Parameter Selection, Model Calibration, and Uncertainty Propagation for Physical Models

Size: px
Start display at page:

Download "Parameter Selection, Model Calibration, and Uncertainty Propagation for Physical Models"

Transcription

1 Parameter Selection, Model Calibration, and Uncertainty Propagation for Physical Models Ralph C. Smith Department of Mathematics North Carolina State University Experimental Setup! d 2 T s 2(a + b) = dx2 ab Heat Model! h k [T s(x) T amb ] dt s dx (0) = Φ k, dt s dx (L) =h k [T amb T s (L)]

2 Experimental Setup and Data:! Heat Model Example Aluminum Rod Data 80 Temperature ( o C) Steady State Model:! d 2 T s 2(a + b) = dx2 ab dt s dx (0) = Φ k h k [T s(x) T amb ] dt s dx (L) = h k [T amb T s (L)] Location (cm) Objectives: Employ Bayesian analysis for! Model calibration! Uncertainty propagation! Experimental design! Note:! Parameter set q =[h, k, Φ] is not identifiable

3 Statistical Inference Goal: The goal in statistical inference is to make conclusions about a phenomenon based on observed data. Frequentist: Observations made in the past are analyzed with a specified model. Result is regarded as confidence about state of real world. Probabilities defined as frequencies with which an event occurs if experiment is repeated several times. Parameter Estimation: o Relies on estimators derived from different data sets and a specific sampling distribution. o Parameters may be unknown but are fixed and deterministic. Bayesian: Interpretation of probability is subjective and can be updated with new data. Parameter Estimation: Parameters are considered to be random variables having associated densities.

4 Bayes Theorem: P (A B) = Example: Coin Flip Likelihood: π(υ q) = P (B A)P (A) P (B) Υ i (ω) = N q υ i (1 q) 1 υ i i=1 Bayesian Model Calibration 0, ω = T 1, ω = H = q υ i (1 q) N υ i = q N 1 (1 q) N 0 Posterior with Noninformative Prior: π 0 (q) =1 Bayesian Model Calibration: Parameters assumed to be random variables π(q υ) = π(υ q)π 0 (q) R p π(υ q)π 0 (q)dq π(q υ) = qn 1 (1 q) N qn 1 (1 q) N 0dq = (N + 1)! N 0!N 1! qn 1 (1 q) N 0

5 Bayesian Model Calibration: Parameters considered to be random variables with associated densities. Bayesian Model Calibration π(q υ) = π(υ q)π 0 (q) R p π(υ q)π 0 (q)dq Problem: Often requires high dimensional integration; o e.g., p = 18 for MFC model o p = thousands to millions for some models Strategies: Sampling methods Sparse grid quadrature techniques

6 Markov Chain Techniques Markov Chain: Sequence of events where current state depends only on last value. Baseball: States are S = {win,lose}. Initial state is p 0 =[0.8, 0.2]. Assume that team which won last game has 70% chance of winning next game and 30% chance of losing next game. Assume losing team wins 40% and loses 60% of next games win lose 0.6 Percentage of teams who win/lose next game given by p 1 =[0.8, 0.2] =[0.64, 0.36] Question: does the following limit exist? p n =[0.8, 0.2] n

7 Markov Chain Techniques Baseball Example: Solve constrained relation π = πp, πi =1 to obtain [π win, π lose ] π =[0.5714, ] =[πwin, π lose ], π win + π lose =1

8 Markov Chain Techniques Baseball Example: Solve constrained relation π = πp, πi =1 to obtain [π win, π lose ] π =[0.5714, ] =[πwin, π lose ], π win + π lose =1 Alternative: Iterate to compute solution Notes: n p n n p n n p n 0 [0.8000, ] 4 [0.5733, ] 8 [0.5714, ] 1 [0.6400, ] 5 [0.5720, ] 9 [0.5714, ] 2 [0.5920, ] 6 [0.5716, ] 10 [0.5714, ] 3 [0.5776, ] 7 [0.5715, ] Forms basis for Markov Chain Monte Carlo (MCMC) techniques Goal: construct chains whose stationary distribution is the posterior density

9 Markov Chain Monte Carlo Methods Strategy: Markov chain simulation used when it is impossible, or computationally prohibitive, to sample q directly from π(q υ) = π(υ q)π 0 (q) R p π(υ q)π 0 (q)dq Note: Create a Markov process whose stationary distribution is π(q υ). In Markov chain theory, we are given a Markov chain P, and we construct its equilibrium distribution. In MCMC theory, we are given a distribution and we want to construct a Markov chain that is reversible with respect to it.

