Hydro ART simulations sample

Size: px
Start display at page:

Download "Hydro ART simulations sample"

Transcription

1 Hydro ART simulations sample Stellar Merger Trees Dylan Tweed Racah Institute of Physics, HUJI, Jerusalem CANDELS Theory Workshop - UCSC - August 8 th 10 th 2012 D. P. Tweed Racah Institute 8/8/ / 18

2 of ART simulations. Collaborators, Daniel Ceverino, Nir Mandelker, Adi Zolotov, Marcello Cacciatto, Loren Hoffman, Avishai Dekel, Joel Primack. AMR simulation hydro ART, (Kratsov, Klypin), 30 zoom-in simulations of high redshift galaxies, spatial resolution kpc. Main focus, VDI, disc evolution, bulge formation. D. P. Tweed Racah Institute 8/8/ / 18

3 Intro section Sample Galaxy Target Mv Rv Mv Mstar Mg afin M kpc M M M MW MW MW MW MW MW MW MW MW MW MW VL VL VL VL VL VL VL VL VL VL VL VL SFG SFG SFG SFG SFG D. P. Tweed Racah Institute 8/8/ / 18

4 Gas mosaics D. P. Tweed Racah Institute 8/8/ / 18

5 Gas mosaics D. P. Tweed Racah Institute 8/8/ / 18

6 Gas mosaics D. P. Tweed Racah Institute 8/8/ / 18

7 Gas mosaics D. P. Tweed Racah Institute 8/8/ / 18

8 Overview D. P. Tweed Racah Institute 8/8/ / 18

9 Pipeline 1 Group finding on stellar component: Galaxies, clumps. 2 Merger trees. 3 : Galaxy evolution, In-situ clump, Ex-situ clump (mergers/interactions) D. P. Tweed Racah Institute 8/8/ / 18

10 AdaptaHOP AdaptaHOP: group-finder algorithm, inspired from SUBFIND and HOP Written in 2003 by Stéphane Colombi. Incorporated to SAM GalICS (Galaxies In Cosmological Simulations) from 2005 as part of the Horizon Project ( PI: Romain Teyssier) Also used to detect clumps in AMR zoom-in simulations Ramses (Devriendt) ART (Tweed). D. P. Tweed Racah Institute 8/8/ / 18

11 Basic idea Gets a SPH density for each particle n closest neighbors Oct-tree scheme. Groups particles around local density maxima. Maps those maxima in a structure tree. Defines galaxies and clumps from the hierarchy of density peaks. Note: Galaxies and clumps are not stripped of unbound particles. D. P. Tweed Racah Institute 8/8/ / 18

12 Selection of clumps candidates Number of particles: mass thresholding. shape selection ρ max α > < ρ node >, size r > r ɛ. Removing Poisson noise, < ρ node > > ρ t [1 + fudge/ N] Only topological, no unbinding. D. P. Tweed Racah Institute 8/8/ / 18

13 Mapping the halo internal structure Symbols: filled: local maxima, open: local saddle point Density distribution= groups of particles around maxima connected by saddle points. D. P. Tweed Racah Institute 8/8/ / 18

14 Mapping the halo internal structure Symbols: filled: local maxima, open: local saddle point First density thresholding, cut haloes from the background. ρ t = 80 < ρ DM > analog to FOF b=0.2. D. P. Tweed Racah Institute 8/8/ / 18

15 Mapping the halo internal structure Symbols: filled: local maxima, open: local saddle point Separating local maxima into nodes by increasing density of saddle points D. P. Tweed Racah Institute 8/8/ / 18

16 Mapping the halo internal structure Symbols: filled: local maxima, open: local saddle point Separating local maxima into nodes by increasing density of saddle points D. P. Tweed Racah Institute 8/8/ / 18

17 Mapping the halo internal structure Symbols: filled: local maxima, open: local saddle point Some density peak might not be isolated as node (low number of particles, Poisson noise) D. P. Tweed Racah Institute 8/8/ / 18

18 Merger trees 1 Star particles used as tracer. 2 One descendent per galaxy/clump 3 In-situ clump: no progenitor detected as the separate galaxy. 4 Ex-situ clump: at least one progenitor detected as a separate galaxy. 5 merger fraction. D. P. Tweed Racah Institute 8/8/ / 18

19 Clump finding, clump tracking. a=0.37 D. P. Tweed Racah Institute 8/8/ / 18

20 Clump finding, clump tracking. a=0.37 D. P. Tweed Racah Institute 8/8/ / 18

21 Clump finding, clump tracking. a=0.38 D. P. Tweed Racah Institute 8/8/ / 18

22 Clump finding, clump tracking. a=0.38 D. P. Tweed Racah Institute 8/8/ / 18

23 Clump finding, clump tracking. a=0.39 D. P. Tweed Racah Institute 8/8/ / 18

24 Clump finding, clump tracking. a=0.39 D. P. Tweed Racah Institute 8/8/ / 18

25 Clump finding, clump tracking. a=0.40 D. P. Tweed Racah Institute 8/8/ / 18

26 Clump finding, clump tracking. a=0.40 D. P. Tweed Racah Institute 8/8/ / 18

27 Clump finding, clump tracking. a=0.41 D. P. Tweed Racah Institute 8/8/ / 18

28 Clump finding, clump tracking. a=0.41 D. P. Tweed Racah Institute 8/8/ / 18

29 Clumps co-rotating with the disc. Visualization in the rotation frame of the galaxy 1 Smooth component + In-situ clumps + Ex-situ clumps 1 j z = L star.l gal and j max = r star v star D. P. Tweed Racah Institute 8/8/ / 18

