Object Detection and Segmentation from Joint Embedding of Parts and Pixels

Size: px
Start display at page:

Download "Object Detection and Segmentation from Joint Embedding of Parts and Pixels"

Transcription

1 Object Detection and Segmentation from Joint Embedding of Parts and Pixels Michael Maire 1, Stella X. Yu 2, Pietro Perona 1 1 California Institute of Technology - Pasadena, CA Boston College - Chestnut Hill, MA 02467

2 Segmentation Detection

3 Segmentation Detection }{{} Perceptual Grouping Framework

4 Ingredients Plug in state-of-the-art components:

5 Ingredients Plug in state-of-the-art components: low-level cues: color, texture, edges [Arbeláez, Maire, Fowlkes, Malik, PAMI 2011]

6 Ingredients Plug in state-of-the-art components: low-level cues: color, texture, edges top-down parts: poselets for person detection [Arbeláez, Maire, Fowlkes, Malik, PAMI 2011] [Bourdev, Maji, Brox, Malik, ECCV 2010]

7 Ingredients Plug in state-of-the-art components: PASCAL VOC 2010 Person Category: Improved Detection and Segmentation low-level cues: color, texture, edges top-down parts: poselets for person detection [Arbeláez, Maire, Fowlkes, Malik, PAMI 2011] [Bourdev, Maji, Brox, Malik, ECCV 2010]

8 Grouping Relationships

9 Grouping Relationships

10 Pixel Affinity: Color, Texture Similarity

11 Pixel Affinity: Color, Texture Similarity

12 Pixel Affinity: Color, Texture Similarity

13 Part Affinity: Geometric Compatibility

14 Part Affinity: Geometric Compatibility

15 pixels

16 parts pixels

17 parts surround pixels

18 parts surround pixels

19 parts surround pixels

20 parts surround figure/ground prior pixels

21 parts surround figure/ground prior pixels Angular Embedding objects figure/ground segmentation

22 Angular Embedding

23 Angular Embedding q p

24 Angular Embedding q p

25 Angular Embedding q Given: Relative ordering Θ(, ) Confidence on relationships C(, ) p

26 Angular Embedding p q Given: Relative ordering Θ(, ) Confidence on relationships C(, ) Compute: Global ordering θ( ) Embed into unit circle: p z(p) = e iθ(p) -p -q θ

27 Angular Embedding p q Given: Relative ordering Θ(, ) Confidence on relationships C(, ) Compute: Global ordering θ( ) Embed into unit circle: p z(p) = e iθ(p) -p -q θ Subject to: Linear constraints on embedding solution in columns of U

28 i z(p) z(r) z(q) 1 minimize: ε = p 0 1 q C(p,q) p,q C(p,q) z(p) z(p) 2 [Yu, PAMI 2011]

29 z(r)e iθ(p,r) i z(p) z(q)e iθ(p,q) z(r) C(p, r) Θ(p, r) C(p, q) Θ(p, q) z(q) 1 minimize: ε = p 0 1 q C(p,q) p,q C(p,q) z(p) z(p) 2 [Yu, PAMI 2011]

30 z(r)e iθ(p,r) i z(p) z(r) C(p, r) Θ(p, r) z(p) C(p, q) Θ(p, q) z(q)e iθ(p,q) z(q) 1 minimize: ε = p 0 1 q C(p,q) p,q C(p,q) z(p) z(p) 2 [Yu, PAMI 2011]

31 C q (C f, Θ f ) (C s, Θ s ) U C p

32 C = Θ = Σ 1 pixels {}}{ parts prior {}}{ {}}{ surround {}}{ C p α C q β C s γ C f 0 β Cs T γ Cf T Θ s Θ f 0 Θ T s Θ T f 0 0

33 Angular Embedding Relax to generalized eigenproblem QPQz = λz: P = D 1 W Q = I D 1 U(U T D 1 U) 1 U T with D and W defined as: D = Diag(C1 n ) W = C e iθ Eigenvectors {z 0, z 1,..., z m 1 } embed pixels and parts into C m

34 Angular Embedding z 0 encodes global ordering z 1, z 2,..., z m 1 encode grouping

35 Angular Embedding z 0 encodes global ordering z 1, z 2,..., z m 1 encode grouping if Θ = 0 Normalized Cuts (grouping without ordering)