10 Model Calibration Problem Assumption: Assume that measurement errors are iid and ε i N(0, σ 2 ) Likelihood: π(υ q) =L(q, σ υ) = 1 2 (2πσ 2 ) n/2 e SS q/2σ where n SS q = [υ i f i (q)] 2 i=1 is the sum of squares error.

11 Markov Chain Monte Carlo Methods General Strategy: Current value: X k 1 = q k 1 Propose candidate q J(q q k 1 ) from proposal (jumping) distribution With probability α(q,q k 1 ), accept q ; i.e., X k = q Otherwise, stay where you are: X k = q k 1 Intuition: Recall that π(υ q)π 0 (q) π(q υ) = π(υ q)π R p 0 (q)dq π(υ q) =! q) 1 n (2πσ 2 e i=1 [υ i f i (q)] 2 /2σ 2 = ) n/2 SSq 1 2 (2πσ 2 ) n/2 e SS q/2σ q q * q k 1 q* q k 1 q

12 Intuition: Markov Chain Monte Carlo Methods! q) SSq q q * q k 1 q* q k 1 q Consider r(q q k 1 )= π(q υ) π(q k 1 υ) = π(υ q )π 0 (q ) π(υ q k 1 )π 0 (q k 1 ) If r<1 π(υ q ) < π(υ q k 1 ), accept with probability α = r If r>1, accept with probability α =1 Note: Narrower proposal distribution yields higher probability of acceptance.

13 Markov Chain Monte Carlo Methods Note: Narrower proposal distribution yields higher probability of acceptance. q * q 1 =q* q 2 q =q =q* 3 2 q0 J( q* q k 1 )! q) q0 q* q* q 1 =q* q 3 =q 1 q 2 =q 1 J( q* q k 1 )! q) Parameter Value Chain Iteration Parameter Value Chain Iteration

14 Proposal Distribution Proposal Distribution: Significantly affects mixing Too wide: Too many points rejected and chain stays still for long periods; Too narrow: Acceptance ratio is high but algorithm is slow to explore parameter space Ideally, it should have similar shape to posterior distribution. (q! q 2 J ( q* q k 1 ) (q! J q* q 2 ( q k 1 ) q 1 q 1 (a) (b) Problem: Anisotropic posterior, isotropic proposal; Efficiency nonuniform for different parameters Result: Recovers efficiency of univariate case

15 Proposal Distribution Proposal Distribution: Two basic approaches Choose a fixed proposal function o Independent Metropolis Random walk (local Metropolis) q = q k 1 + Rz o Two (of several) choices: (i) R = ci q N(q k 1,cI) (ii) R = chol(v ) q N(q k 1,V) where Sensitivity Matrix V = σ 2 OLS X T (q OLS )X (q OLS ) 1 σ 2 OLS = 1 n [υ i f i (q OLS )] 2 n p i=1 (q! q 2 J X ik (q OLS )= f i(q OLS ) q k ( q* q k 1 ) (q! J q* q 2 ( q k 1 ) q 1 q 1 (a) (b)

16 Random Walk Metropolis Algorithm for Parameter Estimation 1. Set number of chain elements M and design parameters n s, σ s 2. Determine q 0 = arg min q N i=1 [υ i f i (q)] 2 3. Set SS q 0 = N i=1 [υ i f i (q 0 )] 2 4. Compute initial variance estimate: s 2 0 = SS q 0 n p 5. Construct covariance estimate V = s 2 0[X T (q 0 )X (q 0 )] 1 and R = chol(v ) 6. For k =1,,M (a) Sample z k N(0, 1) (b) Construct candidate q = q k 1 + Rz k (c) Sample u α U(0, 1) (d) Compute SS q (e) Compute α(q q k 1 )=min = N i=1 [υ i f i (q )] 2 1,e [SS q SS q k 1 ]/2s 2 k 1 (f) If u α < α, Set q k = q,ss q k = SS q else Set q k = q k 1,SS q k = SS q k 1 endif (g) Update s k Inv-gamma(a val,b val ) where a val =0.5(n s + n),b val =0.5(n s σ 2 s + SS q k) Parameter Value Chain Iteration