30 Clumps co-rotating with the disc. Visualization in the rotation frame of the galaxy 1 Smooth component + In-situ clumps 1 j z = L star.l gal and j max = r star v star D. P. Tweed Racah Institute 8/8/ / 18

31 Clumps co-rotating with the disc. Visualization in the rotation frame of the galaxy 1 Smooth component 1 j z = L star.l gal and j max = r star v star D. P. Tweed Racah Institute 8/8/ / 18

32 3 criteria classification 1 structural decomposition: (Clump finder), smooth, In-situ clumps, Ex-situ clumps 2 kinematic decomposition: stellar halo, stellar bulge, stellar disc. 3 Stellar origin: (merger trees), star is born in the halo, bulge or disc component, born in a In-situ clump, born ex-situ (merger fraction) D. P. Tweed Racah Institute 8/8/ / 18

33 3 criteria classification Classification scheme Smooth In-situ clumps Ex-situ clumps H B D H B D H B D born in halo born in bulge born in disc born in clump : <f<1: :30<f<1: :10<f<1: :3<f D. P. Tweed Racah Institute 8/8/ / 18

34 3 criteria classification Useful fraction for Bulge( j=1) Disc (j=2) µ IsDisc (j) = 2 k=0 m(2jk)/ ( 7i=0 2k=0 m(ijk) ) µ IsClump (j) = 2 k=0 m(3jk)/ ( 7i=0 2k=0 m(ijk) ) µ Ex situ (j) = ( 7i=4 2k=0 m(ijk) ) / ( 7i=0 2k=0 m(ijk) ) µ f>10 (j) = ( 7i=6 2k=0 m(ijk) ) / ( 7i=0 2k=0 m(ijk) ) µ 3 (j) = ( 2k=0 m(7jk) ) / ( 7i=0 2k=0 m(ijk) ) µ IS (j) = 7 i=0 m(ij1)/ ( 5i=0 2k=0 m(ijk) ) D. P. Tweed Racah Institute 8/8/ / 18

35 Stellar fractions D. P. Tweed Racah Institute 8/8/ / 18

36 Stellar fractions D. P. Tweed Racah Institute 8/8/ / 18

37 Stellar fractions D. P. Tweed Racah Institute 8/8/ / 18

38 Stacked evolution D. P. Tweed Racah Institute 8/8/ / 18

39 Stacked evolution D. P. Tweed Racah Institute 8/8/ / 18

40 1 A sample of 30 high redshift galaxies. (Same cosmology, resolution) D. P. Tweed Racah Institute 8/8/ / 18

41 1 A sample of 30 high redshift galaxies. (Same cosmology, resolution) 2 Same Postprocessing pipeline Group-finding on stars Merger-trees. In-situ, Ex-situ discrimination from merger tree D. P. Tweed Racah Institute 8/8/ / 18

42 1 A sample of 30 high redshift galaxies. (Same cosmology, resolution) 2 Same Postprocessing pipeline Group-finding on stars Merger-trees. In-situ, Ex-situ discrimination from merger tree 3 Further analysis Extra kinematic decomposition. Detailled stellar tracking according to both structural decomposition and kinematic decomposition. Define global measure and properties. D. P. Tweed Racah Institute 8/8/ / 18

43 1 A sample of 30 high redshift galaxies. (Same cosmology, resolution) 2 Same Postprocessing pipeline Group-finding on stars Merger-trees. In-situ, Ex-situ discrimination from merger tree 3 Further analysis Extra kinematic decomposition. Detailled stellar tracking according to both structural decomposition and kinematic decomposition. Define global measure and properties. 4 What s to be done. DM merger trees Gas inflow (wet mergers disc instabilities) D. P. Tweed Racah Institute 8/8/ / 18

44 1 All the simulations, post analysis are on the Jerusalem cluster. The wiki is a guide to find the data there. 2 Upgrade and advertise the wiki with mosaics. 3 Share and enjoy Make the stellar merger trees available. (standard format, what would you need?) Provide DM merger trees as well. D. P. Tweed Racah Institute 8/8/ / 18

High-z Galaxy Evolution: VDI and (mostly minor) Mergers

High-z Galaxy Evolution: VDI and (mostly minor) Mergers High-z Galaxy Evolution: VDI and (mostly minor) Mergers Avishai Dekel The Hebrew University of Jerusalem UCSC, August 2012 Outline: in-situ (VDI) and ex-situ (mergers) 1. Cold streams: smooth and clumpy

More information

Nir Mandelker, H.U.J.I.