36 Decoding Eigenvectors: Object Detection I(z0) I(z1) I(z2) R(z 2 ) R(z 0 ) R(z 1 ) Ordering Grouping

37 Decoding Eigenvectors: Object Detection I(z0) I(z1) I(z2) R(z 2 ) R(z 0 ) R(z 1 ) Ordering Grouping

38 Decoding Eigenvectors: Object Detection I(z0) I(z1) I(z2) R(z 2 ) R(z 0 ) R(z 1 ) Ordering Grouping

39 Decoding Eigenvectors: Object Detection I(z0) I(z1) I(z2) R(z 2 ) R(z 0 ) R(z 1 ) Ordering Grouping

40 Decoding Eigenvectors: Object Detection I(z0) I(z1) I(z2) R(z 2 ) R(z 0 ) R(z 1 ) Ordering Grouping

41 Decoding Eigenvectors: Object Detection I(z0) I(z1) I(z2) R(z 2 ) R(z 0 ) R(z 1 ) Ordering Grouping

42 Decoding Eigenvectors: Object Detection I(z0) I(z1) I(z2) R(z 2 ) R(z 0 ) R(z 1 ) Ordering Grouping

43 Decoding Eigenvectors: Object Detection I(z0) I(z1) I(z2) R(z 2 ) R(z 0 ) R(z 1 ) Ordering Grouping

44 Decoding Eigenvectors: Figure/Ground I(z) R(z) z 0 z 1 z 2 z 3 z 4

45 Decoding Eigenvectors: Figure/Ground I(z) R(z) z 0 z 1 z 2 z 3 z 4 IR(z) z 0 z 1 z 2 z 3 z 4

46 Decoding Eigenvectors: Segmentation IR(z) z 0 z 1 z 2 z 3 z 4 Figure/Ground }{{} Hierarchical Segmentation [Arbeláez, Maire, Fowlkes, Malik, PAMI 2011]

47 Decoding Eigenvectors: Object Segmentation Assign pixels pk to objects Qi via parts qj : pk argmin min {Dist(pk, qj )} Qi qj Qi

48 Decoding Eigenvectors: Object Segmentation Assign pixels pk to objects Qi via parts qj : pk argmin min {Dist(pk, qj )} Qi qj Qi

49 Decoding Eigenvectors

50 Results: PASCAL 2010 Person Category Detections Poselet Mask F/G Mask Segmentation

51 Results: PASCAL 2010 Person Category Detections Poselet Mask F/G Mask Segmentation

52 Results: PASCAL 2010 Person Category I Segmentation task score: 41.1 (35.5 for poselet baseline)

53 Results: PASCAL 2010 Person Category I Segmentation task score: 41.1 (35.5 for poselet baseline) I 11% relative improvement due to better detection

54 Summary Simultaneous segmentation and detection: Part detectors figure pop-out, object grouping Color, texture pixel grouping

55 Summary Simultaneous segmentation and detection: Part detectors figure pop-out, object grouping Color, texture pixel grouping Graph: Parts and pixels as nodes Links encode multiple relationship types

56 Summary Simultaneous segmentation and detection: Part detectors figure pop-out, object grouping Color, texture pixel grouping Graph: Parts and pixels as nodes Links encode multiple relationship types Embedding: graph nodes C m

57 Summary Simultaneous segmentation and detection: Part detectors figure pop-out, object grouping Color, texture pixel grouping Graph: Parts and pixels as nodes Links encode multiple relationship types Embedding: graph nodes C m Decode: Figure/ground Image segmentation Detected objects Segmentation of each object instance

58 Summary Simultaneous segmentation and detection: Part detectors figure pop-out, object grouping Color, texture pixel grouping Graph: Parts and pixels as nodes Links encode multiple relationship types Embedding: graph nodes C m Decode: Figure/ground Image segmentation Detected objects Segmentation of each object instance Better person detection and segmentation on PASCAL

59 Thank You

Learning Spectral Graph Segmentation

Learning Spectral Graph Segmentation Learning Spectral Graph Segmentation AISTATS 2005 Timothée Cour Jianbo Shi Nicolas Gogin Computer and Information Science Department University of Pennsylvania Computer Science Ecole Polytechnique Graph-based

