Higgs particle discovery and measurements - a breakthrough in physics

Size: px
Start display at page:

Download "Higgs particle discovery and measurements - a breakthrough in physics"

Transcription

1 Higgs particle discovery and measurements - a breakthrough in physics The Standard Model of elementary particles Large Hadron Collider at CERN and its experiments Discovery of the Higgs boson Particle Physics technologies find medical applications Elżbieta Richter-Wąs Institute of Physics, Jagiellonian University

2 4-th of July 2012, ATLAS and CMS experiments at Large Hadron Collider at CERN announced observation of a new particle, consistent with predicted by so called Higgs mechanism. F. Englert P.Higgs 2

3 Nobel Prizes in Elementary Particle Physics GREEN - theoretical BLUE - experimental M. Gell-Mann 1964: Higgs mechanism was born 1957 C. N. Yang, T. Lee 1965 S. I. Tomonaga, J. Schwinger, R.P Feynman 1969 M. Gell-Mann 1976 B. Richter and S. Ting 1979 S.L. Glashow, A. Salam, S. Weinberg 1980 J. Cronin, V. Fitch 1984 C. Rubbia, S. van der Meer 1988 L. M. Lederman, M. Schwartz, J. Steinberger 1990 J. Friedman, J. Kendall, R. Taylor G. Charpak 1995 M. Perl, F. Reines G. thooft, M. J. Veltman D. J. Gross, H. D. Politzer, F. Wilczek 2008 Y. Nambu, M. Kobayashi, T. Masakawa 2013 F. Englert and P. Higgs Detectors -> medical applications 2012: Higgs particle was discovered 3

4 Quantum mechanisc Standard Model of elementary particles Matter particles (< cm) Force carriers Higgs particle Has a special role, it is neither a matter particle nor a force carrier. 4

5 Mass (giga-electron-volt) Mass Spectrum of Elementary Particles If the mass of the W boson was smaller, time of the combustion would be shorter and at lower temperature Sun shield Mass of the electrons is times smaller than mass of W, but if it was exactly zero there would be no atomic binding. If the masses of elementary particles were different the Universe, as we know it, would not exist. m = 0 5

6 Symmetry Broken symmetry Mass Symmetries in the system dictate conservation laws Discrete symmetry in art (*) E. Noether (1918) H. Weyl (1918, 1929) Hermann Weyl (1918 /1929) Symmetries in the system dictate interaction laws J. Goldstone (1961), Y. Nambu (1960) Spontaneously broken symmetry ( hidden symmetry ) in the quantum system can generate mass. Meta-stable conditions: Once the ball falls down, the symmetry of the system is spontaneously broken and system is in the stable conditions. (*) hexagonal design (Chinese paper window support) 6

7 Vacuum Concept of the field Higgs mechanism Michael Faraday (1845) Introduced concept of field into description of magnetic interactions. Magnetic field has a source. Force lines of the magnetic field In classical understanding vacuum = empty space, or state of energy = 0. In quantum mechanics vacuum is full of life. Just bubbling with creation and annihilation of matter particles. Symmetries dictate laws of interactions. Stable state of vacuum does not necessarily has an energy = zero. Higgs mechanism (1964): Quantum vacuum is not empty, is full of the Higgs field. This field has no structure nor sources. After symmetry is spontaneously broken, field is not neutral anymore and interaction of elementary particles with this field gives masses to the elementary particles. This mechanism predicted also the existence of a massive scalar particle, so called, Higgs particle which is the quantum fluctuation of the Higgs field. 7

8 Theory has to be verified by experiment It doesn t matter how beautiful your theory is, it doesn t matter how smart you are. If it doesn t agree with experiments, it s wrong. R. Feynman R. Feynman There was no good idea how to observe the Higgs field. For several decades also discovery of the Higgs particle seemed to be beyond technological reach of experiments. 8

9 How are we probing elementary particles, how are we exploring structure of Universe? Big-bang Large distances events far apart in time Virus Radius of Earth Distance Earth-Sun LHC Galactica Universe cm LHC: Super microscop which creates Conditions as s after Big-Bang Short distances very large energies 9

