Theorem : Proof... Pavel Kroupa. Pavel Kroupa: AIfA, University of Bonn

Size: px
Start display at page:

Download "Theorem : Proof... Pavel Kroupa. Pavel Kroupa: AIfA, University of Bonn"

Transcription

1 Theorem : dsph = TDG = LCDM Proof... Pavel Kroupa 1

2 Two Zwicky Conjectures of fundamental importance : 1. Zwicky (1937) galaxies are about 500 times heavier in the Coma galaxy cluster than judged from their light emission. This is his famous conjecture that there must be dark matter. 2. Zwicky (1956) : when galaxies interact (e.g. when they collide), the expelled matter can re-condense in regions and form new smaller (dwarf) galaxies. This is his famous conjecture that tidal-dwarf galaxies can form out of the collisional debris of other galaxies. Both have to be true... 2

3 the LCDM model Structures form according to the cosmological merger tree the beginning Lacey & Cole (1993) today 3

4 250 kpc by Zwicky's 1st conjecture Astrophysics of Galaxies VIII: LG 4

5 Structures form according to the cosmological merger tree the beginning Lacey & Cole (1993) by Zwicky's 2nd conjecture TDGs form today 5

6 (Weilbacher et al. 2000) N TDG 14 6

7 Fritz Zwicky's two conjectures have two immediate implications : 1. There exist large numbers of dark-matter dominated satellite galaxies (e.g. Moore et al., Klypin et al.). 2. There exist large numbers of newly formed (tidal-dwarf) satellite galaxies (they do not contain dark matter) (Okazaki & Taniguchi 2000). This is OK, but are there two different types of dwarf galaxy? 7

8 Radius vs luminosity : Dabringhausen, Hilker, Kroupa 2008; Misgeld & Hilker 2011 Forbes, Lasky, Graham, Spitler 2008 dsph satellite galaxies de galaxies E galaxies star clusters UCDs/ Hilker objects faint / low-mass 10 6 M 8 bright / massive 8

9 Radius vs luminosity : Dabringhausen, Hilker, Kroupa 2008; Misgeld & Hilker 2011 Forbes, Lasky, Graham, Spitler 2008 dsph satellite galaxies Our dwarfs of interest de galaxies E galaxies Gilmore gap star clusters UCDs/ Hilker objects M M faint / low-mass 10 6 M 9 bright / massive 9

10 Radius vs luminosity : Dabringhausen, Hilker, Kroupa 2008; Misgeld & Hilker 2011 Forbes, Lasky, Graham, Spitler 2008 dsph satellite galaxies Our dwarfs of interest de galaxies E galaxies Gilmore gap star clusters UCDs/ Hilker objects M M faint / low-mass 10 6 M 10 bright / massive 10

11 Radius vs luminosity : Dabringhausen, Hilker, Kroupa 2008; Misgeld & Hilker 2011 Forbes, Lasky, Graham, Spitler 2008 dsph satellite galaxies Our dwarfs of interest de galaxies E galaxies Gilmore gap star clusters t relax > τ Hubble = galaxies UCDs/ Hilker objects M M faint / low-mass 10 6 M 11 bright / massive 11

12 Fritz Zwicky's two conjectures have two immediate implications : 1. There exist large numbers of dark-matter dominated satellite galaxies. 2. There exist large numbers of newly formed (tidal-dwarf) satellite galaxies (they do not contain dark matter). This is OK, but are there two different types of dwarf galaxy? 12

13 No, there is only one type of dwarf galaxy! But, which one? And why only one? 13

14 Lets consider first the dark-matter type satellite dwarf galaxy. Test this idea with calculations within the LCDM framework: 14

15 The mass-luminosity relation : energy balance: more gravitating mass, more luminous mass? 15

16 The mass - luminosity relation of satellite galaxies expected κ > 0 log 20 (M 0.3 kpc /M ) = log 10 (M 03 /M )+κ log 10 (L V /L V, ) 16

17 The DM-mass--luminosity relation of satellite galaxies Theory - Models of Satellites Wadepuhl & Springel (2010) + many other groups Dark-matter models behave correctly expected κ > 0 L/Lsun 17

18 The DM-mass--luminosity relation of satellite galaxies Observations - empirical data of Satellites Observations observed : κ =0 expected κ > 0 Strigari et al. (2008) confirmed by Wolf et al. (2010) 18

19 Kroupa et al. (2010, A&A) A) Dekel & Silk (1986); Dekel &Woo (2003), stellar feedback; B) Busha et al. (2010), their SPS in-homogeneous re-ionisation; C) Macci`o et al. (2010), SAM; D) Okamoto & Frenk (2009), Aq-D-HR; E) 1 and 5 kev WDM model of Macci`o & Fontanot (2010); F) Aquarius sub-halo-infall models of Cooper et al. (2010). log 20 (M 0.3 kpc /M ) = log 10 (M 03 /M )+κ log 10 (L V /L V, ) 19

20 All model satellite populations have κ > 0 The lack of an observed mass-luminosity relation ( κ 0 ) nature apparently does not care about the existence of the putative dark matter halo. 20