More information

Grouping with Directed Relationships

Grouping with Directed Relationships Grouping with Directed Relationships Stella. Yu Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition Grouping: finding global structures coherence salience

More information

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2 Grouping with Bias Stella X. Yu, Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition What Is It About? Incorporating prior knowledge into grouping Unitary

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

K-Means, Expectation Maximization and Segmentation. D.A. Forsyth, CS543

K-Means, Expectation Maximization and Segmentation. D.A. Forsyth, CS543 K-Means, Expectation Maximization and Segmentation D.A. Forsyth, CS543 K-Means Choose a fixed number of clusters Choose cluster centers and point-cluster allocations to minimize error can t do this by

More information

Spectral Clustering using Multilinear SVD

Spectral Clustering using Multilinear SVD Spectral Clustering using Multilinear SVD Analysis, Approximations and Applications Debarghya Ghoshdastidar, Ambedkar Dukkipati Dept. of Computer Science & Automation Indian Institute of Science Clustering:

More information

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes Erik Sudderth & Michael Jordan University of California, Berkeley Parsing Visual Scenes sky skyscraper sky dome buildings trees

More information

CS 556: Computer Vision. Lecture 13

CS 556: Computer Vision. Lecture 13 CS 556: Computer Vision Lecture 1 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Outline Perceptual grouping Low-level segmentation Ncuts Perceptual Grouping What do you see? 4 What do you see? Rorschach

More information

Supplementary Material for Superpixel Sampling Networks

Supplementary Material for Superpixel Sampling Networks Supplementary Material for Superpixel Sampling Networks Varun Jampani 1, Deqing Sun 1, Ming-Yu Liu 1, Ming-Hsuan Yang 1,2, Jan Kautz 1 1 NVIDIA 2 UC Merced {vjampani,deqings,mingyul,jkautz}@nvidia.com,

More information

Spectral Graph Reduction for Efficient Image and Streaming Video Segmentation

Spectral Graph Reduction for Efficient Image and Streaming Video Segmentation Spectral Graph Reduction for Efficient Image and Streaming Video Segmentation Fabio Galasso 1, Margret Keuper 2, Thomas Brox 2, Bernt Schiele 1 1 Max Planck Institute for Informatics, Germany 2 University

More information

Image Compression Based on Visual Saliency at Individual Scales

Image Compression Based on Visual Saliency at Individual Scales Image Compression Based on Visual Saliency at Individual Scales Stella X. Yu 1 Dimitri A. Lisin 2 1 Computer Science Department Boston College Chestnut Hill, MA 2 VideoIQ, Inc. Bedford, MA November 30,

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach

Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach Zhenguo Li Xiao-Ming Wu Shih-Fu Chang Dept. of Electrical Engineering, Columbia University, New York {zgli,xmwu,sfchang}@ee.columbia.edu

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Segmentation with Pairwise Attraction and Repulsion

Segmentation with Pairwise Attraction and Repulsion Segmentation with Pairwise Attraction and Repulsion Stella. Yu Jianbo Shi Robotics Institute Carnegie Mellon Universit {stella.u, jshi}@cs.cmu.edu Funded b DARPA HumanID ONR N4---95 Grouping: decomposition

More information

CS 664 Segmentation (2) Daniel Huttenlocher

CS 664 Segmentation (2) Daniel Huttenlocher CS 664 Segmentation (2) Daniel Huttenlocher Recap Last time covered perceptual organization more broadly, focused in on pixel-wise segmentation Covered local graph-based methods such as MST and Felzenszwalb-Huttenlocher

More information

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING Luis Rademacher, Ohio State University, Computer Science and Engineering. Joint work with Mikhail Belkin and James Voss This talk A new approach to multi-way

More information

Part 7: Structured Prediction and Energy Minimization (2/2)

Part 7: Structured Prediction and Energy Minimization (2/2) Part 7: Structured Prediction and Energy Minimization (2/2) Colorado Springs, 25th June 2011 G: Worst-case Complexity Hard problem Generality Optimality Worst-case complexity Integrality Determinism G:

More information

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University Diffusion/Inference geometries of data features, situational awareness and visualization Ronald R Coifman Mathematics Yale University Digital data is generally converted to point clouds in high dimensional