17 Delayed Rejection Adaptive Metropolis (DRAM) Adaptive Metropolis: Update chain covariance matrix as chain values are accepted. Diminishing adaptation and bounded convergence required since no longer Markov chain. Employ recursive relations V k = s p cov(q 0,q 1,,q k 1 )+εi p q k = 1 k +1 k i=0 q i = k k +1 1 k k 1 i=0 V k+1 = k 1 k V k + s p k q i + 1 k +1 qk = k k +1 qk k +1 qk k q k 1 ( q k 1 ) T (k + 1) q k ( q k ) T + q k (q k ) T + εi p

18 Chain Convergence (Burn-In) Techniques: Visually check chains Statistical tests Often abused in the literature Parameter Value Chain Iteration Chain not converged Chain for nonidentifiable parameter

19 Delayed Rejection Adaptive Metropolis (DRAM) Websites Examples Examples on using the toolbox for some statistical problems.

20 Delayed Rejection Adaptive Metropolis (DRAM) We fit the Monod model y = θ 1 1 θ , N(0,Iσ2 ) to observations x (mg / L COD): y (1 / h): First clear some variables from possible previous runs. clear data model options Next, create a data structure for the observations and control variables. Typically one could make a structure data that contains fields xdata and ydata. data.xdata = [ ]'; % x (mg / L COD) data.ydata = [ ]'; % y (1 / h) Construct model modelfun theta(1)*x./(theta(2)+x); ssfun sum((data.ydata-modelfun(data.xdata,theta)).^2); model.ssfun = ssfun; model.sigma2 = 0.01^2;

21 Delayed Rejection Adaptive Metropolis (DRAM) Input parameters params = { {'theta1', tmin(1), 0} {'theta2', tmin(2), 0} }; and set options options.nsimu = 4000; options.updatesigma = 1; options.qcov = tcov; Run code [res,chain,s2chain] = mcmcrun(model,data,params,options);

22 Delayed Rejection Adaptive Metropolis (DRAM) Plot results figure(2); clf mcmcplot(chain,[],res,'chainpanel'); figure(3); clf mcmcplot(chain,[],res,'pairs'); Examples: Several available in MCMC_EXAMPLES ODE solver illustrated in algae example

23 Delayed Rejection Adaptive Metropolis (DRAM) Construct credible and prediction intervals figure(5); clf out = mcmcpred(res,chain,[],x,modelfun); mcmcpredplot(out); hold on plot(data.xdata,data.ydata,'s'); % add data points to the plot xlabel('x [mg/l COD]'); ylabel('y [1/h]'); hold off title('predictive envelopes of the model')

24 Steady State Model:! d 2 T s 2(a + b) = dx2 ab dt s dx (0) = Φ k DRAM for Heat Example h k [T s(x) T amb ] dt s dx (L) = h k [T amb T s (L)] Note:! Parameter set q =[Φ,h,k] is not identifiable Website Temperature ( o C) Aluminum Rod Data Location (cm)

25 DRAM for Heat Model with 3 Parameters: Results Note:! Parameter set q =[Φ,h,k] is not identifiable Notes:! Cond(V) = 1e+35! Data and model are not informing priors!

26 2 Parameter Heat Model:! Notes:! d 2 T s 2(a + b) = dx2 ab dt s dx (0) = Φ k Assignment:! Assignment h k [T s(x) T amb ] dt s dx (L) = h k [T amb T s (L)] Set k = 2.37 W/cm C, which is the physical value for aluminum Parameter set q =[h, Φ] is now identifiable Modify the posted 3 parameter code for the 2 parameter model. How do your chains and results compare?! Consider various chain lengths to establish burn-in.!