Nir Mandelker, H.U.J.I. Compressive vs Solenoidal Turbulence and Non-Linear VDI Nir Mandelker, H.U.J.I. IAU Symposium 319, August 11 2015 Collaborators: Avishai Dekel, Shigeki Inoue, Daniel Ceverino, Frederic Bournaud, Joel Primack

More information

Violent Disk Instability at z=1-4 Outflows; Clump Evolution; Compact Spheroids

Violent Disk Instability at z=1-4 Outflows; Clump Evolution; Compact Spheroids Violent Disk Instability at z=1-4 Outflows; Clump Evolution; Compact Spheroids Avishai Dekel The Hebrew University of Jerusalem Santa Cruz, August 2013 stars 5 kpc Outline 1. Inflows and Outflows 2. Evolution

More information

The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs

The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs Avishai Dekel The Hebrew University of Jerusalem & UCSC Silk 75, December 2017 A Characteristic Mass for Galaxy Formation Efficiency

More information

Galaxy Hydrodynamic Simulations and Sunrise Visualizations

Galaxy Hydrodynamic Simulations and Sunrise Visualizations Galaxy Hydrodynamic Simulations and Sunrise Visualizations Joel Primack, UCSC Daniel Ceverino, HU Madrid Avishai Dekel, HU & UCSC Sandra Faber, UCSC Anatoly Klypin, NMSU Patrik Jonsson, Harvard CfA Chris

More information

Characterizing z~2 Galaxies in HYDRO-ART Simulations and Observations

Characterizing z~2 Galaxies in HYDRO-ART Simulations and Observations Characterizing z~2 Galaxies in HYDRO-ART Simulations and Observations Mark Mozena (UCSC) Sandra Faber, Avishai Dekel, Daniel Ceverino, Joel Primack, Kamson Lai, David Koo, David Rosario, Dale Kocevski,

More information

Feeding High-z Galaxies from the Cosmic Web

Feeding High-z Galaxies from the Cosmic Web Feeding High-z Galaxies from the Cosmic Web Avishai Dekel The Hebrew University of Jerusalem Jerusalem Winter School 2012/13 Lecture 1 z=0 z=2 z=8 Cosmological simulations Toy modeling Oxford Dictionary:

More information

Three comments on High-z Galaxy Formation. Avishai Dekel The Hebrew University of Jerusalem

Three comments on High-z Galaxy Formation. Avishai Dekel The Hebrew University of Jerusalem Three comments on High-z Galaxy Formation Avishai Dekel The Hebrew University of Jerusalem August 2014 Outline 1. Angular momentum: buildup in 4 phases 2. Violent disk instability: Nonlinear, Stimulated

More information

Spin Acquisition, Violent Disks, Compaction and Quenching

Spin Acquisition, Violent Disks, Compaction and Quenching Spin Acquisition, Violent Disks, Compaction and Quenching Avishai Dekel The Hebrew University of Jerusalem July 2014 stars 5 kpc Three Provocative Questions concerning high-z massive galaxy formation 1.

More information

Yicheng Guo (UCO/Lick, UCSC)

Yicheng Guo (UCO/Lick, UCSC) Formation and Evolution of Clumpy Galaxies at z=0.5--3 Yicheng Guo (UCO/Lick, UCSC) Collaborators: Henry Ferguson, Eric Bell, David Koo, Chris Conselice, Mauro Giavalisco, Nir Mandelker, Swara Ravindranatch,

More information

Origin of Bi-modality

Origin of Bi-modality Origin of Bi-modality and Downsizing Avishai Dekel HU Jerusalem Galaxies and Structures Through Cosmic Times Venice, March 2006 Summary Q: z

More information

Using Hydro-Simulations to Interpret Observed Kinematic Maps of Star-Forming Galaxies

Using Hydro-Simulations to Interpret Observed Kinematic Maps of Star-Forming Galaxies disk from the VELA simulation suite Ceverino, Dekel, Primack, + z = 1.6, young stars Using Hydro-Simulations to Interpret Observed Kinematic Maps of Star-Forming Galaxies Raymond Simons Johns Hopkins University

More information

Violent Disk Instability Inflow to Spheroid and Black Hole

Violent Disk Instability Inflow to Spheroid and Black Hole Violent Disk Instability Inflow to Spheroid and Black Hole Avishai Dekel The Hebrew University of Jerusalem Jerusalem Winter School 101/13 Lecture stars 5 kpc Outline 1. Violent Disk Instability (VDI):

More information

2008 ASPEN WINTER WORKSHOP The first 2 billion years of Galaxy Formation. Gustavo Yepes Universidad Autónoma de Madrid

2008 ASPEN WINTER WORKSHOP The first 2 billion years of Galaxy Formation. Gustavo Yepes Universidad Autónoma de Madrid 2008 ASPEN WINTER WORKSHOP The first 2 billion years of Galaxy Formation Gustavo Yepes Universidad Autónoma de Madrid MNCP The MareNostrum Numerical Cosmology Project International collaboration to perform

More information

Galaxy Evolution & Black-Hole Growth (review)

Galaxy Evolution & Black-Hole Growth (review) Galaxy Evolution & Black-Hole Growth (review) Avishai Dekel The Hebrew University of Jerusalem & UCSC Delivered by Fangzhou Jiang Dali, China, November 2018 See also Claude-Andre s talk and Joel s talk

More information

Understanding isolated and satellite galaxies through simulations

Understanding isolated and satellite galaxies through simulations Understanding isolated and satellite galaxies through simulations Kenza Arraki! Blue Waters Graduate Fellow! New Mexico State University! Anatoly Klypin! Daniel Ceverino! Sebastian Trujillo-Gomez! Joel