21 Thus, the concept of dark-matter halos appears to be unphysical for dsph satellites dark-matter halos 21

22 Individual dsph morphology : DM gravitating potential : smooth luminous morphology? 22

23 Significant isophote structure is present in many dsph satellites despite a large σ 700 pc/100 Myr Substructure should smear-out if is really due to a DM halo, unless it has a harmonic core. σ consistent with DM halo? 23

24 ( M L ( M L UMi D=65kpc (Kleyna et al. 1998) ) ) 0,V tot,v (Mateo 1998) But : ( M L ) = 60 = 79 = 12 particles (Gomez-Flechoso & Martinez-Delgado 2003) 24

25 UMi D=65kpc (Martinez-Delgado et al., in prep) Substructure significant : (Kleyna et al. 2003) 25

26 UMi D=65kpc (Martinez-Delgado et al., in prep) S shape : strong evidence for extra-tidal stars Massive CDM halo? 26

27 Fornax D=140kpc (Demers et al. 1994) ( ) M L ( ) M L 0,V tot,v (Mateo 1998) =4.8 =4.4 Not consistent with being embedded / shielded by an extensive dark-matter subhalo! 27

28 Carina D=93kpc (Walcher et al. 2003) ( M L ( M L ) ) 0,V 0,V (Mateo 1998) = 30 = 31 28

29 Hercules D=130kpc (Coleman et al. 2007) 29

30 The distortions apparent in many of the dsph satellites do not support the notion that they are shielded by dark-matter halos M dark-matter halos 30

31 The spatial distribution of the MW satellites... further clues 31

32 Structures form according to the cosmological merger tree the beginning Lacey & Cole (1993) today 32

33 250 kpc Astrophysics of Galaxies VIII: LG 33

34 MW satellites are in a disk-like configuration: the 11 classical (brightest) satellites new satellites Kroupa et al. (2010, A&A) 34

35 MW satellites are in a disk-like configuration: the 11 classical (brightest) satellites new satellites Kroupa et al. (2010, A&A) N out N out N out N in N in N out 35

36 MW satellites are in a disk-like configuration: Kroupa et al. (2010, A&A) N in N out N in = N out 36

37 MW satellites are in a disk-like configuration: Kroupa et al. (2010, A&A) 37

38 MW satellites are in a disk-like configuration: Kroupa et al. (2010, A&A) 38

39 Thus, the 13 new ultra-faint and the 11 classical satellites independently define the same Disk of Satellites (DoS). 39

40 Disk of Satellites a rotational structure? the 11 classical (brightest) satellites new satellites Kroupa et al. (2010, A&A) inner satellites define { orbital angular momentum 40

41 the Galactic sky (Galactic spherical coordinates) Directions of orbital angular momentum Galactic equator South GP Pawlowski et al

42 the Galactic sky (Galactic spherical coordinates) Directions of orbital angular momentum South GP Pawlowski et al

43 Disk of Satellites a rotational structure? the 11 classical (brightest) satellites new satellites Kroupa et al. (2010, A&A) inner satellites define { orbital angular momentum } } n outer satellites define n normal to DoS 43

44 the Galactic sky (Galactic spherical coordinates) South GP Pawlowski et al

45 the Galactic sky (Galactic spherical coordinates) South GP Pawlowski et al

46 This correlated phase-space population is inconsistent with the satellites being dark-matter sub-haloes that fell into the MW halo in a group or individually. dark-matter halos 46

47 Logical inconsistencies within LCDM framework 47

48 Deason et al. (2011, MNRAS) (abstract): To get the DoS: "The satellite galaxies have been accreted relatively recently" Nichols & Bland-Hawthorn (2011, ApJ) ignore the DoS (abstract): Get gas-poor dsph around the Galaxy and M31: "if the dwarfs fell in at high redshifts (z~3-10)." 48

49 All these independent arguments The dark-matter ansatz fails. (no consistent natural solution has come forth) 49

50 Remember the two implications of Fritz Zwicky's two conjectures : 1. There exist large numbers of dark-matter dominated satellite galaxies 2. There exist large numbers of newly formed (tidal-dwarf) satellite galaxies. No, there is only one type of dwarf galaxy! But, which one? And why only one? 50

51 Lets consider now the tidal-dwarf type satellite dwarf galaxy : 51

52 Pioneering work by Tidal dwarf galaxies. Felix Mirabel, Pierre-Alain Duc, Frederic Bournaud, Francoise Combes, Olivier Tiret = "The French" And see also Barnes & Hernquist; Elmegreen; Wetzstein 52

53 Tidal tails Miho & Maxwell, web 53

54 54

55 (Weilbacher et al. 2000) N TDG 14 55

56 Relevance : The collision of two disks at high redshift Wetzstein, Naab & Burkert

57 Wetzstein, Naab & Burkert

58 Thus, by direct observation new dwarf galaxies with masses comparable to de/dsph galaxies form like shrapnel. They are baryon dominated (Barnes & Hernquist 1992). 58

59 Evolution of TDGs The Time 59 59

60 Evolve dwarf galaxies w/o dark matter in a computer 60

61 61

62 Star-cluster complex (cf Tadpole) 50 clusters each 10 6 M clusters as fundamental galactic building blocks Spheroidal dwarf galaxy! (Fellhauer et al. 2001, 2002a,b,c, 2005; Bekki et al. 2004) 62