More information

SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS

SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS SPECTRAL CLUSTERING AND KERNEL PRINCIPAL COMPONENT ANALYSIS ARE PURSUING GOOD PROJECTIONS VIKAS CHANDRAKANT RAYKAR DECEMBER 5, 24 Abstract. We interpret spectral clustering algorithms in the light of unsupervised

More information

Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks

Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks Anuva Kulkarni Carnegie Mellon University Filipe Condessa Carnegie Mellon, IST-University of Lisbon Jelena Kovacevic Carnegie

More information

Supervised object recognition, unsupervised object recognition then Perceptual organization

Supervised object recognition, unsupervised object recognition then Perceptual organization Supervised object recognition, unsupervised object recognition then Perceptual organization Bill Freeman, MIT 6.869 April 12, 2005 Readings Brief overview of classifiers in context of gender recognition:

More information

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al.

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al. 6.869 Advances in Computer Vision Prof. Bill Freeman March 3, 2005 Image and shape descriptors Affine invariant features Comparison of feature descriptors Shape context Readings: Mikolajczyk and Schmid;

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl and Vladlen Koltun Stanford University Presenter: Yuan-Ting Hu 1 Conditional Random Field (CRF) E x I = φ u

More information

Multiclass Spectral Clustering

Multiclass Spectral Clustering Multiclass Spectral Clustering Stella X. Yu Jianbo Shi Robotics Institute and CNBC Dept. of Computer and Information Science Carnegie Mellon University University of Pennsylvania Pittsburgh, PA 15213-3890

More information

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts June 23 rd 2008 Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts Christian Wolf Laboratoire d InfoRmatique en Image et Systèmes

More information

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008 Lecture 6: Edge Detection CAP 5415: Computer Vision Fall 2008 Announcements PS 2 is available Please read it by Thursday During Thursday lecture, I will be going over it in some detail Monday - Computer

More information

Unsupervised Clustering of Human Pose Using Spectral Embedding

Unsupervised Clustering of Human Pose Using Spectral Embedding Unsupervised Clustering of Human Pose Using Spectral Embedding Muhammad Haseeb and Edwin R Hancock Department of Computer Science, The University of York, UK Abstract In this paper we use the spectra of

More information

Compressed Fisher vectors for LSVR

Compressed Fisher vectors for LSVR XRCE@ILSVRC2011 Compressed Fisher vectors for LSVR Florent Perronnin and Jorge Sánchez* Xerox Research Centre Europe (XRCE) *Now with CIII, Cordoba University, Argentina Our system in a nutshell High-dimensional

More information

at Some sort of quantization is necessary to represent continuous signals in digital form

at Some sort of quantization is necessary to represent continuous signals in digital form Quantization at Some sort of quantization is necessary to represent continuous signals in digital form x(n 1,n ) x(t 1,tt ) D Sampler Quantizer x q (n 1,nn ) Digitizer (A/D) Quantization is also used for

More information

Integrating Local Classifiers through Nonlinear Dynamics on Label Graphs with an Application to Image Segmentation

Integrating Local Classifiers through Nonlinear Dynamics on Label Graphs with an Application to Image Segmentation Integrating Local Classifiers through Nonlinear Dynamics on Label Graphs with an Application to Image Segmentation Yutian Chen Andrew Gelfand Charless C. Fowlkes Max Welling Bren School of Information

More information

A Local Spectral Method for Graphs: With Applications to Improving Graph Partitions and Exploring Data Graphs Locally

A Local Spectral Method for Graphs: With Applications to Improving Graph Partitions and Exploring Data Graphs Locally Journal of Machine Learning Research 13 (2012) 2339-2365 Submitted 11/12; Published 9/12 A Local Spectral Method for Graphs: With Applications to Improving Graph Partitions and Exploring Data Graphs Locally

More information

Feedback Loop between High Level Semantics and Low Level Vision

Feedback Loop between High Level Semantics and Low Level Vision Feedback Loop between High Level Semantics and Low Level Vision Varun K. Nagaraja Vlad I. Morariu Larry S. Davis {varun,morariu,lsd}@umiacs.umd.edu University of Maryland, College Park, MD, USA. Abstract.