10 CERN European Laboratory for Particle Physics CERN was founded in 1954: ( Science for peace ) Today: 21 member states, more than users Mont Blanc Jezioro Genewskie CERN 38 państw CERN s primary mission is SCIENCE. Main area of research ATLAS Collaboration is particle physics study of the fundamental constituents of matter and the forces acting between them. 10

11 LHC (Large Hadron Collider) Mont Blanc Lake Geneva ATLAS CMS 27 km circuit 100m underground 27 km długości 100m pod ziemią LHC One of the most ambitious projects in Science 11

12 Proton-proton collisions We accelerate two beams Składniki protonu Proton bunch Colliding protons Interacting quarks Proton-Proton 1380 bunches/beam Protons/beam 1.7 pęczków/wiązkę Beam energy 4 TeV ( = MeV) Protonów/pęczek Energia wiązki Each proton is moving close to the speed of light and carry energy of a fly. It turns around the ring with a frequency of 1100 times/second. Beam cross-section at collision point: 16mm (4 times smaller than diameter on human hair). Each beam has energy of TGV train (200m) moving with the speed of 155km/hour (360M Jule). Production and decay of a new particle Such event in 1/10 12 of interactions 12

13 ATLAS detector and collaboration ATLAS detector: 42m length, 22 m diameter; 3000 km of cables outputting electronic signal; more than 10 8 readout channels; precision in positioning of some elements is about microns. Atlas Collaboration: More than 3000 physicists, engineers and technicians, including more than 1000 PhD students; 178 institutions from 38 countries; Polish groups: IFJ-PAN, AGH and Institute of Physics UJ 13

14 ATLAS detector ATLAS Analysis of the registered event: In 3 years each experiment registered on the disc more than of interesting events = 20 PB (10 15 bytes) of data. If written on the CD discs, it would make a tower 20 km in high. 14

15 How did we observe Higgs particle? Probability < that it is not a statistical fluctuation of the background. Analysed are multi-dimensional distributions. ~450 registered Higgs particle decays look similarly. It was complex, one detectable Higgs particle produced every collisions. 15

16 Measuring properties of the Higgs particle Mass = ( ± 0.3% ) GeV Quantum state J PC = 0 + Interacts with elementary particles Interaction strenght is proportional to their mass. All experimental observations so far are consistent with the predictions of the Higgs mechanism! The next step will be to confirm that the Higgs particle interacts with itself as predicted. 16

17 Large Hadron Collider is operating again Event recorded at a collision energy of 13 TeV ( x2 more than so far) More than 1000 papers published by 4 LHC experiments. We are starting now the route to UNKNOWN! maybe we will be able to understand why there is such asymmetry between matter and anti-matter in the Universe? Will we ever understand what is a dark-matter and dark-energy which are 95% of the Universe Is the value of the vacuum of the Higgs field associated with the cosmological constant in Einstein equation?

18 Particle physics technologies find medical applications G. Charpak (Nobel Prize in Physics, 1992) For invention of multi-wire chamber detectors (1968); Made possible to increase data collection speed by factor 1000 and improve significantly spatial resolution. Widely used technology in Particle Physics Exp.; Found its applications in medicine and biology. (Randomly picked article ) G. Charpak, Pressurized xenon wire-chamber gamma camera, allowed for using short-lived radionuclei 178 Ta, which greatly reduced radiation dosimetry and allowed for brief duration of data acquisition. The wire chamber camera is starting to be utilized in number of clinical areas. 18

19 Particle physics technologies find medical applications Large Hadron Collider is operating again Accelerating particles beams: ~ accelerators worldwide ~ used for medical applications LHC CERN has been collaborating to the design and testing of two last generation dual facilities, designed to provide proton and carbon ion beams: CNAO (Pavia) and MedAustron (Austria). On site, CERN transforms Low Energy Ion Ring (LEIR) into biomedical facility. One of the facilities at CERN generates custom radioisotopes for clinical research. 19

20 Particle physics technologies find medical applications Digital imaging -> medical diagnostics eg. PET (Positron Emission Tomography) Detecting particles Frontier machines like LHC push particle detectors beyond state-of-art to achieve needed resolution and speed, fuelling new developments in medical imaging. One example are LYSO crystals used for modern PET and PET/CT scanners. Faster and more sensitive detectors allow for in-vivo monitoring in real time during therapeutic irradiation: AX-PET, Medpix, Crystal Clear, EVISION, 20