Parameter Selection and Model Calibration for an SIR Model

Parameter Selection and Model Calibration for an SIR Model Parameter Selection and Model Calibration for an SIR Model Ralph C. Smith Department of Mathematics North Carolina State Universit SIR Model ds = N - S - kis, S(0) =S 0 di = kis - (r + )I, I(0) =I 0 dr

More information

Computer Practical: Metropolis-Hastings-based MCMC

Computer Practical: Metropolis-Hastings-based MCMC Computer Practical: Metropolis-Hastings-based MCMC Andrea Arnold and Franz Hamilton North Carolina State University July 30, 2016 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, 2016 1 / 19 Markov

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Krzysztof Fidkowski, David Galbally*, Karen Willcox* (*MIT) Computational Aerospace Sciences Seminar Aerospace Engineering

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

Uncertainty Propagation

Uncertainty Propagation Setting: Uncertainty Propagation We assume that we have determined distributions for parameters e.g., Bayesian inference, prior experiments, expert opinion Ṫ 1 = 1 - d 1 T 1 - (1 - ")k 1 VT 1 Ṫ 2 = 2 -

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Lecture 6: Markov Chain Monte Carlo

Lecture 6: Markov Chain Monte Carlo Lecture 6: Markov Chain Monte Carlo D. Jason Koskinen koskinen@nbi.ku.dk Photo by Howard Jackman University of Copenhagen Advanced Methods in Applied Statistics Feb - Apr 2016 Niels Bohr Institute 2 Outline

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Strong Lens Modeling (II): Statistical Methods

Strong Lens Modeling (II): Statistical Methods Strong Lens Modeling (II): Statistical Methods Chuck Keeton Rutgers, the State University of New Jersey Probability theory multiple random variables, a and b joint distribution p(a, b) conditional distribution

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Preliminaries. Probabilities. Maximum Likelihood. Bayesian

More information

Adaptive Monte Carlo methods

Adaptive Monte Carlo methods Adaptive Monte Carlo methods Jean-Michel Marin Projet Select, INRIA Futurs, Université Paris-Sud joint with Randal Douc (École Polytechnique), Arnaud Guillin (Université de Marseille) and Christian Robert

More information

A Bayesian Approach to Phylogenetics

A Bayesian Approach to Phylogenetics A Bayesian Approach to Phylogenetics Niklas Wahlberg Based largely on slides by Paul Lewis (www.eeb.uconn.edu) An Introduction to Bayesian Phylogenetics Bayesian inference in general Markov chain Monte

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

Advanced Sampling Algorithms

Advanced Sampling Algorithms + Advanced Sampling Algorithms + Mobashir Mohammad Hirak Sarkar Parvathy Sudhir Yamilet Serrano Llerena Advanced Sampling Algorithms Aditya Kulkarni Tobias Bertelsen Nirandika Wanigasekara Malay Singh

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Markov chain Monte Carlo methods in atmospheric remote sensing

Markov chain Monte Carlo methods in atmospheric remote sensing 1 / 45 Markov chain Monte Carlo methods in atmospheric remote sensing Johanna Tamminen johanna.tamminen@fmi.fi ESA Summer School on Earth System Monitoring and Modeling July 3 Aug 11, 212, Frascati July,

More information

MCMC notes by Mark Holder

MCMC notes by Mark Holder MCMC notes by Mark Holder Bayesian inference Ultimately, we want to make probability statements about true values of parameters, given our data. For example P(α 0 < α 1 X). According to Bayes theorem:

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods Tomas McKelvey and Lennart Svensson Signal Processing Group Department of Signals and Systems Chalmers University of Technology, Sweden November 26, 2012 Today s learning

More information

Bayesian Estimation of Input Output Tables for Russia

Bayesian Estimation of Input Output Tables for Russia Bayesian Estimation of Input Output Tables for Russia Oleg Lugovoy (EDF, RANE) Andrey Polbin (RANE) Vladimir Potashnikov (RANE) WIOD Conference April 24, 2012 Groningen Outline Motivation Objectives Bayesian

More information

SAMSI Astrostatistics Tutorial. More Markov chain Monte Carlo & Demo of Mathematica software

SAMSI Astrostatistics Tutorial. More Markov chain Monte Carlo & Demo of Mathematica software SAMSI Astrostatistics Tutorial More Markov chain Monte Carlo & Demo of Mathematica software Phil Gregory University of British Columbia 26 Bayesian Logical Data Analysis for the Physical Sciences Contents:

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model

Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model UNIVERSITY OF TEXAS AT SAN ANTONIO Hastings-within-Gibbs Algorithm: Introduction and Application on Hierarchical Model Liang Jing April 2010 1 1 ABSTRACT In this paper, common MCMC algorithms are introduced