More information

Part 6: Structured Prediction and Energy Minimization (1/2)

Part 6: Structured Prediction and Energy Minimization (1/2) Part 6: Structured Prediction and Energy Minimization (1/2) Providence, 21st June 2012 Prediction Problem Prediction Problem y = f (x) = argmax y Y g(x, y) g(x, y) = p(y x), factor graphs/mrf/crf, g(x,

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Lecture 10: Dimension Reduction Techniques

Lecture 10: Dimension Reduction Techniques Lecture 10: Dimension Reduction Techniques Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 17, 2018 Input Data It is assumed that there is a set

More information

Introduction To Graphical Models

Introduction To Graphical Models Peter Gehler Introduction to Graphical Models Introduction To Graphical Models Peter V. Gehler Max Planck Institute for Intelligent Systems, Tübingen, Germany ENS/INRIA Summer School, Paris, July 2013

More information

Grouping with Directed Relationships

Grouping with Directed Relationships Grouping with Directed Relationships Stella X. Yu, and Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition Forbes Ave, Pittsburgh, PA -89 {stella.yu,jshi}@cs.cmu.edu

More information

Action Attribute Detection from Sports Videos with Contextual Constraints

Action Attribute Detection from Sports Videos with Contextual Constraints YU, ET AL: ACTION ATTRIBUTE DETECTION FROM SPORTS VIDEOS 1 Action Attribute Detection from Sports Videos with Contextual Constraints Xiaodong Yu 1 xiaodong_yu@cable.comcast.com Ching Lik Teo 2 cteo@cs.umd.edu

More information

Global Behaviour Inference using Probabilistic Latent Semantic Analysis

Global Behaviour Inference using Probabilistic Latent Semantic Analysis Global Behaviour Inference using Probabilistic Latent Semantic Analysis Jian Li, Shaogang Gong, Tao Xiang Department of Computer Science Queen Mary College, University of London, London, E1 4NS, UK {jianli,

More information

Extra-d geometry might also explain flavor

Extra-d geometry might also explain flavor Flavor and CP Solutions via~gim in Bulk RS LR with Liam Fitzpatrick, Gilad Perez -w/ Liam Fitzpatrick, Clifford Cheung Introduction Lots of attention devoted to weak scale Flavor and CP remain outstanding

More information

Self-Tuning Semantic Image Segmentation

Self-Tuning Semantic Image Segmentation Self-Tuning Semantic Image Segmentation Sergey Milyaev 1,2, Olga Barinova 2 1 Voronezh State University sergey.milyaev@gmail.com 2 Lomonosov Moscow State University obarinova@graphics.cs.msu.su Abstract.

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Supervised Hierarchical Pitman-Yor Process for Natural Scene Segmentation

Supervised Hierarchical Pitman-Yor Process for Natural Scene Segmentation Supervised Hierarchical Pitman-Yor Process for Natural Scene Segmentation Alex Shyr UC Berkeley Trevor Darrell ICSI, UC Berkeley Michael Jordan UC Berkeley Raquel Urtasun TTI Chicago Abstract From conventional

More information

CN780 Final Lecture. Low-Level Vision, Scale-Space, and Polyakov Action. Neil I. Weisenfeld

CN780 Final Lecture. Low-Level Vision, Scale-Space, and Polyakov Action. Neil I. Weisenfeld CN780 Final Lecture Low-Level Vision, Scale-Space, and Polyakov Action Neil I. Weisenfeld Department of Cognitive and Neural Systems Boston University chapter 14.2-14.3 May 9, 2005 p.1/25 Introduction

More information

Answer all the questions

Answer all the questions SECTION A ( 38 marks) Answer all the questions 1 The following information refer to the set A and set B. Set A = { -3, -2, 2, 3 } Set B = { 4, 9 } The relations between set A and set B is defined by the

More information

To achieve this goal, a number of computational approaches have been proposed, such as clustering analysis through agglomerative and divisive algorith

To achieve this goal, a number of computational approaches have been proposed, such as clustering analysis through agglomerative and divisive algorith Grouping with Directed Relationships Stella X. Yu ; and Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition 5 Forbes Ave, Pittsburgh, PA 5-89 fstella.yu, jshig@cs.cmu.edu

More information

Math 412: Number Theory Lecture 13 Applications of

Math 412: Number Theory Lecture 13 Applications of Math 412: Number Theory Lecture 13 Applications of Gexin Yu gyu@wm.edu College of William and Mary Partition of integers A partition λ of the positive integer n is a non increasing sequence of positive