21 Particle physics technologies find medical applications Data analysis techniques in the Grid-based distributed computing systems Unprecedented is amount of data processed by LHC experiments Epidemiology Genetics MammoGrid Monte Carlo simulation tools ( Geant4, Fluka) developed for particle physics volumes of ATLAS detector Used to model sources and geometries which have moving parts. Allows to simulate interactions of all particles type (electrons, positrons, photons, etc.) with composite matter 21

22 Discovery of the Higgs boson is a turning point. After 50-years last building block of Standard Model has fallen into place and opened the door to something completely new. What we know is a droplet, what we don t know is an Ocean Isaac Newton ( ). Research is a long and endless path. It is very difficult to predict what would be the effect of todays discoveries in fundamental science 50 years from now. However, tools and technology developed today in one discipline, continuously find applications and provide inspirations elsewhere, often in unexpected places. 22

23 SPARE SLIDES 23

24 SPARE SLIDES 24

25 25

26 (Almost) Final Run-I Coupling Results 26

27 When elementary particles 1995 have been 1979 discovered?

28 Many possible extensions to probe 28

29 LHC probes this energy range, about s Evolution of the Universe

30 30

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014 I. Antoniadis CERN IAS CERN Novice Workshop, NTU, 7 Feb 2014 1 2 3 the Large Hadron Collider (LHC) Largest scientific instrument ever built, 27km of circumference >10 000 people involved in its design

More information

Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department. 05 Novembre

Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department. 05 Novembre Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department 05 Novembre 2003 1 1949-1950: First ideas for creating a European laboratory in physics 1952: Foundation of the European Council

More information

Introduction. Read: Ch 1 of M&S

Introduction. Read: Ch 1 of M&S Introduction What questions does this field address? Want to know the basic law of nature. Can we unify all the forces with one equation or one theory? Read: Ch 1 of M&S K.K. Gan L1: Introduction 1 Particle

More information

The Why, What, and How? of the Higgs Boson

The Why, What, and How? of the Higgs Boson Modern Physics The Why, What, and How? of the Higgs Boson Sean Yeager University of Portland 10 April 2015 Outline Review of the Standard Model Review of Symmetries Symmetries in the Standard Model The

More information

John Ellis King s College London (& CERN) Welcome! Introduction to CERN. CERN: Accelerating Science and Innovation

John Ellis King s College London (& CERN) Welcome! Introduction to CERN. CERN: Accelerating Science and Innovation Welcome! John Ellis King s College London (& CERN) Introduction to CERN CERN: Accelerating Science and Innovation The Mission of CERN Push back the frontiers of knowledge E.g. the secrets of the Big Bang

More information

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009

UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC. Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009 UNVEILING THE ULTIMATE LAWS OF NATURE: DARK MATTER, SUPERSYMMETRY, AND THE LHC Gordon Kane, Michigan Center for Theoretical Physics Warsaw, June 2009 OUTLINE! Some things we ve learned about the physical

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 28th July 2014 Pedro Castro / MPY Accelerator Physics 28 th July 2014

More information

Experiments at the Large Hadron Collider Challenges and Opportunities

Experiments at the Large Hadron Collider Challenges and Opportunities Experiments at the Large Hadron Collider Challenges and Opportunities Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA IPPP, Durham UK 11 December 2014 What

More information

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden Particle Physics Tommy Ohlsson Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden International Baccalaureate T. Ohlsson (KTH) Particle Physics 1/

More information

Higgs boson may appear to be a technihiggs

Higgs boson may appear to be a technihiggs Higgs boson may appear to be a technihiggs The discovered elusive Higgs boson, first predicted theoretically, turns out to may have been a different particle after all. A team of international researchers

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 27th July 2015 Pedro Castro / MPY Introduction to Accelerator Physics

More information

Particles, Energy, and Our Mysterious Universe

Particles, Energy, and Our Mysterious Universe Particles, Energy, and Our Mysterious Universe 1 The End of Physics "The more important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

The Large Hadron Collider, and New Avenues in Elementary Particle Physics. Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015

The Large Hadron Collider, and New Avenues in Elementary Particle Physics. Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015 The Large Hadron Collider, and New Avenues in Elementary Particle Physics Gerard t Hooft, Public Lecture, IPMU Tokyo, April 16, 2015 CERN European Center for Nuclear Research LHC Large Hadron Collider

More information

Einige interessante Aspekte der in der Zielsetzung genannten Fragestellungen. Appetithappen -> Antworten spaeter in der Vorlesung.

