Segmentation with Pairwise Attraction and Repulsion

Size: px
Start display at page:

Download "Segmentation with Pairwise Attraction and Repulsion"

Transcription

1 Segmentation with Pairwise Attraction and Repulsion Stella. Yu Jianbo Shi Robotics Institute Carnegie Mellon Universit {stella.u, Funded b DARPA HumanID ONR N4---95

2 Grouping: decomposition into regions of coherent properties Figure-ground: decomposition into foreground and background [Nitzberg et al 93] [Cann 86] [Horowitz & Pavlidis 74] [Geman & Geman 84] [Blake & Zisserman 87] [Zhu & Yullie, 95] [Shi & Malik 97] [Grossberg & Mingolla 85] [Belhumeur 96] Grouping Figure-ground [Herault and Horaud, 93] [Chou, 95] [Geiger & Kumaran, 96] [Williams & Jocobs, 97] [Amir & Lindenbaum, 98] [Liu & Wang, 99] Issues Fundamental: segmentation and figure-ground reasoning is circular Practical: lack of efficient computational techniques 7/3/3

3 Figure-ground cues for segmentation Figure-ground organization Segmentation Figure-ground labelling Between-region relations can influence the internal organization of a region Roles of figure-ground cues: Link incoherent background or foreground together Global binding through local cues 7/3/3 3

4 alk overview Segmentation in a graph framework Ordered graph partitioning Representing pairwise relationships Attraction and repulsion Criteria Optimize global configuration of figure vs ground Energ formulation Raleigh quotient of Hermitian matrices Efficient solution technique Sparse matrix eigendecomposition Results 7/3/3 4

5 Segmentation in a graph framework G(V, E, W V: each node denotes a pixel E: each edge denotes a pixel-pixel relationship W: each weight measures pairwise affinit Segmentation vertex partitioning break V into disjoint sets V, V Pairwise affinit, W: similarit of pixel attributes relative order of figure-ground Goal: ordered partitioning V figure, V ground Criteria: within-region similarit: high between-region similarit: low order from figure to ground: high 7/3/3 5

6 7/3/3 6 Generalized affinit: attraction and repulsion Attraction A feature similarit feature location, brightness, textureness, motion, the larger the A jk, the more likel j and k in one region Directional repulsion R relative order of figure-ground the larger the R jk, the more likel j and k in different regions Generalized Affinit W A i R A 5-node graph example W is Hermitian image A b proxmit A b brightness similarit R for a figure pixel R for a ground pixel Relative depth from -junctions A R A is smmetric R is skew-smmetric

7 Criteria: cuts, associations and difference flows within-region similarit within-group attraction associations assoc ( P u P, v P A( u, v between-region similarit between-group attraction cuts cut ( P, Q u P, v Q A( u, v, P Q Φ order from figure to ground figure-to-ground repulsion difference flow difflow ( P, Q R( u, v, u P, v Q P Q Φ 7/3/3 7

8 Criteria: generalized normalized association Maximize within-region similarit and figure-to-ground order within figuresimilarit Nassoc total figure affinit within ground similarit total ground affinit figure ~ ground order averagetotal affinit assoc( V Nassoc ( V, V deg( V assoc( V deg( V difflow deg( V ( V, V deg( V 7/3/3 8

9 Criteria: generalized normalized cuts Minimize between-region similarit and ground-to-figure order figure~groundsimilarit figure~groundsimilarit Ncut totalfigureaffinit totalgroundaffinit ground~figureorder averagetotalaffinit cut ( V, V Ncut ( V, V deg( V cut ( V, V deg( V difflow deg( V ( V, V deg( V 7/3/3 9

10 Properties of the criteria Dualit to achieve both goals at the same time Ncut Nassoc arg min Ncut constant arg max Nassoc Normalization for global structures Min-cut Ncut 7/3/3

11 7/3/3 Energ formulation, ( D A Nassoc D A D D R Variables: group indicators Energ functions of indicator variables l l l V u V u u,, (, n n n n [ ] [ ] [ ]

12 7/3/3 Energ formulation deg( deg(, ( V V k k k.. ( D t s D A Nassoc, ( D A Nassoc D A D D R deg( deg(, V V k k i k.. ( ( D t s D R i A Nassoc H H Change of variables Raleigh quotient

13 hree aspects of solutions Efficient solutions in the continuous domain: Eigenvector corresponding to the largest eigenvalue of (Ai R, D H ( A i R opt arg max ( A i R H opt Little increase in complexit Hermitian matrices preserve the most important properties of real smmetric matrices in eigendecomposition. Sparse matrix eigendecomposition O(n 3/, n # of pixels D λ D opt Interpretation of complex-valued solutions Separation in phase plane indicates the separation of groups Relative phase advance indicates figure-ground ordering 7/3/3 3

14 Segmentation as embedding Assign region identit. Ever pixel corresponds to a point in a high dimensional feature space. color location opt u M u n grouping Segmentation is about finding an embedding of manifolds into some D or D space. u textureness figure-ground v brightness opt u M u n i v i v n u 7/3/3 4

15 Interaction of attraction and repulsion Image Attraction Repulsion Phase Result: Plot A Result: R Result: A and R 7/3/3 5