More information

Stream-Driven Galaxy Formation at High Redshift

Stream-Driven Galaxy Formation at High Redshift Stream-Driven Galaxy Formation at High Redshift Avishai Dekel The Hebrew University of Jerusalem KooFest, Santa Cruz, August 2011 Outline 1. Streams in pancakes from the cosmic web (Hahn) 2. Is angular

More information

Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content

Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content arxiv:1005.1289 arxiv:1002.3660 S. Trujillo-Gomez (NMSU) in collaboration with: A. Klypin (NMSU), J. Primack (UCSC)

More information

Massive black hole formation in cosmological simulations

Massive black hole formation in cosmological simulations Institut d Astrophysique de Paris IAP - France Massive black hole formation in cosmological simulations Mélanie HABOUZIT Marta Volonteri In collaboration with Yohan Dubois Muhammed Latif Outline Project:

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

The Milky Way and Near-Field Cosmology

The Milky Way and Near-Field Cosmology The Milky Way and Near-Field Cosmology Kathryn V Johnston (Columbia University) Collaborators (theorists): James S Bullock (Irvine), Andreea Font (Durham), Brant Robertson (Chicago), Sanjib Sharma (Columbia),

More information

Visualizing High-Resolution Simulations of Galaxy Formation and Comparing to the Latest Observations from Hubble and Other Telescopes

Visualizing High-Resolution Simulations of Galaxy Formation and Comparing to the Latest Observations from Hubble and Other Telescopes Third Annual SRL / ISSDM Research Symposium - UCSC Systems Oktoberfest October 18-19, 2011 Visualizing High-Resolution Simulations of Galaxy Formation and Comparing to the Latest Observations from Hubble

More information

Cosmological simulations for Euclid

Cosmological simulations for Euclid Cosmological simulations for Euclid Pablo Fosalba (Barcelona) Robert Smith (Zürich) Stéphane Colombi (Paris) Carlton Baugh (Durham) Marco Baldi (Münich) and many others 1 Outline 1. Computing the matter

More information

The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations

The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations J. CASADO GÓMEZ (UAM) R. DOMÍNGUEZ-TENREIRO J. OÑORBE (UCA/Irvine) F. MARTINEZ - SERRANO (UMH) A. KNEBE

More information

How much of their stellar mass have group galaxies lost to the ICL?

How much of their stellar mass have group galaxies lost to the ICL? GEPI How much of their stellar mass have group galaxies lost to the ICL? Édouard Tollet Andrea Cattaneo Gary Mamon 3 1,2 * 1 1 Observatoire de Paris - GEPI Université Paris Diderot 3 Institut d'astrophysique

More information

Unstable Disks: Gas and Stars via an analytic model

Unstable Disks: Gas and Stars via an analytic model Unstable Disks: Gas and Stars via an analytic model Marcello Cacciato in collaboration with Avishai Dekel Minerva Fellow @ HUJI Theoretical studies and hydrodynamical cosmological simulations have shown

More information

quenching and structural & morphological evolution: physics

quenching and structural & morphological evolution: physics quenching and structural & morphological evolution: physics rachel somerville Rutgers University with thanks to: Ryan Brennan, Viraj Pandya, Ena Choi Guillermo Barro, Stijn Wuyts, Dale Kocevski, Arjen

More information

arxiv: v2 [astro-ph.ga] 6 Mar 2015

arxiv: v2 [astro-ph.ga] 6 Mar 2015 Mon. Not. R. Astron. Soc. 000, 1 30 (2002) Printed 9 March 2015 (MN LATEX style file v2.2) Compaction and quenching of high- galaxies in cosmological simulations: blue and red nuggets arxiv:1412.4783v2

More information

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY N-body Simulations N-body Simulations N-body Simulations Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY Final distribution of dark matter.

More information

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009 The theoretical view of high-z Clusters Nelson Padilla, PUC, Chile Pucón, November 2009 The Plan: 1) To see what the observations are telling us using models that agree with the cosmology, and with other

More information

Gas in and around z > 2 galaxies

Gas in and around z > 2 galaxies Gas in and around z > 2 galaxies Michele Fumagalli August 2010 Santa Cruz Xavier Prochaska Daniel Kasen Avishai Dekel In collaboration with: Daniel Ceverino Joel Primack Gas in galaxies from theory Gas

More information

Bright Cluster Galaxy formation and the role of AGN feedback. Romain Teyssier

Bright Cluster Galaxy formation and the role of AGN feedback. Romain Teyssier Bright Cluster Galaxy formation and the role of AGN feedback Romain Teyssier KITP 2011: Monster Inc. Romain Teyssier 1 Outline - Feedback and galaxy formation - The role of AGN feedback in Milky Way halos

More information

Identifying and Characterizing Star-Forming Stellar Clumps

Identifying and Characterizing Star-Forming Stellar Clumps Deep Learning Applied to Galaxy Evolution: Identifying and Characterizing Star-Forming Stellar Clumps Christoph Lee (UCSC) Joel Primack (UCSC), Marc Huertas-Company (Paris Observatory), Yicheng Guo (University

More information

Identifying Star-Forming Clumps in CANDELS Galaxies

Identifying Star-Forming Clumps in CANDELS Galaxies Properties of Dark Matter Halos: Environment Density, Mass Loss, and Connection to Galaxy Size Deep Learning Applied to Galaxy Evolution: Identifying Star-Forming Clumps in CANDELS Galaxies Christoph Lee

More information

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov

Elad Zinger Hebrew University Jerusalem Spineto, 12 June Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov Elad Zinger Hebrew University Jerusalem IGM@50, Spineto, 12 June 2015 Collaborators: Avishai Dekel, Yuval Birnboim, Daisuke Nagai & Andrey Kravtsov They re still there! Account for most of the accretion.