Einige interessante Aspekte der in der Zielsetzung genannten Fragestellungen. Appetithappen -> Antworten spaeter in der Vorlesung. 0. Einführung Einige interessante Aspekte der in der Zielsetzung genannten Fragestellungen. Appetithappen -> Antworten spaeter in der Vorlesung. Folien auf Englisch (aus anderer Vorlesung ausgeliehen)

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Particle physics today. Giulia Zanderighi (CERN & University of Oxford) Particle physics today Giulia Zanderighi (CERN & University of Oxford) Particle Physics Particle Physics is fundamental research, as opposed to many applied sciences (medicine, biology, chemistry, nano-science,

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

Leptons and Weak interactions

Leptons and Weak interactions PHY771, 8/28/2014 Tomasz Skwarnicki 1 Historical introduction to Elementary Particles: Leptons and Weak interactions Tomasz Skwarnicki Syracuse University Griffiths, 2 nd ed., 1.3-1.5,1.10 PHY771, 8/28/2014

More information

Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN

Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN Welcome Hoşgeldiniz Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN Accelerating Science and Innovation The Mission of CERN Push back the frontiers of knowledge E.g. the secrets of

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Frontier Science: The mystery of Antimatter

Frontier Science: The mystery of Antimatter Frontier Science: The mystery of Antimatter Cristina Lazzeroni Professor in Particle Physics STFC Public Engagement Fellow ASE Frontier Science Lecture University of Birmingham Poynting Physics S02 7th

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

60 YEARS of SCIENCE FOR PEACE. R.-D. Heuer Prague, 8 Sept

60 YEARS of SCIENCE FOR PEACE. R.-D. Heuer Prague, 8 Sept 60 YEARS of SCIENCE FOR PEACE R.-D. Heuer Prague, 8 Sept 2014 1 CERN was founded 1954: 12 European States Science for Peace Today: 21 Member States ~ 2300 staff ~ 1600 other paid personnel ~ 10500 scientific

More information

The discovery of W ± and Z 0 vector-bosons

The discovery of W ± and Z 0 vector-bosons The discovery of W ± and Z 0 vector-bosons Giulia De Zordo April 15, 2014 Abstract This article is about the discovery of the W ± and Z 0 vector-bosons, the carriers of weak interaction. The discovery

More information

Hunting for the Higgs Boson. Ulrich Heintz Brown University

Hunting for the Higgs Boson. Ulrich Heintz Brown University Hunting for the Higgs Boson Ulrich Heintz Brown University the standard model electromagnetism acts on all charged particles strong force acts on all quarks weak force acts on all particles spin ½ spin

More information

DISCOVERING THE QUANTUM UNIVERSE

DISCOVERING THE QUANTUM UNIVERSE DISCOVERING THE QUANTUM UNIVERSE Jonathan Feng University of California, Irvine Physical Sciences Breakfast Lecture Series Beckman Center of the National Academies 28 November 2006 QUANTUM UNIVERSE? Quantum

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Matter, Antimatter and the Strangeness of CP violation

Matter, Antimatter and the Strangeness of CP violation Matter, Antimatter and the Strangeness of CP violation Angela Romano Angela Romano Masterclass 21/04/10 1 Cambridge, 1928 : Dirac predicted the existence of the positron e+, same mass but opposite charge

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Discovery of the W and Z 0 Bosons

Discovery of the W and Z 0 Bosons Discovery of the W and Z 0 Bosons Status of the Standard Model ~1980 Planning the Search for W ± and Z 0 SppS, UA1 and UA2 The analyses and the observed events First measurements of W ± and Z 0 masses

More information

Experimental Tests of the Standard Model. Precision Tests of the Standard Model

Experimental Tests of the Standard Model. Precision Tests of the Standard Model Experimental Tests of the Standard Model Precision Tests of the Standard Model - History of EW theory - Discovery of the Z and W Boson by the UA1/UA2 experiments (1983) - Precision tests of the Z sector

More information

What is matter and how is it formed?