63 1-10% of population in remnant 63

64 (Kroupa 1997) e =0.74 Remnants have a highly anisotropic f(r,v) and mass 10 5 M R few 100 pc M L 102 3! and e =

65 Hercules D=130kpc (Coleman et al. 2007) 65

66 Hercules D=130kpc (Coleman et al. 2007) 66

67 !{ (Kroupa 1997) very similar to Hercules M V = 9 mag r 0.5 = 180 pc M L =

68 This is a real prediction 10 years before the discovery of this type of celestial object! 68

69 For TDGs we know today that The early (<100Myr) star-formation and chemical enrichment evolution is similar to the observed dsph satellites. (Recchi et al. 2007) Later dynamical evolution does not destroy the satellites. (Kroupa 1997) The number of old TDGs amounts to the de population observed. (Okazaki & Taniguchi 2000) de galaxies are observed to contain no Dark Matter, consistent with them being TDGs. (Toloba et al. 2010, arxiv: v1) 69

70 What about the disklike configuration of MW satellites? the 11 classical (brightest) satellites new satellites Kroupa et al. (2010, A&A) 70

71 (Weilbacher et al. 2000) bulge formation Phase-space correlated satellites form naturally in the same event as a bulge does. TDG formation 71

72 ... and, a bulge mass vs number of satellites correlation? bulge 72

73 A bulge - satellite correlation Kroupa et al. (2010, A&A) 73

74 Both, the Disk of Satellites and the bulge--satellite correlation are naturally understandable if the MW satellites are ancient TDGs. (Kroupa et al. 2010) 74

75 Other extragalactic correlated dsph satellite systems 75

76 NGC 1097 s dog-leg tidal stream Galianni, Patat et al. (2010 A&A) NGC 1097A "Jet2" = dog leg is a stellar stream NGC

77 NGC 1097 s dog-leg tidal stream Galianni, Patat et al. (2010 A&A) Knot B Knot A (Kroupa et al. 2010) 77

78 NGC 5557 (post-merger 2-3 Gyr) Duc et al. (2011 MNRAS) 200 kpc dsph dsph Text dsph (Kroupa et al. 2010) 78

79 The observed and theoretical TDGs coincide with de galaxies! 79

80 Thus, (1) a fully self-consistent TDG scenario thus emerges which very naturally accounts for the properties of de and satellite galaxies; (2) no consistent, and in fact a contradictory picture emerges in the dark-matter framework; (3) there is simply no evidence for the existence of DM satellites. 80

81 Dark matter galaxies vs baryonic ones : why so similar? 81

82 Gentile et al., dark matter objects 2007} The Tully -Fisher Relation : 82

83 TDGs } dark matter objects But TDGs are purely baryonic objects. So, why are they so similar to the other galaxies? Gentile et al., 2007 The Tully -Fisher Relation and internal dynamics of young TDGs : 83

84 ... Summary & Conclusions... 84

85 The two Fritz Zwicky Conjectures : A. DM dominates large galaxies (postulate from kinematics). CONTRADICTION because B. New dwarf galaxies form in tidal debris (direct observational fact). 1. There must be many satellite galaxies with massive dark matter halos (type A dwarfs). 2. there must be many (tidal - dwarf) satellite galaxies without dark matter (type B dwarfs). But only one type of de / dsph galaxy is observed to exist. This can only be type B because this type is a consequence of well-known physical laws. The DoS and bulge-satellite correlation are additional, independent, supporting evidence. DISCARD Conjecture A. 85

86 I think, this is where we are seeing new physics worthy of exploration. 86

87 dsph = TDG = LCDM 87

88 The END 88

Cold/Warm Dark Matter is ruled out

Cold/Warm Dark Matter is ruled out Dark Matter: a debate Cold/Warm Dark Matter is ruled out Pavel Kroupa Argelander-Institute for Astronomy University of Bonn Bethe Colloquium, 18th November 2010 1 A historical perspective : 500 years ago

More information

The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW

The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW Marcel S. Pawlowski (mpawlow@astro.uni-bonn.de) Supervisor: Pavel Kroupa (Bonn) Collaborators: Jan Pflamm-Altenburg

More information

arxiv: v1 [astro-ph.co] 6 Nov November 2012

arxiv: v1 [astro-ph.co] 6 Nov November 2012 Mon. Not. R. Astron. Soc. 000, 1 18 (2012) Printed 8 November 2012 (MN LATEX style file v2.2) Dwarf elliptical galaxies as ancient tidal dwarf galaxies J. Dabringhausen 1, P. Kroupa 1 1 Argelander Institute

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Small-scale problems of cosmology and how modified dynamics might address them

Small-scale problems of cosmology and how modified dynamics might address them Small-scale problems of cosmology and how modified dynamics might address them Marcel S. Pawlowski Email: marcel.pawlowski@case.edu Twitter: @8minutesold with support from the John Templeton Foundation

More information

IMPACT OF A MAJOR MERGER IN THE LOCAL GROUP

IMPACT OF A MAJOR MERGER IN THE LOCAL GROUP SF2A 2013 L. Cambrésy, F. Martins, E. Nuss and A. Palacios (eds) IMPACT OF A MAJOR MERGER IN THE LOCAL GROUP S. Fouquet 1, F. Hammer 1,, Y. Yang 1, 2, M. Puech 1 and H. Flores 1 Abstract. The Local Group

More information

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern Spiral Structure In the mid-1960s Lin and Shu proposed that the spiral structure is caused by long-lived quasistatic density waves The density would be higher by about 10% to 20% Stars, dust and gas clouds

More information

A new mechanism for the formation of PRGs

A new mechanism for the formation of PRGs A new mechanism for the formation of PRGs Spavone Marilena (INAF-OAC) Iodice Enrica (INAF-OAC), Arnaboldi Magda (ESO-Garching), Longo Giuseppe (Università Federico II ), Gerhard Ortwin (MPE-Garching).