More information

Filtering via a Reference Set. A.Haddad, D. Kushnir, R.R. Coifman Technical Report YALEU/DCS/TR-1441 February 21, 2011

Filtering via a Reference Set. A.Haddad, D. Kushnir, R.R. Coifman Technical Report YALEU/DCS/TR-1441 February 21, 2011 Patch-based de-noising algorithms and patch manifold smoothing have emerged as efficient de-noising methods. This paper provides a new insight on these methods, such as the Non Local Means or the image

More information

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Image labelling Problems Assign a label to each image pixel Geometry Estimation Image Denoising

More information

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015 CS 3710: Visual Recognition Describing Images with Features Adriana Kovashka Department of Computer Science January 8, 2015 Plan for Today Presentation assignments + schedule changes Image filtering Feature

More information

Harmonic Analysis and Geometries of Digital Data Bases

Harmonic Analysis and Geometries of Digital Data Bases Harmonic Analysis and Geometries of Digital Data Bases AMS Session Special Sesson on the Mathematics of Information and Knowledge, Ronald Coifman (Yale) and Matan Gavish (Stanford, Yale) January 14, 2010

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors Overview Introduction to local features Harris interest points + SSD, ZNCC, SIFT Scale & affine invariant interest point detectors Evaluation and comparison of different detectors Region descriptors and

More information

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut Lecture 10 Semidefinite Programs and the Max-Cut Problem In this class we will finally introduce the content from the second half of the course title, Semidefinite Programs We will first motivate the discussion

More information

The state of the art and beyond

The state of the art and beyond Feature Detectors and Descriptors The state of the art and beyond Local covariant detectors and descriptors have been successful in many applications Registration Stereo vision Motion estimation Matching

More information

DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION

DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION ECCV 12 Bharath Hariharan, Jitandra Malik, and Deva Ramanan MOTIVATION State-of-the-art Object Detection HOG Linear SVM Dalal&Triggs Histograms

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

Segmentation with Pairwise Attraction and Repulsion

Segmentation with Pairwise Attraction and Repulsion Segmentation with Pairwise Attraction and Repulsion Stella X. Yu yz and Jianbo Shi y Robotics Institute y Carnegie Mellon University Center for the Neural Basis of Cognition z Forbes Ave, Pittsburgh, PA

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 5 Bayesian Learning of Bayesian Networks CS/CNS/EE 155 Andreas Krause Announcements Recitations: Every Tuesday 4-5:30 in 243 Annenberg Homework 1 out. Due in class

More information

Segmentation with Pairwise Attraction and Repulsion

Segmentation with Pairwise Attraction and Repulsion Segmentation with Pairwise Attraction and Repulsion Stella X Yu and Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition 5 Forbes Ave, Pittsburgh, PA 15213-39

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Modulation-Feature based Textured Image Segmentation Using Curve Evolution

Modulation-Feature based Textured Image Segmentation Using Curve Evolution Modulation-Feature based Textured Image Segmentation Using Curve Evolution Iasonas Kokkinos, Giorgos Evangelopoulos and Petros Maragos Computer Vision, Speech Communication and Signal Processing Group

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Networks and Their Spectra

Networks and Their Spectra Networks and Their Spectra Victor Amelkin University of California, Santa Barbara Department of Computer Science victor@cs.ucsb.edu December 4, 2017 1 / 18 Introduction Networks (= graphs) are everywhere.

More information

SELF-SUPERVISION. Nate Russell, Christian Followell, Pratik Lahiri

SELF-SUPERVISION. Nate Russell, Christian Followell, Pratik Lahiri SELF-SUPERVISION Nate Russell, Christian Followell, Pratik Lahiri TASKS Classification & Detection Segmentation Retrieval Action Prediction And Many More Strong Supervision Monarch Butterfly Monarch Butterfly

More information

Wavelet Packet Based Digital Image Watermarking

Wavelet Packet Based Digital Image Watermarking Wavelet Packet Based Digital Image ing A.Adhipathi Reddy, B.N.Chatterji Department of Electronics and Electrical Communication Engg. Indian Institute of Technology, Kharagpur 72 32 {aar, bnc}@ece.iitkgp.ernet.in

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Maximally Stable Local Description for Scale Selection

Maximally Stable Local Description for Scale Selection Maximally Stable Local Description for Scale Selection Gyuri Dorkó and Cordelia Schmid INRIA Rhône-Alpes, 655 Avenue de l Europe, 38334 Montbonnot, France {gyuri.dorko,cordelia.schmid}@inrialpes.fr Abstract.