What is matter and how is it formed? What is matter and how is it formed? Lesson 6: Subatomic Particles Subatomic particles refers to particles that are more "fundamental" than... Are these fundamental particles or are they made up of smaller,

More information

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas)

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas) The Higgs Boson as a Probe of New Physics Ian Lewis University of Kansas 1 July 4, 2012 ATLAS and CMS announce discovery of a new particle. Consistent with long sought-after Higgs boson. "We have reached

More information

Introduction a la Physique des Saveur Lourdes. JRJC 2013 Yasmine Amhis LAL - Orsay

Introduction a la Physique des Saveur Lourdes. JRJC 2013 Yasmine Amhis LAL - Orsay Introduction a la Physique des Saveur Lourdes JRJC 2013 Yasmine Amhis LAL - Orsay Let s start with some questions 1. What are the elementary constituents of matter? 2. What holds them together? 3. What

More information

Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units

Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units Introduction to Elementary Particle Physics. Note 01 Page 1 of 8 Natural Units There are 4 primary SI units: three kinematical (meter, second, kilogram) and one electrical (Ampere 1 ) It is common in the

More information

Mark Neubauer. Enabling Discoveries at the LHC through Advanced Computation and Machine Learning. University of Illinois at Urbana-Champaign

Mark Neubauer. Enabling Discoveries at the LHC through Advanced Computation and Machine Learning. University of Illinois at Urbana-Champaign Enabling Discoveries at the LHC through Advanced Computation and Machine Learning Mark Neubauer University of Illinois at Urbana-Champaign Blue Waters Symposium Sunriver, OR May 16-19, 2017 The Pursuit

More information

Linear Collider. Hitoshi Murayama (Berkeley) Jan 31, 2005

Linear Collider. Hitoshi Murayama (Berkeley) Jan 31, 2005 Linear Collider Hitoshi Murayama (Berkeley) EPP2010@SLAC, Jan 31, 2005 Take-home messages We are approaching a new layer of energy scale: something is brewing at TeV-scale Solutions to many deep puzzles

More information

17/01/17 F. Ould-Saada

17/01/17 F. Ould-Saada Chapter 3 3.1 Why Do We Need Accelerators? 3.1.1 The Center-of-Mass (c.m.) System 3.1.2 The Laboratory System 3.1.3 Fixed Target Accelerator and Collider 3.2 Linear and Circular Accelerators 3.2.1 Linear

More information

Weak Interactions. The Theory of GLASHOW, SALAM and WEINBERG

Weak Interactions. The Theory of GLASHOW, SALAM and WEINBERG Weak Interactions The Theory of GLASHOW, SALAM and WEINBERG ~ 1959-1968 (Nobel 1979) Theory of the unified weak and electromagnetic interaction, transmitted by exchange of intermediate vector bosons mass

More information

Lecture 39, 40 Supplement: Particle physics in the LHC era

Lecture 39, 40 Supplement: Particle physics in the LHC era Lecture 39, 40 Supplement: Particle physics in the LHC era The Matter Particles (Fermions) plus their antiparticles... What is measured? quarks confined into hadrons A zoo of strongly interacting particles...

More information

Large Hadron Collider

Large Hadron Collider Large Hadron Collider Himadri Barman TSU, JNCASR September 18, 2008 0-0 Large Hadron Collider (LHC): Plan We ll see 4 short videos. In between I ll give you a little guideline. Purpose is to understand

More information

Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012)

Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012) 1 Electroweak Theory: The Experimental Evidence and Precision Tests PPP-II Lecture 8 (FS 2012) Michael Dittmar (ETH-Zürich/CMS) 17.4.2012 1950ies From the messy world of hadrons to weak decays and neutrinos.

More information

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos 6-8 February 2017 Hotel do Mar Sesimbra Hands on Neutrinos Hands on Neutrinos 1 I. BRIEF HISTORY OF NEUTRINOs The neutrinowas first postulated by Wolfgang Pauli in 1930 to explain how β particles emitted

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

The Secret of Mass. Can we Evaporate the Vacuum at RHIC?