More information

The dark matter crisis

The dark matter crisis The dark matter crisis Ben Moore Department of Physics, Durham University, UK. arxiv:astro-ph/0103100 v2 8 Mar 2001 Abstract I explore several possible solutions to the missing satellites problem that

More information

arxiv: v1 [astro-ph.ga] 11 Jan 2011

arxiv: v1 [astro-ph.ga] 11 Jan 2011 A Universe of Dwarf Galaxies, Lyon 2010 Editors : will be set by the publisher EAS Publications Series, Vol.?, 2017 arxiv:1101.2232v1 [astro-ph.ga] 11 Jan 2011 HOW DOES FEEDBACK AFFECT MILKY WAY SATELLITE

More information

Structure and substructure in dark matter halos

Structure and substructure in dark matter halos Satellites and Tidal Streams ING IAC joint Conference La Palma, May 2003 Structure and substructure in dark matter halos Simon D.M. White Max Planck Institute for Astrophysics 500 kpc A CDM Milky Way Does

More information

Dark Matter Dominated Objects. Louie Strigari Stanford

Dark Matter Dominated Objects. Louie Strigari Stanford Dark Matter Dominated Objects Louie Strigari Stanford Milky Way Circa 2009 Satellite Year Discovered LMC 1519 SMC 1519 Sculptor 1937 Fornax 1938 Leo II 1950 Leo I 1950 Ursa Minor 1954 Draco 1954 Carina

More information

Dwarf Galaxies - ideal Laboratories to study astrophysical Processes

Dwarf Galaxies - ideal Laboratories to study astrophysical Processes Dwarf Galaxies - ideal Laboratories to study astrophysical Processes Gerhard Hensler University of Vienna Lecture 1 Lecture "Dwarf Galaxies",, Thursday 11:30 am Content/Presenter 7.3. Organization 14.3.

More information

Galaxies as simple dynamical systems: Observational data disfavor dark matter and stochastic star formation Pavel Kroupa

Galaxies as simple dynamical systems: Observational data disfavor dark matter and stochastic star formation Pavel Kroupa Galaxies as simple dynamical systems: Observational data disfavor dark matter and stochastic star formation Pavel Kroupa This manuscript is part of a special issue whose topic is MOND: http://www.nrcresearchpress.com/toc/cjp/93/2

More information

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos Mia S. Bovill with Massimo Ricotti University of Maryland The Smallest Galaxies Minihalos DO NOT initiate gas condensation

More information

Galaxy classification

Galaxy classification Galaxy classification Questions of the Day What are elliptical, spiral, lenticular and dwarf galaxies? What is the Hubble sequence? What determines the colors of galaxies? Top View of the Milky Way The

More information

What do we need to know about galaxy formation?

What do we need to know about galaxy formation? What do we need to know about galaxy formation? rachel somerville University of Michigan Hubble Science Legacy Workshop April 2002 what s next? test the CDM paradigm constrain the nature of the dark matter

More information

Veilleux! see MBW ! 23! 24!

Veilleux! see MBW ! 23! 24! Veilleux! see MBW 10.4.3! 23! 24! MBW pg 488-491! 25! But simple closed-box model works well for bulge of Milky Way! Outflow and/or accretion is needed to explain!!!metallicity distribution of stars in

More information

Dwarf Galaxies as Cosmological Probes

Dwarf Galaxies as Cosmological Probes Dwarf Galaxies as Cosmological Probes Julio F. Navarro The Ursa Minor dwarf spheroidal First Light First Light The Planck Satellite The Cosmological Paradigm The Clustering of Dark Matter The Millennium

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

arxiv: v1 [astro-ph.co] 14 Jun 2011

arxiv: v1 [astro-ph.co] 14 Jun 2011 Astronomy & Astrophysics manuscript no. 15021 c ESO 2011 June 16, 2011 Making Counter-Orbiting Tidal Debris The Origin of the Milky Way Disc of Satellites M. S. Pawlowski, P. Kroupa, and K. S. de Boer

More information

ISSN Article. Academic Editor: Alexei Moiseev, José Alfonso López Aguerri and Enrichetta Iodice

ISSN Article. Academic Editor: Alexei Moiseev, José Alfonso López Aguerri and Enrichetta Iodice Galaxies 2015, 3, 184-191; doi:10.3390/galaxies3040184 OPEN ACCESS galaxies ISSN 2075-4434 www.mdpi.com/journal/galaxies Article Tidal Dwarf Galaxies: Disc Formation at z 0 Federico Lelli 1, *, Pierre-Alain

More information

ON THE CHEMICAL EVOLUTION OF THE MILKY WAY. The Metallicity distribution of the halo in the hierarchical merging paradigm