More information

arxiv: v1 [astro-ph.ga] 11 Jan 2011

arxiv: v1 [astro-ph.ga] 11 Jan 2011 A Universe of Dwarf Galaxies, Lyon 2010 Editors : will be set by the publisher EAS Publications Series, Vol.?, 2017 arxiv:1101.2232v1 [astro-ph.ga] 11 Jan 2011 HOW DOES FEEDBACK AFFECT MILKY WAY SATELLITE

More information

Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation Numerical Cosmology & Galaxy Formation Lecture 13: Example simulations Isolated galaxies, mergers & zooms Benjamin Moster 1 Outline of the lecture course Lecture 1: Motivation & Historical Overview Lecture

More information

Observational Properties of Simulated Galaxies

Observational Properties of Simulated Galaxies -22.1 11.0 0.84-21.9 7.1 2.54 Observational Properties of Simulated Galaxies Illustris subhaloid: 281154, camera: -22.1 11.2 3 Illustris subhaloid: 161363, camera: 3, field matched to SDSS objid: 588848898827747605

More information

Rotational support of giant clumps in high-z disc galaxies

Rotational support of giant clumps in high-z disc galaxies Mon. Not. R. Astron. Soc. 420, 3490 3520 (2012) doi:10.1111/j.1365-2966.2011.20296.x Rotational support of giant clumps in high-z disc galaxies Daniel Ceverino, 1 Avishai Dekel, 1 Nir Mandelker, 1 Frederic

More information

Joop Schaye (Leiden) (Yope Shea)

Joop Schaye (Leiden) (Yope Shea) Overview of sub-grid models in cosmological simulations Joop Schaye (Leiden) (Yope Shea) Length Scales (cm) Subgrid models Cosmological simulations 8 0 2 11 18 20 22 24 28 interparticle distance in stars

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Virtual Observatory & HORIZON project

Virtual Observatory & HORIZON project Virtual Observatory & HORIZON project H. Wozniak 1, and HORIZON 2 consortium 1 CRAL 2 CEA/SAp, CRAL, IAP, LERMA, LUTH Horizon project: computational astrophysics on massively parallel systems to understand

More information

Galaxy Formation Now and Then

Galaxy Formation Now and Then Galaxy Formation Now and Then Matthias Steinmetz Astrophysikalisches Institut Potsdam 1 Overview The state of galaxy formation now The state of galaxy formation 10 years ago Extragalactic astronomy in

More information

arxiv: v2 [astro-ph.ga] 20 Mar 2015

arxiv: v2 [astro-ph.ga] 20 Mar 2015 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 24 March 2015 (MN LATEX style file v2.2) arxiv:1502.01339v2 [astro-ph.ga] 20 Mar 2015 The merger rate of galaxies in the Illustris Simulation: a comparison

More information

The HORIZON project. H. Wozniak (on behalf of the HORIZON consortium)

The HORIZON project. H. Wozniak (on behalf of the HORIZON consortium) Mem. S.A.It. Vol. 80, 357 c SAIt 2009 Memorie della The HORIZON project H. Wozniak (on behalf of the HORIZON consortium) Centre de Recherche Astrophysique de Lyon, F-69561 Saint-Genis-Laval cedex, France

More information

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing Probing Dark Matter Halos with & Weak Lensing Frank C. van den Bosch (MPIA) Collaborators: Surhud More, Marcello Cacciato UMass, August 2008 Probing Dark Matter Halos - p. 1/35 Galaxy Formation in a Nutshell

More information

The Impact of Minor Mergers

The Impact of Minor Mergers The Impact of Minor Mergers T. J. Cox (CfA) Phil Hopkins (Berkeley) Lars Hernquist (CfA) Rachel Somerville (STScI) Josh Younger (CfA) NGC 7674 Gurtina Besla (CfA), Avishai Dekel (HU), Tiziana Di Matteo

More information

Cosmological simulations of galaxy formation. Romain Teyssier

Cosmological simulations of galaxy formation. Romain Teyssier Cosmological simulations of galaxy formation 1 Outline Disc formation in LCDM cosmology Star formation efficiency and morphology connection The baryon fraction problem Star formation at high redshift:

More information

Phys/Astro 689: Lecture 8. Angular Momentum & the Cusp/Core Problem

Phys/Astro 689: Lecture 8. Angular Momentum & the Cusp/Core Problem Phys/Astro 689: Lecture 8 Angular Momentum & the Cusp/Core Problem Summary to Date We first learned how to construct the Power Spectrum with CDM+baryons. Found CDM agrees with the observed Power Spectrum