The Secret of Mass. Can we Evaporate the Vacuum at RHIC? : Can we Evaporate the Vacuum at RHIC? Texas A&M University February 24, 2007 Outline The Beauty of Nature: Symmetries The Beauty of Nature: Symmetries What is a symmetry? Geometry: Certain operations

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 4.61 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

Experimental verification of the Salaam-Weinberg model. Pásztor Attila, Eötvös University Experimental Particle Physics Student Seminar

Experimental verification of the Salaam-Weinberg model. Pásztor Attila, Eötvös University Experimental Particle Physics Student Seminar Experimental verification of the Salaam-Weinberg model Pásztor Attila, Eötvös University Experimental Particle Physics Student Seminar Contents Theoretical considerations Discovery of W and Z bosons (and

More information

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1 LHC & ATLAS The largest particle physics experiment in the world 1 CERN A laboratory for the world Torsten Gustavson CERN was founded in 1954 There were 12 member states in the beginning. 2 OBSERVERS:

More information

Welcome to DESY. What is DESY and what kind of research is done here?

Welcome to DESY. What is DESY and what kind of research is done here? Welcome to DESY. What is DESY and what kind of research is done here? Michael Grefe DESY Press and Public Relations (PR) What is DESY? > Deutsches Elektronen-Synchrotron (German electron synchrotron) DESY

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Introductory Lecture August 3rd 2014 International Centre for Theoretical Physics and

More information

Par$cles. Ma#er is made of atoms. Atoms are made of leptons and quarks. Leptons. Quarks. atom nucleus nucleon quark m m m m

Par$cles. Ma#er is made of atoms. Atoms are made of leptons and quarks. Leptons. Quarks. atom nucleus nucleon quark m m m m Par$cles Ma#er is made of atoms atom nucleus nucleon quark 10-10 m 10-14 m 10-15 m 10-18 m Atoms are made of leptons and quarks Leptons ν e e Quarks u d What Have We Learned? Rela?vis?c Quantum Mechanics

More information

The Dark Side of the Higgs Field and General Relativity

The Dark Side of the Higgs Field and General Relativity The Dark Side of the Higgs Field and General Relativity The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration:

More information

Source:CERN. Size and Scale

Source:CERN. Size and Scale Table of Contents Introduction Unification of Forces Size and Scale Standard Model Summary Standard Model Particles and Force Carriers About Mass and Energy Standard Model Fermions: Generations and Masses

More information

IoP Masterclass. The Physics of Flavour at the Large Hadron Collider. Tim Gershon University of Warwick March 30th 2011

IoP Masterclass. The Physics of Flavour at the Large Hadron Collider. Tim Gershon University of Warwick March 30th 2011 IoP Masterclass The Physics of Flavour at the Large Hadron Collider Tim Gershon University of Warwick March 30th 2011 The Standard Model 2 Some Questions What is antimatter? Why are there three colours

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Higgs Field and Quantum Gravity

Higgs Field and Quantum Gravity Higgs Field and Quantum Gravity The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field

More information

Future Directions in Experimental Nuclear and Particle Physics

Future Directions in Experimental Nuclear and Particle Physics Future Directions in Experimental Nuclear and Particle Physics Robert Bacher Bacher at the Caltech Synchrotron Barry Barish Bacher Symposium Caltech 5-Nov-05 Bacher and the Energy Frontier In the Spring

More information

Introduction to CERN and CMS

Introduction to CERN and CMS Introduction to CERN and CMS and background for the CMS analysis Jamie Gainer University of Hawaii at Manoa April 1, 2017 What do I do? I am a postdoc at UH Manoa I am a theorist In physics there are theorists:

More information

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc.

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc. Chapter 29 Lecture Particle Physics Prepared by Dedra Demaree, Georgetown University Particle Physics What is antimatter? What are the fundamental particles and interactions in nature? What was the Big

More information

Analyzing CMS events

Analyzing CMS events Quarknet University of Rochester, March 23, 2012 Analyzing CMS events Questions in Particle Physics Introducing the Standard Model The Large Hadron Collider The CMS detector W and Z bosons: decays ispy

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Wolfgang Pauli, CERN, and the LHC. Rüdiger Voss Physics Department, CERN

Wolfgang Pauli, CERN, and the LHC. Rüdiger Voss Physics Department, CERN Wolfgang Pauli, CERN, and the LHC Rüdiger Voss Physics Department, CERN Pauli and the origins of CERN Letter to Oppenheimer (1952): I am more urgently needed... here, particularly in connection with the

More information

THE HIGGS BOSON WINDOW ON THE BIG BANG.