ON THE CHEMICAL EVOLUTION OF THE MILKY WAY. The Metallicity distribution of the halo in the hierarchical merging paradigm ON THE CHEMICAL EVOLUTION OF THE MILKY WAY The Metallicity distribution of the halo in the hierarchical merging paradigm Halo abundance patterns and stellar yields Standard chemical evolution of solar

More information

AS1001:Extra-Galactic Astronomy

AS1001:Extra-Galactic Astronomy AS1001:Extra-Galactic Astronomy Lecture 5: Dark Matter Simon Driver Theatre B spd3@st-andrews.ac.uk http://www-star.st-and.ac.uk/~spd3 Stars and Gas in Galaxies Stars form from gas in galaxy In the high-density

More information

Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc

Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc Hubble Sequence Lecture Three: Fundamental difference between Elliptical galaxies and galaxies with disks, and variations of disk type & importance of bulges Observed Properties of Galaxies, contd.! Monday

More information

arxiv:astro-ph/ v1 19 Nov 1999

arxiv:astro-ph/ v1 19 Nov 1999 Where are the First Stars now? Simon D.M. White & Volker Springel Max-Planck-Institute for Astrophysics, Garching bei München, Germany arxiv:astro-ph/9911378v1 19 Nov 1999 Abstract. We use high-resolution

More information

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies Phys/Astro 689: Lecture 12 The Problems with Satellite Galaxies The Problems with Satellites (1) The Missing Satellites Problem (2) The Too Big to Fail Problem We ll examine potential solutions to each

More information

MOND and the Galaxies

MOND and the Galaxies MOND and the Galaxies Françoise Combes Observatoire de Paris With Olivier Tiret Angus, Famaey, Gentile, Wu, Zhao Wednesday 1st July 2009 MOND =MOdified Newtonian Dynamics Modification at weak acceleration

More information

The Milky Way and Near-Field Cosmology

The Milky Way and Near-Field Cosmology The Milky Way and Near-Field Cosmology Kathryn V Johnston (Columbia University) Collaborators (theorists): James S Bullock (Irvine), Andreea Font (Durham), Brant Robertson (Chicago), Sanjib Sharma (Columbia),

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

arxiv: v1 [astro-ph] 31 Jul 2007

arxiv: v1 [astro-ph] 31 Jul 2007 Mon. Not. R. Astron. Soc. 000, 1?? (1994) Printed 1 February 8 (MN LATEX style file v1.4) Origin of lower velocity dispersions of ultra-compact dwarf galaxy populations in clusters of galaxies K. Bekki

More information

What are the best constraints on theories from galaxy dynamics?

What are the best constraints on theories from galaxy dynamics? What are the best constraints on theories from galaxy dynamics? TDG in MOND DM MOND Françoise Combes Observatoire de Paris Tuesday 29 June 2010 O.Tiret Still most baryons are unidentified 6% in galaxies

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

Dwarf galaxies and the formation of the Milky Way

Dwarf galaxies and the formation of the Milky Way Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

Masses of Dwarf Satellites of the Milky Way

Masses of Dwarf Satellites of the Milky Way Masses of Dwarf Satellites of the Milky Way Manoj Kaplinghat Center for Cosmology UC Irvine Collaborators: Greg Martinez Quinn Minor Joe Wolf James Bullock Evan Kirby Marla Geha Josh Simon Louie Strigari

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018 Galaxy clusters László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 April 6, 2018 Satellite galaxies Large galaxies are surrounded by orbiting dwarfs approx. 14-16 satellites

More information

Lecture Three: Observed Properties of Galaxies, contd. Longair, chapter 3 + literature. Monday 18th Feb

Lecture Three: Observed Properties of Galaxies, contd. Longair, chapter 3 + literature. Monday 18th Feb Lecture Three: Observed Properties of Galaxies, contd. Longair, chapter 3 + literature Monday 18th Feb 1 The Hertzsprung-Russell Diagram magnitude colour LOW MASS STARS LIVE A VERY VERY LONG TIME! 2 The

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

modified gravity? Chaire Galaxies et Cosmologie XENON1T Abel & Kaehler

modified gravity? Chaire Galaxies et Cosmologie XENON1T Abel & Kaehler Dark matter or modified gravity? Chaire Galaxies et Cosmologie Françoise Combes 11 December, 2017 XENON1T Abel & Kaehler Why modified gravity? CDM models beautifully account for LSS, CMB, galaxy formation

More information

Upcoming class schedule

Upcoming class schedule Upcoming class schedule Thursday March 15 2pm AGN evolution (Amy Barger) th Monday March 19 Project Presentation (Brad) nd Thursday March 22 postponed to make up after spring break.. Spring break March

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Globular Clusters in relation to the VPOS of the Milky Way

Globular Clusters in relation to the VPOS of the Milky Way Globular Clusters in relation to the VPOS of the Milky Way Marcel S. Pawlowski marcel.pawlowski@case.edu Collaborators: Australia: Duncan Forbes, Helmut Jerjen Austria: Gerhard Hensler, Sylvia Plöckinger

More information

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution Chap.3 The nature of Galactic components Overview of (old) Galactic components bulge, thick disk, metal-weak halo Globular clusters metallicity & age distribution Satellite galaxies spatial and metallicity

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching gerhard@mpe.mpg.de 1. Preamble Arnaboldi et al 2013 2. Predictions: ETG halos in cosmological simulations 3.

