. White & Volker Springel Max-Planck-Institute for Astrophysics, Garching bei München, Germany arxiv:astro-ph/9911378v1 19 Nov 1999 Abstract. We use high-resolution

More information

Course of Galaxies course organizer: Goeran Ostlin ESSAY. X-ray physics of Galaxy Clusters

Course of Galaxies course organizer: Goeran Ostlin ESSAY. X-ray physics of Galaxy Clusters Course of Galaxies course organizer: Goeran Ostlin ESSAY X-ray physics of Galaxy Clusters Student: Angela Adamo angela@astro.su.se fall 2006 Front:-The double cluster A1750. The contours of the XMM-Newton

More information

Dry minor mergers and size evolution of high-z compact massive early-type galaxies

Dry minor mergers and size evolution of high-z compact massive early-type galaxies MNRAS 428, 641 657 (2013) doi:10.1093/mnras/sts047 Dry minor mergers and size evolution of high-z compact massive early-type galaxies Taira Oogi andasaohabe Department of Cosmosciences, Graduate School

More information

Dark Matter Halos. They will have a large impact on galaxies

Dark Matter Halos. They will have a large impact on galaxies Dark Matter Halos Dark matter halos form through gravitational instability. Density perturbations grow linearly until they reach a critical density, after which they turn around from the expansion of the

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information