THE HIGGS BOSON WINDOW ON THE BIG BANG. THE HIGGS BOSON WINDOW ON THE BIG BANG http://www.astropics.com Science 21 Dec 2012 BREAKTHROUGH OF THE YEAR Science 21 Dec 2012 BREAKTHROUGH OF THE YEAR Higgs Boson What is the Higgs Boson? Why is it

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Gravitational Repulsion of Matter and Antimatter

Gravitational Repulsion of Matter and Antimatter Gravitational Repulsion of Matter and Antimatter The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the electromagnetic inertia, the changing

More information

Electroweak Symmetry Breaking

Electroweak Symmetry Breaking Electroweak Symmetry Breaking An enduring mystery of the standard model of particle physics and how we hope to solve it David Schaich Department of Physics and Center for Computational Science Boston University

More information

Finish up our overview of small and large

Finish up our overview of small and large Finish up our overview of small and large Lecture 5 Limits of our knowledge Clicker practice quiz Some terminology... "Elementary particles" = objects that make up atoms (n,p,e) or are produced when atoms

More information

Standard Model, Higgs boson and what next?

Standard Model, Higgs boson and what next? Standard Model, Higgs boson and what next? G. Rajasekaran Institute of Mathematical Sciences, Chennai & Chennai Mathematical Institute G. Rajasekaran (IMSc & CMI) SM, Higgs boson and what next? 1 / 32

More information

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

High Energy Physics. QuarkNet summer workshop June 24-28, 2013 High Energy Physics QuarkNet summer workshop June 24-28, 2013 1 The Birth of Particle Physics In 1896, Thompson showed that electrons were particles, not a fluid. In 1905, Einstein argued that photons

More information

Introduction to Particle Physics and the Standard Model. Robert Clare UCR

Introduction to Particle Physics and the Standard Model. Robert Clare UCR Introduction to Particle Physics and the Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960

More information

Dark Energy or Repulsive Gravity

Dark Energy or Repulsive Gravity Dark Energy or Repulsive Gravity The leading theory to explain the accelerating expansion is the existence of a hypothetical repulsive force called dark energy. But in the new study, Massimo Villata, an

More information

LHC Physics : Part 1. Sergio Bertolucci. CERN Varenna, July 2009

LHC Physics : Part 1. Sergio Bertolucci. CERN Varenna, July 2009 LHC Physics : Part 1 Sergio Bertolucci CERN Varenna, July 2009 July 09 S. Bertolucci 1 First a General Introduction July 09 S.Bertolucci 2 Describing the Universe J. Wormersley, HCP05 July 09 S. Bertolucci

More information

String Theory in the LHC Era

String Theory in the LHC Era String Theory in the LHC Era J Marsano (marsano@uchicago.edu) 1 String Theory in the LHC Era 1. Electromagnetism and Special Relativity 2. The Quantum World 3. Why do we need the Higgs? 4. The Standard

More information

A Brief History of Particle Physics

A Brief History of Particle Physics A Brief History of Particle Physics 1930s The known 'Elementary Particles' were : electron proton neutron (inside the nucleus) 'neutrino' (now anti-neutrino) in beta decay photon the quantum of the electromagnetic

More information

Particle accelerators

Particle accelerators Particle accelerators Charged particles can be accelerated by an electric field. Colliders produce head-on collisions which are much more energetic than hitting a fixed target. The center of mass energy

More information

Quantum Physics and General Relativity

Quantum Physics and General Relativity Quantum Physics and General Relativity The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum

More information

Observation of a New Particle with a Mass of 125 GeV

Observation of a New Particle with a Mass of 125 GeV Observation of a New Particle with a Mass of 125 GeV CMS Experiment, CERN 4 July 2012 Summary In a joint seminar today at CERN and the ICHEP 2012 conference[1] in Melbourne, researchers of the Compact

More information

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B PH5211: High Energy Physics Prafulla Kumar Behera E-mail:behera@iitm.ac.in Room: HSB-304B Information Class timing: Wed. 11am, Thur. 9am, Fri. 8am The course will be graded as follows: 1 st quiz (20 marks)