More information

Structure and substructure in dark matter halos

Structure and substructure in dark matter halos Satellites and Tidal Streams ING IAC joint Conference La Palma, May 2003 Structure and substructure in dark matter halos Simon D.M. White Max Planck Institute for Astrophysics 500 kpc A CDM Milky Way Does

More information

A persistent misaligned gas disc in an early-type galaxy

A persistent misaligned gas disc in an early-type galaxy A persistent misaligned gas disc in an early-type galaxy Freeke van de Voort UC Berkeley & ASIAA observed gas-star misalignment SDSS NGC7465: early-type galaxy (stars in orange) with misaligned molecular

More information

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Benjamin Moster (IoA/KICC)! Simon White, Thorsten Naab (MPA), Rachel Somerville (Rutgers), Frank van den Bosch (Yale),

More information

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias Hao-Yi Wu University of Michigan Galaxies are not necessarily test particles Probing dark energy with growth

More information

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies

Phys/Astro 689: Lecture 12. The Problems with Satellite Galaxies Phys/Astro 689: Lecture 12 The Problems with Satellite Galaxies The Problems with Satellites (1) The Missing Satellites Problem (2) The Too Big to Fail Problem We ll examine potential solutions to each

More information

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang Contents 1

More information

Angular Momentum Problems in Disk Formation

Angular Momentum Problems in Disk Formation Angular Momentum Problems in Disk Formation MPIA Theory Group Seminar, 07/03/2006 The Standard Picture Disks galaxies are systems in centrifugal equilibrium Structure of disks is governed by angular momentum

More information

Assembly of Galaxies Across Cosmic Time: Formaton of te Hubble Sequence at High Redshift

Assembly of Galaxies Across Cosmic Time: Formaton of te Hubble Sequence at High Redshift Assembly of Galaxies Across Cosmic Time: Formaton of te Hubble Sequence at High Redshift Yicheng Guo University of Massachusetts Collaborator: Mauro Giavalisco (UMASS), Paolo Cassata (Marseille), Henry

More information

Probing the history of star formation in the Local Group using the galactic fossil record

Probing the history of star formation in the Local Group using the galactic fossil record Probing the history of star formation in the Local Group using the galactic fossil record Brian O Shea (Michigan State University) Collaborators: Tim Beers, Carolyn Peruta, Monica Derris (MSU), Jason Tumlinson

More information

On the influence of environment on star-forming galaxies

On the influence of environment on star-forming galaxies On the influence of environment on star-forming galaxies Lizhi Xie 谢利智 Tianjin Normal University; INAF-OATS Collaborators: G. De Lucia; F. Fontanot; D. Wilman; M. Fossati Galaxy properties correlate with

More information

The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors

The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors John Wise Brian O Shea (PI, MSU) David Collins (FSU), Cameron Hummels (Caltech), Devin Silvia (MSU), Britton Smith (SDSC)

More information

Building the Red Sequence

Building the Red Sequence Building the Red Sequence Jared Gabor University of Arizona Romeel Davé, Kristian Finlator, and Ben Oppenheimer See arxiv 1012.3166 Building the Red Sequence Jared Gabor University of Arizona Romeel Davé,

More information

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Mergers and Mass Assembly of Dark Matter Halos & Galaxies Mergers and Mass Assembly of Dark Matter Halos & Galaxies Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin (MPA --> Southern UC) Claude-Andre Faucher-Giguere Dusan Keres (Harvard

More information

The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models

The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models doi:10.1093/mnras/stv264 The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models Vicente Rodriguez-Gomez, 1 Shy Genel, 1,2 Mark Vogelsberger, 3

More information

Gravitational heating, clumps, overheating. Yuval Birnboim (Harvard Smithsonian Center for Astrophysics) Avishai Dekel (Hebrew University)

Gravitational heating, clumps, overheating. Yuval Birnboim (Harvard Smithsonian Center for Astrophysics) Avishai Dekel (Hebrew University) Gravitational heating, clumps, overheating Yuval Birnboim (Harvard Smithsonian Center for Astrophysics) Avishai Dekel (Hebrew University) Basic idea: Cooling flow Clusters need additional energy to reduce

More information

Galaxy Gas Halos and What They Can Tell Us About Galaxy Formation

Galaxy Gas Halos and What They Can Tell Us About Galaxy Formation Galaxy Gas Halos and What They Can Tell Us About Galaxy Formation Ariyeh Maller CUNY Z Why Gas Halos? Gas Accretion Star Formation Stellar Populations Feedback dt Dust dm dt Gas Accretion Feedback Gas

More information

Growing and merging massive black holes

Growing and merging massive black holes Growing and merging massive black holes Marta Volonteri Institut d Astrophysique de Paris S. Cielo (IAP) R. Bieri (MPA) Y. Dubois (IAP) M. Habouzit (Flatiron Institute) T. Hartwig (IAP) H. Pfister (IAP)

More information

The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars

The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars The MIT Faculty has made this article openly available. Please share

More information

Swift: task-based hydrodynamics at Durham s IPCC. Bower

Swift: task-based hydrodynamics at Durham s IPCC. Bower Swift: task-based hydrodynamics at Durham s IPCC Gonnet Schaller Chalk movie: Richard Bower (Durham) For the cosmological simulations of the formation of galaxies Bower Institute for Computational Cosmology