More information

Active MAP Inference in CRFs for Efficient Semantic Segmentation

Active MAP Inference in CRFs for Efficient Semantic Segmentation 2013 IEEE International Conference on Computer Vision Active MAP Inference in CRFs for Efficient Semantic Segmentation Gemma Roig 1 Xavier Boix 1 Roderick de Nijs 2 Sebastian Ramos 3 Kolja Kühnlenz 2 Luc

More information

Self-Tuning Spectral Clustering

Self-Tuning Spectral Clustering Self-Tuning Spectral Clustering Lihi Zelnik-Manor Pietro Perona Department of Electrical Engineering Department of Electrical Engineering California Institute of Technology California Institute of Technology

More information

Embedding and Spectrum of Graphs

Embedding and Spectrum of Graphs Embedding and Spectrum of Graphs Ali Shokoufandeh, Department of Computer Science, Drexel University Overview Approximation Algorithms Geometry of Graphs and Graphs Encoding the Geometry Spectral Graph

More information

Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix

Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix Level-Set Person Segmentation and Tracking with Multi-Region Appearance Models and Top-Down Shape Information Appendix Esther Horbert, Konstantinos Rematas, Bastian Leibe UMIC Research Centre, RWTH Aachen

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 5: Feature descriptors and matching Szeliski: 4.1 Reading Announcements Project 1 Artifacts due tomorrow, Friday 2/17, at 11:59pm Project 2 will be released

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

Hong Rae Cho and Ern Gun Kwon. dv q

Hong Rae Cho and Ern Gun Kwon. dv q J Korean Math Soc 4 (23), No 3, pp 435 445 SOBOLEV-TYPE EMBEING THEOREMS FOR HARMONIC AN HOLOMORPHIC SOBOLEV SPACES Hong Rae Cho and Ern Gun Kwon Abstract In this paper we consider Sobolev-type embedding

More information

Diffuse interface methods on graphs: Data clustering and Gamma-limits

Diffuse interface methods on graphs: Data clustering and Gamma-limits Diffuse interface methods on graphs: Data clustering and Gamma-limits Yves van Gennip joint work with Andrea Bertozzi, Jeff Brantingham, Blake Hunter Department of Mathematics, UCLA Research made possible

More information

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b 1 A- LEVEL MATHEMATICS P 3 Complex Numbers (NOTES) 1. Given a quadratic equation : x 2 + 1 = 0 or ( x 2 = -1 ) has no solution in the set of real numbers, as there does not exist any real number whose

More information

Advanced Structured Prediction

Advanced Structured Prediction Advanced Structured Prediction Editors: Sebastian Nowozin Microsoft Research Cambridge, CB1 2FB, United Kingdom Peter V. Gehler Max Planck Insitute for Intelligent Systems 72076 Tübingen, Germany Jeremy

More information

Sparse Subspace Clustering

Sparse Subspace Clustering Sparse Subspace Clustering Based on Sparse Subspace Clustering: Algorithm, Theory, and Applications by Elhamifar and Vidal (2013) Alex Gutierrez CSCI 8314 March 2, 2017 Outline 1 Motivation and Background

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Pushmeet Kohli Microsoft Research

Pushmeet Kohli Microsoft Research Pushmeet Kohli Microsoft Research E(x) x in {0,1} n Image (D) [Boykov and Jolly 01] [Blake et al. 04] E(x) = c i x i Pixel Colour x in {0,1} n Unary Cost (c i ) Dark (Bg) Bright (Fg) x* = arg min E(x)

More information

Guest Lecture: Steering in Games. the. gamedesigninitiative at cornell university

Guest Lecture: Steering in Games. the. gamedesigninitiative at cornell university Guest Lecture: Pathfinding You are given Starting location A Goal location B Want valid path A to B Avoid impassible terrain Eschew hidden knowledge Want natural path A to B Reasonably short path Avoid