More information

UMa II and the Orphan Stream

UMa II and the Orphan Stream UMa II and the Orphan Stream M. Fellhauer The Cambridge Mafia Field of Streams Belokurov et al. 2006 A short The Bifurcation of the Sagittarius stream: (a typical Sagittarius like simulation) Fellhauer

More information

Peculiar (Interacting) Galaxies

Peculiar (Interacting) Galaxies Peculiar (Interacting) Galaxies Not all galaxies fall on the Hubble sequence: many are peculiar! In 1966, Arp created an Atlas of Peculiar Galaxies based on pictures from the Palomar Sky Survey. In 1982,

More information

IV. Interacting Galaxies

IV. Interacting Galaxies IV. Interacting Galaxies Examples of galaxies in interaction: Pairs of galaxies (NGC 4038/39) M 51 type (satellites) Arp 220 type Compact galaxy groups 2 1 B.A. Vorontsov-Velyaminov: Atlas and Catalog

More information

Phys/Astro 689: Lecture 11. Tidal Debris

Phys/Astro 689: Lecture 11. Tidal Debris Phys/Astro 689: Lecture 11 Tidal Debris Goals (1) We ll explore whether we can trace the accretion events that should have formed the Milky Way. (2) We ll discuss the impact of tidal debris on direct detection

More information

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse

Reionization. High-Redshift Galaxy UV Luminosity Function. Axion Dark Matter. Rosemary Wyse Reionization and the High-Redshift Galaxy UV Luminosity Function with Axion Dark Matter Rosemary Wyse Johns Hopkins University and University of Edinburgh Brandon Bozek, Doddy Marsh & Joe Silk Galaxy-scale

More information

Stellar Populations in the Galaxy

Stellar Populations in the Galaxy Stellar Populations in the Galaxy Stars are fish in the sea of the galaxy, and like fish they often travel in schools. Star clusters are relatively small groupings, the true schools are stellar populations.

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Elena D Onghia. Harvard Smithsonian Center for Astrophysics. In collaboration with:

Elena D Onghia. Harvard Smithsonian Center for Astrophysics. In collaboration with: Elena D Onghia Harvard Smithsonian Center for Astrophysics In collaboration with: G. Besla, TJ. Cox, C.Faucher Giguere, L. Hernquist, M. Vogelsberger Dwarf spheroidals (dsphs) challenge our understanding!

More information

Why is the dark-matter approach ill-fated?

Why is the dark-matter approach ill-fated? Why is the dark-matter approach ill-fated? First PoR Meeting Observatoire astronomique de Strasbourg 21st of September 2015 Pavel Kroupa Helmholtz-Institut fuer Strahlen und Kernphysik (HISKP) Helmholtz

More information

Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation Numerical Cosmology & Galaxy Formation Lecture 13: Example simulations Isolated galaxies, mergers & zooms Benjamin Moster 1 Outline of the lecture course Lecture 1: Motivation & Historical Overview Lecture

More information

Determining the Nature of Dark Matter with Astrometry

Determining the Nature of Dark Matter with Astrometry Determining the Nature of Dark Matter with Astrometry Louie Strigari UC Irvine Center for Cosmology Fermilab, 4.16.2007 Collaborators: James Bullock, Juerg Diemand, Manoj Kaplinghat, Michael Kuhlen, Piero

More information

Galactic dynamics reveals Galactic history

Galactic dynamics reveals Galactic history Galactic dynamics reveals Galactic history Author: Ana Hočevar Advisor: dr. Tomaž Zwitter Department of Physics, University of Ljubljana March 18, 2006 Abstract Galaxy formation theory which predicts canibalism

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

arxiv:astro-ph/ v1 14 Oct 2003

arxiv:astro-ph/ v1 14 Oct 2003 **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Galaxy threshing and the origin of intracluster stellar objects arxiv:astro-ph/0310350v1 14 Oct 2003 Kenji

More information

Two Phase Formation of Massive Galaxies

Two Phase Formation of Massive Galaxies Two Phase Formation of Massive Galaxies Focus: High Resolution Cosmological Zoom Simulation of Massive Galaxies ApJ.L.,658,710 (2007) ApJ.,697, 38 (2009) ApJ.L.,699,L178 (2009) ApJ.,725,2312 (2010) ApJ.,744,63(2012)

More information

Stellar Populations in the Local Group

Stellar Populations in the Local Group Stellar Populations in the Local Group Recall what we ve learned from the Milky Way: Age and metallicity tend to be correlated: older -> lower heavy element content younger -> greater heavy element content

More information

Modelling the galaxy population

Modelling the galaxy population Modelling the galaxy population Simon White Max Planck Institut für Astrophysik IAU 277 Ouagadougou 1 The standard model reproduces -- the linear initial conditions -- IGM structure during galaxy formation

More information

Probing Galaxy Halos with Tidal Interactions. Kyoto University Astronomy Department June 27, 2013

Probing Galaxy Halos with Tidal Interactions. Kyoto University Astronomy Department June 27, 2013 Probing Galaxy Halos with Tidal Interactions Kyoto University Astronomy Department June 27, 2013 Galaxy Formation Baryons cool & collapse in dark halo potentials. White & Rees 78 Galaxy Formation Baryons