More information

Lecture 11 Perturbative calculation

Lecture 11 Perturbative calculation M.Krawczyk, AFZ Particles and Universe 11 1 Particles and Universe Lecture 11 Perturbative calculation Maria Krawczyk, Aleksander F. Żarnecki Faculty of Physics UW I.Theory of elementary particles description

More information

Accelerating Science and Innovation Welkom CERN

Accelerating Science and Innovation Welkom CERN Accelerating Science and Innovation Welkom Nederlanders @ CERN Herman ten Kate The Mission of CERN Push forward the frontiers of knowledge E.g. the secrets of the Big Bang what was the matter like within

More information

Fundamental research (and much more) at CERN. Fabiola Gianotti (CERN)

Fundamental research (and much more) at CERN. Fabiola Gianotti (CERN) Fundamental research (and much more) at CERN Fabiola Gianotti (CERN) CERN : the largest particle physics laboratory in the world International Organization based in Geneva Mission: science: fundamental

More information

- Chapter 1 - The Standard Model of Particle Physics

- Chapter 1 - The Standard Model of Particle Physics - Chapter 1 - The Standard Model of Particle Physics Section 1: Introduction and Overview Section 2: Theory recap about the SM Section 3: Measurements at the Z pole Section 4: Hadronic collision: a closer

More information

Particle detection 1

Particle detection 1 Particle detection 1 Recall Particle detectors Detectors usually specialize in: Tracking: measuring positions / trajectories / momenta of charged particles, e.g.: Silicon detectors Drift chambers Calorimetry:

More information

The Quest for the Higgs

The Quest for the Higgs The Quest for the Higgs July 4, 2012: Higgs Day The CERN Laboratory Professor Matt Strassler Rutgers University The Higgs Boson Has (Almost Certainly) Been Discovered BUT WHAT IS IT? AND WHY DO SOME PEOPLE

More information

IoP Masterclass. The Physics of Flavour at the Large Hadron Collider. Tim Gershon University of Warwick April

IoP Masterclass. The Physics of Flavour at the Large Hadron Collider. Tim Gershon University of Warwick April IoP Masterclass The Physics of Flavour at the Large Hadron Collider Tim Gershon University of Warwick th April 14 2010 The Standard Model 2 Some Questions What is antimatter? Why are there three colours

More information

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders! Renormalisation in QCD!Asymptotic Freedom and Confinement in QCD! Lepton and Hadron Colliders!R = (e + e!!hadrons)/(e

More information

OPEN PROBLEMS IN FUNDAMENTAL PHYSICS

OPEN PROBLEMS IN FUNDAMENTAL PHYSICS 25/11/16 Open problems in fundamental physics 1 OPEN PROBLEMS IN FUNDAMENTAL PHYSICS Cesare Bini -- Sapienza Università, Roma Pontificia Università Lateranense --24/11/2016 25/11/16 Open problems in fundamental

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-2 April 5, 2010 A. T. Goshaw Duke University 1 HEP 101 Plan March 29: Introduction and basic HEP terminology March 30: Special LHC event:

More information

Gravitational Magnetic Force

Gravitational Magnetic Force Gravitational Magnetic Force The curved space-time around current loops and solenoids carrying arbitrarily large steady electric currents is obtained from the numerical resolution of the coupled Einstein-Maxwell

More information

the quest for certainty

the quest for certainty the quest for certainty LHC project Why an entity like CERN exists? To produce certainty, to provide solid and «undoubtable», i.e. «scientific», answers to some fundamental questions Particle physics looks

More information

A fantastic experiment

A fantastic experiment The Large Hadron Collider A fantastic experiment Duncan Carlsmith, Professor of Physics, University of Wisconsin-Madison What is the LHC? The Large Hadron Collider (LHC) is a new proton-proton colliding

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

Standard LHC

Standard LHC Standard Model@LHC Prof. E. Barberio Prof. G. Taylor, Dr. P. Urquijo Successful theory of fundamental interactions Survived numerous experimental tests Only missing the Higgs boson LHC built to look for

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

Start-up of the Large Hadron Collider at CERN

Start-up of the Large Hadron Collider at CERN Start-up of the Large Hadron Collider at CERN Possibilities for a Belgian Nobel Prize in physics Belgian Media File Abstract: Scientists and engineers from around the world are finalizing the last construction

More information