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Supplementary Note on Bayesian analysis

Supplementary Note on Bayesian analysis Supplementary Note on Bayesian analysis Structured variability of muscle activations supports the minimal intervention principle of motor control Francisco J. Valero-Cuevas 1,2,3, Madhusudhan Venkadesan

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

An introduction to Bayesian statistics and model calibration and a host of related topics

An introduction to Bayesian statistics and model calibration and a host of related topics An introduction to Bayesian statistics and model calibration and a host of related topics Derek Bingham Statistics and Actuarial Science Simon Fraser University Cast of thousands have participated in the

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Approximate Bayesian Computation: a simulation based approach to inference

Approximate Bayesian Computation: a simulation based approach to inference Approximate Bayesian Computation: a simulation based approach to inference Richard Wilkinson Simon Tavaré 2 Department of Probability and Statistics University of Sheffield 2 Department of Applied Mathematics

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Statistical Analysis in Modelling: MCMC methods. Heikki Haario Lappeenranta University of Technology

Statistical Analysis in Modelling: MCMC methods. Heikki Haario Lappeenranta University of Technology Statistical Analysis in Modelling: methods Heikki Haario Lappeenranta University of Technology heikki.haario@lut.fi Contents Introduction Linear Models Regression Analysis Covariance, classical error bounds

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

Simulation - Lectures - Part III Markov chain Monte Carlo

Simulation - Lectures - Part III Markov chain Monte Carlo Simulation - Lectures - Part III Markov chain Monte Carlo Julien Berestycki Part A Simulation and Statistical Programming Hilary Term 2018 Part A Simulation. HT 2018. J. Berestycki. 1 / 50 Outline Markov

More information

Introduction to MCMC. DB Breakfast 09/30/2011 Guozhang Wang

Introduction to MCMC. DB Breakfast 09/30/2011 Guozhang Wang Introduction to MCMC DB Breakfast 09/30/2011 Guozhang Wang Motivation: Statistical Inference Joint Distribution Sleeps Well Playground Sunny Bike Ride Pleasant dinner Productive day Posterior Estimation

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Multimodal Nested Sampling

Multimodal Nested Sampling Multimodal Nested Sampling Farhan Feroz Astrophysics Group, Cavendish Lab, Cambridge Inverse Problems & Cosmology Most obvious example: standard CMB data analysis pipeline But many others: object detection,

More information

Bayesian Inference. Chapter 1. Introduction and basic concepts

Bayesian Inference. Chapter 1. Introduction and basic concepts Bayesian Inference Chapter 1. Introduction and basic concepts M. Concepción Ausín Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master

More information

Advanced Statistical Methods. Lecture 6

Advanced Statistical Methods. Lecture 6 Advanced Statistical Methods Lecture 6 Convergence distribution of M.-H. MCMC We denote the PDF estimated by the MCMC as. It has the property Convergence distribution After some time, the distribution

More information

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007 Bayesian inference Fredrik Ronquist and Peter Beerli October 3, 2007 1 Introduction The last few decades has seen a growing interest in Bayesian inference, an alternative approach to statistical inference.

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

Bayesian Gaussian Process Regression

Bayesian Gaussian Process Regression Bayesian Gaussian Process Regression STAT8810, Fall 2017 M.T. Pratola October 7, 2017 Today Bayesian Gaussian Process Regression Bayesian GP Regression Recall we had observations from our expensive simulator,

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

Application of Bayesian Inference to Milling Force Modeling

Application of Bayesian Inference to Milling Force Modeling Jaydeep M. Karandikar Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223 Tony L. Schmitz Department of Mechanical Engineering and

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch.