More information

Surface Brightness of Spiral Galaxies

Surface Brightness of Spiral Galaxies Surface Brightness of Spiral Galaxies M104: SA N4535: SAB LMC: dwarf irregular,barred Normal 1/4-law+exp fits An example of surface brightness profile. The top curve is the sum of exp disk+1/4-bulge. The

More information

On MOND and dark matter in ultra compact dwarf galaxies

On MOND and dark matter in ultra compact dwarf galaxies On MOND and dark matter in ultra compact dwarf galaxies Jörg Dabringhausen Argelander-Institut für Astronomie, University of Bonn Pavel Kroupa Michael Hilker, Michael Fellhauer, Steffen Mieske, Michael

More information

Structure of Merger Remnants:

Structure of Merger Remnants: Structure of Merger Remnants: Lessons from Spectral Line Observations John E. Hibbard NRAO-CV Merger Hypothesis: Two gas-rich Spirals Merge into One Elliptical Toomre Sequence of On-going Mergers (Toomre

More information

Dark Matter in Galaxies

Dark Matter in Galaxies Dark Matter in Galaxies Garry W. Angus VUB FWO 3rd COSPA Meeting Université de Liège Ellipticals. Old stars. Gas poor. Low star formation rate. Spiral (disk) galaxies. Often gas rich => star formation.

More information

Dwarf Galaxies in the nearby Universe

Dwarf Galaxies in the nearby Universe Blue Compact Dwarf Galaxies: born to be wild Polychronis Papaderos Centro de Astrofísica da Universidade do Porto & Instituto de Astrofísica e Ciências do Espaço Estallidos Workshop 2015 Granada May 2015

More information

The Role of Dissipation in Spheroid Formation

The Role of Dissipation in Spheroid Formation The Role of Dissipation in Spheroid Formation Philip Hopkins 4/08/08 Lars Hernquist, TJ Cox, John Kormendy, Tod Lauer, Suvendra Dutta, Dusan Keres, Volker Springel Ellipticals & Bulges: Formation in Mergers?

More information

Stellar Streams and Their Importance to Galaxy Formation and Evolution

Stellar Streams and Their Importance to Galaxy Formation and Evolution Department of Physics, Engineering Physics and Astronomy, Queen s University Stellar Streams and Their Importance to Galaxy Formation and Evolution Nicholas Fantin December 9th, 2014 ABSTRACT The Sloan

More information

Mass modelling of dwarf spheroidals. Jorge Peñarrubia

Mass modelling of dwarf spheroidals. Jorge Peñarrubia Mass modelling of dwarf spheroidals Jorge Peñarrubia Santiago de Chile 13 April 2015 Universe Composition Assumption: GR is correct WMAP7 DM particle models: Constraints 63 orders 51 orders DM particle

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Dark Matter in Disk Galaxies

Dark Matter in Disk Galaxies Chapter 14 Dark Matter in Disk Galaxies Rotation curves of disk galaxies rise steeply in their inner regions and then remain roughly flat out to the last point measured. To explain these observations within

More information

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney Class 3 January 23, 2017 The Milky Way Galaxy: Vertical Distributions of Stars & the Stellar Disk disks exist in many astrophysical systems

More information

Dark matter. Anne Green University of Nottingham

Dark matter. Anne Green University of Nottingham Dark matter Anne Green University of Nottingham anne.green@nottingham.ac.uk 1. Observational evidence for DM and constraints on its properties Alternatives to dark matter (modified gravity) 2. The DM distribution

More information

John E. Hibbard NRAO-CV

John E. Hibbard NRAO-CV John E. Hibbard NRAO-CV A Range of Substructures are found in Tidal Tails Outstanding Questions: On what scales (if any) are these structures bound? Is this an evolutionary sequence? Are these Tidal Dwarf

More information

Interacting galaxies: physics and models (Christian Theis, Vienna)

Interacting galaxies: physics and models (Christian Theis, Vienna) Interacting galaxies: physics and models (Christian Theis, Vienna) Examples What can we learn from interactions? How can we learn from interactions: simulation methods parameter space The MW satellite

More information

Clicker Question: Galaxy Classification. What type of galaxy do we live in? The Variety of Galaxy Morphologies Another barred galaxy

Clicker Question: Galaxy Classification. What type of galaxy do we live in? The Variety of Galaxy Morphologies Another barred galaxy Galaxies Galaxies First spiral nebula found in 1845 by the Earl of Rosse. Speculated it was beyond our Galaxy. 1920 - "Great Debate" between Shapley and Curtis on whether spiral nebulae were galaxies beyond

More information

Effects of baryons on the circular velocities of dwarf satellites

Effects of baryons on the circular velocities of dwarf satellites Effects of baryons on the circular velocities of dwarf satellites Anatoly Klypin, Kenza Arraki, Surhud More NMSU, U. Chicago August 15, 2012; Santa Cruz Galaxy Workshop LCDM and dwarfs: love to hate Missing

More information

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012 The HERMES project Reconstructing Galaxy Formation Ken Freeman RSAA, ANU The metallicity distribution in the Milky Way discs Bologna May 2012 HERMES is a new high-resolution fiber-fed multi-object spectrometer