More information

SOLUTIONS TO THE GINZBURG LANDAU EQUATIONS FOR PLANAR TEXTURES IN SUPERFLUID 3 He

SOLUTIONS TO THE GINZBURG LANDAU EQUATIONS FOR PLANAR TEXTURES IN SUPERFLUID 3 He SOLUTIONS TO THE GINZBURG LANDAU EQUATIONS FOR PLANAR TEXTURES IN SUPERFLUID 3 He V. L. GOLO, M. I. MONASTYRSKY, AND S. P. NOVIKOV Abstract. The Ginzburg Landau equations for planar textures of superfluid

More information

SIGNAL COMPRESSION. 8. Lossy image compression: Principle of embedding

SIGNAL COMPRESSION. 8. Lossy image compression: Principle of embedding SIGNAL COMPRESSION 8. Lossy image compression: Principle of embedding 8.1 Lossy compression 8.2 Embedded Zerotree Coder 161 8.1 Lossy compression - many degrees of freedom and many viewpoints The fundamental

More information

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016

Optical flow. Subhransu Maji. CMPSCI 670: Computer Vision. October 20, 2016 Optical flow Subhransu Maji CMPSC 670: Computer Vision October 20, 2016 Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes CMPSC 670 2 Motion and perceptual organization Sometimes,

More information

DIFFUSE INTERFACE METHODS ON GRAPHS

DIFFUSE INTERFACE METHODS ON GRAPHS DIFFUSE INTERFACE METHODS ON GRAPHS,,,and reconstructing data on social networks Andrea Bertozzi University of California, Los Angeles www.math.ucla.edu/~bertozzi Thanks to J. Dobrosotskaya, S. Esedoglu,

More information

Basic Concepts of. Feature Selection

Basic Concepts of. Feature Selection Basic Concepts of Pattern Recognition and Feature Selection Xiaojun Qi -- REU Site Program in CVMA (2011 Summer) 1 Outline Pattern Recognition Pattern vs. Features Pattern Classes Classification Feature

More information

AP CALCULUS AB 2011 SCORING GUIDELINES

AP CALCULUS AB 2011 SCORING GUIDELINES AP CALCULUS AB 2011 SCORING GUIDELINES Question 4 The continuous function f is defined on the interval 4 x 3. The graph of f consists of two quarter circles and one line segment, as shown in the figure

More information

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold. Nonlinear Methods Data often lies on or near a nonlinear low-dimensional curve aka manifold. 27 Laplacian Eigenmaps Linear methods Lower-dimensional linear projection that preserves distances between all

More information

Kernel Density Topic Models: Visual Topics Without Visual Words

Kernel Density Topic Models: Visual Topics Without Visual Words Kernel Density Topic Models: Visual Topics Without Visual Words Konstantinos Rematas K.U. Leuven ESAT-iMinds krematas@esat.kuleuven.be Mario Fritz Max Planck Institute for Informatics mfrtiz@mpi-inf.mpg.de

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials by Phillip Krahenbuhl and Vladlen Koltun Presented by Adam Stambler Multi-class image segmentation Assign a class label to each

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Dan Oneaţă 1 Introduction Probabilistic Latent Semantic Analysis (plsa) is a technique from the category of topic models. Its main goal is to model cooccurrence information

More information

Correlation Autoencoder Hashing for Supervised Cross-Modal Search

Correlation Autoencoder Hashing for Supervised Cross-Modal Search Correlation Autoencoder Hashing for Supervised Cross-Modal Search Yue Cao, Mingsheng Long, Jianmin Wang, and Han Zhu School of Software Tsinghua University The Annual ACM International Conference on Multimedia

More information

Low-level Image Processing

Low-level Image Processing Low-level Image Processing In-Place Covariance Operators for Computer Vision Terry Caelli and Mark Ollila School of Computing, Curtin University of Technology, Perth, Western Australia, Box U 1987, Emaihtmc@cs.mu.oz.au

More information

Revisiting Uncertainty in Graph Cut Solutions

Revisiting Uncertainty in Graph Cut Solutions Revisiting Uncertainty in Graph Cut Solutions Daniel Tarlow Dept. of Computer Science University of Toronto dtarlow@cs.toronto.edu Ryan P. Adams School of Engineering and Applied Sciences Harvard University

More information