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Oliver Schulte - CMPT 419/726. Bishop PRML Ch. Sampling Methods Oliver Schulte - CMP 419/726 Bishop PRML Ch. 11 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs A particular tree structure

More information

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School

Bayesian modelling. Hans-Peter Helfrich. University of Bonn. Theodor-Brinkmann-Graduate School Bayesian modelling Hans-Peter Helfrich University of Bonn Theodor-Brinkmann-Graduate School H.-P. Helfrich (University of Bonn) Bayesian modelling Brinkmann School 1 / 22 Overview 1 Bayesian modelling

More information

Bayesian Inference in Astronomy & Astrophysics A Short Course

Bayesian Inference in Astronomy & Astrophysics A Short Course Bayesian Inference in Astronomy & Astrophysics A Short Course Tom Loredo Dept. of Astronomy, Cornell University p.1/37 Five Lectures Overview of Bayesian Inference From Gaussians to Periodograms Learning

More information

Inverse Problems in the Bayesian Framework

Inverse Problems in the Bayesian Framework Inverse Problems in the Bayesian Framework Daniela Calvetti Case Western Reserve University Cleveland, Ohio Raleigh, NC, July 2016 Bayes Formula Stochastic model: Two random variables X R n, B R m, where

More information

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014 Bayesian Prediction of Code Output ASA Albuquerque Chapter Short Course October 2014 Abstract This presentation summarizes Bayesian prediction methodology for the Gaussian process (GP) surrogate representation

More information

SC7/SM6 Bayes Methods HT18 Lecturer: Geoff Nicholls Lecture 2: Monte Carlo Methods Notes and Problem sheets are available at http://www.stats.ox.ac.uk/~nicholls/bayesmethods/ and via the MSc weblearn pages.

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Making rating curves - the Bayesian approach

Making rating curves - the Bayesian approach Making rating curves - the Bayesian approach Rating curves what is wanted? A best estimate of the relationship between stage and discharge at a given place in a river. The relationship should be on the

More information

Down by the Bayes, where the Watermelons Grow

Down by the Bayes, where the Watermelons Grow Down by the Bayes, where the Watermelons Grow A Bayesian example using SAS SUAVe: Victoria SAS User Group Meeting November 21, 2017 Peter K. Ott, M.Sc., P.Stat. Strategic Analysis 1 Outline 1. Motivating

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

TEORIA BAYESIANA Ralph S. Silva

TEORIA BAYESIANA Ralph S. Silva TEORIA BAYESIANA Ralph S. Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Numerical Integration Polynomial quadrature is intended to approximate

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Sampling from complex probability distributions

Sampling from complex probability distributions Sampling from complex probability distributions Louis J. M. Aslett (louis.aslett@durham.ac.uk) Department of Mathematical Sciences Durham University UTOPIAE Training School II 4 July 2017 1/37 Motivation

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics Bayesian phylogenetics the one true tree? the methods we ve learned so far try to get a single tree that best describes the data however, they admit that they don t search everywhere, and that it is difficult

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model Thai Journal of Mathematics : 45 58 Special Issue: Annual Meeting in Mathematics 207 http://thaijmath.in.cmu.ac.th ISSN 686-0209 The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Konstantin Zuev Institute for Risk and Uncertainty University of Liverpool http://www.liv.ac.uk/risk-and-uncertainty/staff/k-zuev/

More information

Forward Problems and their Inverse Solutions

Forward Problems and their Inverse Solutions Forward Problems and their Inverse Solutions Sarah Zedler 1,2 1 King Abdullah University of Science and Technology 2 University of Texas at Austin February, 2013 Outline 1 Forward Problem Example Weather

More information

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Bayesian statistics DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist statistics

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University Phylogenetics: Bayesian Phylogenetic Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Bayes Rule P(X = x Y = y) = P(X = x, Y = y) P(Y = y) = P(X = x)p(y = y X = x) P x P(X = x 0 )P(Y = y X

More information

Session 3A: Markov chain Monte Carlo (MCMC)

Session 3A: Markov chain Monte Carlo (MCMC) Session 3A: Markov chain Monte Carlo (MCMC) John Geweke Bayesian Econometrics and its Applications August 15, 2012 ohn Geweke Bayesian Econometrics and its Session Applications 3A: Markov () chain Monte

More information

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester Physics 403 Numerical Methods, Maximum Likelihood, and Least Squares Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Quadratic Approximation

More information

Spatially Adaptive Smoothing Splines

Spatially Adaptive Smoothing Splines Spatially Adaptive Smoothing Splines Paul Speckman University of Missouri-Columbia speckman@statmissouriedu September 11, 23 Banff 9/7/3 Ordinary Simple Spline Smoothing Observe y i = f(t i ) + ε i, =

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information