More information

The formation and evolution of globular cluster systems. Joel Pfeffer, Nate Bastian (Liverpool, LJMU)

The formation and evolution of globular cluster systems. Joel Pfeffer, Nate Bastian (Liverpool, LJMU) The formation and evolution of globular cluster systems Joel Pfeffer, Nate Bastian (Liverpool, LJMU) Introduction to stellar clusters Open clusters: few - 10 4 M few Myr - few Gyr solar metallicity disk

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

The dark matter crisis: falsification of the current standard model of cosmology

The dark matter crisis: falsification of the current standard model of cosmology The dark matter crisis: falsification of the current standard model of cosmology Pavel Kroupa Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany Email: pavel@astro.uni-bonn.de

More information

Globular Cluster Systems as Tracers of Galaxy Formation and Evolution

Globular Cluster Systems as Tracers of Galaxy Formation and Evolution Globular Cluster Systems as Tracers of Galaxy Formation and Evolution Clues from MOS Surveys Mihos+2005 Rubén Sánchez-Janssen Plaskett Fellow NRC Herzberg Institute of Astrophysics S/C de la Palma 2015-03-03

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

Modern advances in galactic astrophysics : from scale-invariant dynamics to a successful theory of galaxy formation and evolution.

Modern advances in galactic astrophysics : from scale-invariant dynamics to a successful theory of galaxy formation and evolution. Modern advances in galactic astrophysics : from scale-invariant dynamics to a successful theory of galaxy formation and evolution Lecture 3 Structures on large scales and performance of the SMoC; Correlations

More information

Firenze (JPO: 28/07/17) Small Scale Crisis for CDM: Fatal or a Baryon Physics Fix

Firenze (JPO: 28/07/17) Small Scale Crisis for CDM: Fatal or a Baryon Physics Fix Firenze (JPO: 28/07/17) Small Scale Crisis for CDM: Fatal or a Baryon Physics Fix CBR Spectrum Planck and all-a Perfect Fit to the CDM Expectation Precise measurements of the CBR specify the cosmological

More information

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context Simon White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al

More information

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago

The Milky Way in the cosmological context. Andrey Kravtsov The University of Chicago The Milky Way in the cosmological context Andrey Kravtsov The University of Chicago Milky Way and Its Stars, KITP, 2 February 2015 Cosmological context: hierarchical structure formation from a Gaussian

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies Gerry Gilmore H47 email: gil@ast.cam.ac.uk Lectures: Monday 12:10-13:00 Wednesday 11:15-12:05 Friday 12:10-13:00 Books: Binney & Tremaine Galactic Dynamics Princeton

More information

A tool to test galaxy formation theories. Joe Wolf (UC Irvine)

A tool to test galaxy formation theories. Joe Wolf (UC Irvine) A tool to test galaxy formation theories Joe Wolf (UC Irvine) SF09 Cosmology Summer Workshop July 7 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Frank Avedo KIPAC: Louie Strigari Haverford:

More information

Dark matter and galaxy formation

Dark matter and galaxy formation Dark matter and galaxy formation Galaxy rotation The virial theorem Galaxy masses via K3 Mass-to-light ratios Rotation curves Milky Way Nearby galaxies Dark matter Baryonic or non-baryonic A problem with

More information

Baryons MaEer: Interpre>ng the Dark MaEer Model

Baryons MaEer: Interpre>ng the Dark MaEer Model Baryons MaEer: Interpre>ng the Dark MaEer Model Alyson Brooks Rutgers, the State University of New Jersey In collabora>on with the University of Washington s N- body Shop makers of quality galaxies Most

More information

On the Formation of Elliptical Galaxies. George Locke 12/8/09

On the Formation of Elliptical Galaxies. George Locke 12/8/09 On the Formation of Elliptical Galaxies George Locke 12/8/09 Two Opposing Theories Monolithic collapse Global star formation event creates ellipsoidal galaxies Most accrete gas and form disks Hierarchical

More information

WOLFGANG KLASSEN DARK MATTER

WOLFGANG KLASSEN DARK MATTER 1 WOLFGANG KLASSEN DARK MATTER "Hubble Maps the Cosmic Web of "Clumpy" Dark Matter in 3-D" (Press release). NASA. 7 January 2007. DARK MATTER 2 CONTENTS 1.Relating Mass and Light Tulley-Fisher relation

More information

Summary of Last Lecture - Local Group!

Summary of Last Lecture - Local Group! Summary of Last Lecture - Local Group Discussion of detailed properties of M31, M33 comparison to MW; differences in how they formed; MW very few 'major mergers' M31 more; not all galaxies even those close

More information

Milky Way Companions. Dave Nero. February 3, UT Astronomy Bag Lunch

Milky Way Companions. Dave Nero. February 3, UT Astronomy Bag Lunch UT Astronomy Bag Lunch February 3, 2008 Outline 1 Background 2 Cats and Dogs, Hair and a Hero 3 Theoretical Evolution of the Galactic Halo Outline Background 1 Background 2 Cats and Dogs, Hair and a Hero

More information

This week at Astro 3303

This week at Astro 3303 This week at Astro 3303 HW #8-10 deal with your final project! (HW#8 is posted already) The project counts 20% of the grade and is expected to be a significant piece of work. HW#8 for next Wed: prepare

More information