More information

Anthony Aguirre. Physics. Cosmology; inflation; gravity; galaxy formation; Erik Asphaug Earth & Planetary Sciences

Anthony Aguirre. Physics. Cosmology; inflation; gravity; galaxy formation; Erik Asphaug Earth & Planetary Sciences Theoretical Astrophysics Santa Cruz Anthony Aguirre Physics Cosmology; inflation; gravity; galaxy formation; Erik Asphaug Earth & Planetary Sciences Origin and evolution of the solar system; comets and

More information

The separate formation of different galaxy components

The separate formation of different galaxy components The separate formation of different galaxy components Alfonso Aragón-Salamanca School of Physics and Astronomy University of Nottingham Overview: Galaxy properties and morphologies Main galaxy components:

More information

BARYON DYNAMICS, DARK MATTER SUBSTRUCTURE, AND GALAXIES

BARYON DYNAMICS, DARK MATTER SUBSTRUCTURE, AND GALAXIES The Astrophysical Journal, 678:6 21, 2008 May 1 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A BARYON DYNAMICS, DARK MATTER SUBSTRUCTURE, AND GALAXIES David H. Weinberg

More information

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013 GALAXY CLUSTERING Emmanuel Schaan AST 542 April 10th 2013 INTRODUCTION: SCALES GALAXIES: 10kpc Milky Way: 10kpc, 10 12 Mo GALAXY GROUPS: 100kpc or «poor clusters» Local Group: ~50gal, 3Mpc, 10 13 Mo GALAXY

More information

Morphologies and building blocks of galaxies at high redshift

Morphologies and building blocks of galaxies at high redshift Morphologies and building blocks of galaxies at high redshift Mariko Kubo TMT project office, NAOJ The TMT Science Forum 2016 24-26, May Galaxies in the current Universe NASA, ESA, and The Hubble Heritage

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

Gas Kinematics of Intermediate - Redshift Galaxies. B. Epinat LAM

Gas Kinematics of Intermediate - Redshift Galaxies. B. Epinat LAM Gas Kinematics of Intermediate - Redshift Galaxies B. Epinat LAM Open issues on galaxy evolution Processes of galaxy mass assembly Mergers vs. Smooth gas accretion? Construction of Hubble Sequence Impact

More information

The first black holes

The first black holes The first black holes Marta Volonteri Institut d Astrophysique de Paris M. Habouzit, Y. Dubois, M. Latif (IAP) A. Reines (NOAO) M. Tremmel (University of Washington) F. Pacucci (SNS) High-redshift quasars

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

the self-regulated agn feedback loop: chaotic cold accretion

the self-regulated agn feedback loop: chaotic cold accretion the self-regulated agn feedback loop: chaotic cold accretion Massimo Gaspari Max Planck Institute for Astrophysics the self-regulated agn feedback loop: raining onto black holes Massimo Gaspari Max Planck

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Princeton December 2009 The fine-scale structure of dark matter halos

Princeton December 2009 The fine-scale structure of dark matter halos Princeton December 2009 The fine-scale structure of dark matter halos Simon White Max Planck Institute for Astrophysics The dark matter structure of CDM halos A rich galaxy cluster halo Springel et al

More information

Two Main Techniques. I: Star-forming Galaxies

Two Main Techniques. I: Star-forming Galaxies p.1/24 The high redshift universe has been opened up to direct observation in the last few years, but most emphasis has been placed on finding the progenitors of today s massive ellipticals. p.2/24 Two

More information

Face recognition for galaxies: Artificial intelligence brings new tools to astronomy

Face recognition for galaxies: Artificial intelligence brings new tools to astronomy April 23, 2018 Contact: Tim Stephens (831) 459-4352; stephens@ucsc.edu Face recognition for galaxies: Artificial intelligence brings new tools to astronomy A 'deep learning' algorithm trained on images

More information

Dark matter and galaxy formation

Dark matter and galaxy formation Dark matter and galaxy formation Galaxy rotation The virial theorem Galaxy masses via K3 Mass-to-light ratios Rotation curves Milky Way Nearby galaxies Dark matter Baryonic or non-baryonic A problem with

More information

The Illustris simulation: a new look at galaxy black hole co-evolution. Debora Sijacki IoA & KICC Cambridge

The Illustris simulation: a new look at galaxy black hole co-evolution. Debora Sijacki IoA & KICC Cambridge The Illustris simulation: a new look at galaxy black hole co-evolution Debora Sijacki IoA & KICC Cambridge LSS conference July 23 2015 Cosmological simulations of galaxy and structure formation Hierarchical

More information

Simulating the Universe

Simulating the Universe Simulating the Universe Christine Corbett Moran, Irshad Mohammed, Manuel Rabold, Davide Martizzi, Doug Potter, Aurel Schneider Oliver Hahn, Ben Moore, Joachim Stadel Outline - N-body codes: where do we

More information

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE Gaia News:Counting down to launch A. Vallenari INAF, Padova Astronomical Observatory on behalf of DPACE Outline Gaia Spacecraft status The Gaia sky Gaia open and globular clusters From data to science:

More information

The halo-galaxy connection KITP, May 2017` Assembly bias. Simon White Max Planck Institute for Astrophysics

The halo-galaxy connection KITP, May 2017` Assembly bias. Simon White Max Planck Institute for Astrophysics The halo-galaxy connection KITP, May 2017` Assembly bias Simon White Max Planck Institute for Astrophysics Halo clustering depends on formation history Gao, Springel & White 2005 The 20% of halos with

More information

Self-Interacting Dark Matter

Self-Interacting Dark Matter Self-Interacting Dark Matter James Bullock UC Irvine Garrison-Kimmel, Oñorbe et al. Act I Motivations Missing Satellites Problem (1999) Theory: N>>1000 Klypin et al. 1999; Moore et al. 1999; Kauffmann

More information

Gas accretion in Galaxies

Gas accretion in Galaxies Massive Galaxies Over Cosmic Time 3, Tucson 11/2010 Gas accretion in Galaxies Dušan Kereš TAC, UC Berkeley Hubble Fellow Collaborators: Romeel Davé, Mark Fardal, C.-A. Faucher-Giguere, Lars Hernquist,

More information

HORIZON Project

HORIZON Project HORIZON Project http://www.projet-horizon.fr horizon.fr H. Wozniak on behalf of the Horizon Project Project goals Understanding the formation mechanisms of: Large-scale structure Clusters of galaxies Galaxies

More information

DM direct detection predictions from hydrodynamic simulations

DM direct detection predictions from hydrodynamic simulations DM direct detection predictions from hydrodynamic simulations Nassim Bozorgnia GRAPPA Institute University of Amsterdam Based on work done with F. Calore, M. Lovell, G. Bertone, and the EAGLE team arxiv:

More information

How to Zoom: Lagrange volumes and Other Halo Properties

How to Zoom: Lagrange volumes and Other Halo Properties How to Zoom: Lagrange volumes and Other Halo Properties Jose Oñorbe Fulbright Postdoctoral Fellow @ University of California Irvine In collaboration with S. Garrison-Kimmel (UCI), J. Bullock (UCI), A.

More information

Simulations and the Galaxy Halo Connection

Simulations and the Galaxy Halo Connection Simulations and the Galaxy Halo Connection Yao-Yuan Mao (Stanford/SLAC PITT PACC) @yaoyuanmao yymao.github.io SCMA6 @ CMU 6/10/16 My collaborators at Stanford/SLAC Joe DeRose Ben Lehmann ( UCSC) Vincent

More information

Morphological quenching

Morphological quenching Morphological quenching Increased stability for gas disks in early-type galaxies Marie Martig (MPIA) With : Frederic Bournaud, Avishai Dekel, Romain Teyssier Alison Crocker, Eric Emsellem, Tim Davis, Martin

More information

The Trieste galaxy formation group

The Trieste galaxy formation group The Trieste galaxy formation group P. Monaco, F. Fontanot, G. De Lucia, G. Murante, S. Borgani, G. Granato, L. Silva Semi-analytic models (De Lucia, Fontanot, Monaco + Xie, Zoldan) Hydro simulations of

More information

Dark Matter on Small Scales: Merging and Cosmogony. David W. Hogg New York University CCPP

Dark Matter on Small Scales: Merging and Cosmogony. David W. Hogg New York University CCPP Dark Matter on Small Scales: Merging and Cosmogony David W. Hogg New York University CCPP summary galaxy merger rates suggest growth of ~1 percent per Gyr galaxy evolution is over can we rule out CDM now

More information

On the inside-out reionization of the MW satellite system

On the inside-out reionization of the MW satellite system On the inside-out reionization of the MW satellite system Reionization at galaxy-scale P. Ocvirk, D. Aubert Observatoire astronomique de Strasbourg Impact of radiation field structure on the Galaxy RT

More information

Disc formation and the origin of clumpy galaxies at high redshift

Disc formation and the origin of clumpy galaxies at high redshift Mon. Not. R. Astron. Soc. 397, L64 L68 (2009) doi:10.1111/j.1745-3933.2009.00685.x Disc formation and the origin of clumpy galaxies at high redshift Oscar Agertz, 1 Romain Teyssier 1,2 and Ben Moore 1

More information

GRB-triggered searches for gravitational waves from compact binary inspirals in LIGO and Virgo data during S5/VSR1

GRB-triggered searches for gravitational waves from compact binary inspirals in LIGO and Virgo data during S5/VSR1 GRB-triggered searches for gravitational waves from compact binary inspirals in LIGO and Virgo data during S5/VSR1 Nickolas Fotopoulos (UWM) for the LIGO Scientific Collaboration and the Virgo Collaboration

More information

Compact Starbursts: Extreme Star Formation and Feedback at High Density Aleks Diamond-Stanic Grainger Fellow, University of Wisconsin

Compact Starbursts: Extreme Star Formation and Feedback at High Density Aleks Diamond-Stanic Grainger Fellow, University of Wisconsin Compact Starbursts: Extreme Star Formation and Feedback at High Density Aleks Diamond-Stanic Grainger Fellow, University of Wisconsin Arp 220 (talks by N. Scoville, D. Elbaz) 12 galaxies from our sample

More information