16 Objects ordered in depth /3/3 6

17 Figure-ground example Oversegmentation Image Solutions: A based on A R Figure Ground Ground Phase plot 7/3/3 7

18 Conclusions Representation Attraction directional repulsion Formulation Ordered graph partitioning for figure and ground Raleigh quotient of Hermitian matrices Solution Efficient algorithm b eigendecomposition Embedding in the phase plane of complex numbers Benefits Grouping and figure-ground in one step Computational efficienc 7/3/3 8

Grouping with Directed Relationships

Grouping with Directed Relationships Grouping with Directed Relationships Stella. Yu Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition Grouping: finding global structures coherence salience

More information

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2

Grouping with Bias. Stella X. Yu 1,2 Jianbo Shi 1. Robotics Institute 1 Carnegie Mellon University Center for the Neural Basis of Cognition 2 Grouping with Bias Stella X. Yu, Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition What Is It About? Incorporating prior knowledge into grouping Unitary

More information

Grouping with Directed Relationships

Grouping with Directed Relationships Grouping with Directed Relationships Stella X. Yu, and Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition Forbes Ave, Pittsburgh, PA -89 {stella.yu,jshi}@cs.cmu.edu

More information

Understanding Popout through Repulsion

Understanding Popout through Repulsion Understanding Popout through Repulsion Stella X. Yu z and Jianbo Shi Robotics Institute Carnegie Mellon Universit Center for the Neural Basis of Cognition z 5000 Forbes Ave, Pittsburgh, PA 1513-3890 fstella.u,

More information

To achieve this goal, a number of computational approaches have been proposed, such as clustering analysis through agglomerative and divisive algorith

To achieve this goal, a number of computational approaches have been proposed, such as clustering analysis through agglomerative and divisive algorith Grouping with Directed Relationships Stella X. Yu ; and Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition 5 Forbes Ave, Pittsburgh, PA 5-89 fstella.yu, jshig@cs.cmu.edu

More information

Segmentation with Pairwise Attraction and Repulsion

Segmentation with Pairwise Attraction and Repulsion Segmentation with Pairwise Attraction and Repulsion Stella X. Yu yz and Jianbo Shi y Robotics Institute y Carnegie Mellon University Center for the Neural Basis of Cognition z Forbes Ave, Pittsburgh, PA

More information

Segmentation with Pairwise Attraction and Repulsion

Segmentation with Pairwise Attraction and Repulsion Segmentation with Pairwise Attraction and Repulsion Stella X Yu and Jianbo Shi Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition 5 Forbes Ave, Pittsburgh, PA 15213-39

More information

Learning Spectral Graph Segmentation

Learning Spectral Graph Segmentation Learning Spectral Graph Segmentation AISTATS 2005 Timothée Cour Jianbo Shi Nicolas Gogin Computer and Information Science Department University of Pennsylvania Computer Science Ecole Polytechnique Graph-based

More information

Multiclass Spectral Clustering

Multiclass Spectral Clustering Multiclass Spectral Clustering Stella X. Yu Jianbo Shi Robotics Institute and CNBC Dept. of Computer and Information Science Carnegie Mellon University University of Pennsylvania Pittsburgh, PA 15213-3890

More information

CS 556: Computer Vision. Lecture 13

CS 556: Computer Vision. Lecture 13 CS 556: Computer Vision Lecture 1 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Outline Perceptual grouping Low-level segmentation Ncuts Perceptual Grouping What do you see? 4 What do you see? Rorschach

More information

Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University)

Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University) Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University) The authors explain how the NCut algorithm for graph bisection

More information

Diffuse interface methods on graphs: Data clustering and Gamma-limits

Diffuse interface methods on graphs: Data clustering and Gamma-limits Diffuse interface methods on graphs: Data clustering and Gamma-limits Yves van Gennip joint work with Andrea Bertozzi, Jeff Brantingham, Blake Hunter Department of Mathematics, UCLA Research made possible

More information

Introduction to Spectral Graph Theory and Graph Clustering

Introduction to Spectral Graph Theory and Graph Clustering Introduction to Spectral Graph Theory and Graph Clustering Chengming Jiang ECS 231 Spring 2016 University of California, Davis 1 / 40 Motivation Image partitioning in computer vision 2 / 40 Motivation

More information

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods Spectral Clustering Seungjin Choi Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr 1 Spectral methods Spectral Clustering? Methods using eigenvectors of some matrices Involve eigen-decomposition

More information

CS 664 Segmentation (2) Daniel Huttenlocher

CS 664 Segmentation (2) Daniel Huttenlocher CS 664 Segmentation (2) Daniel Huttenlocher Recap Last time covered perceptual organization more broadly, focused in on pixel-wise segmentation Covered local graph-based methods such as MST and Felzenszwalb-Huttenlocher

More information

Spectral Clustering. Zitao Liu

Spectral Clustering. Zitao Liu Spectral Clustering Zitao Liu Agenda Brief Clustering Review Similarity Graph Graph Laplacian Spectral Clustering Algorithm Graph Cut Point of View Random Walk Point of View Perturbation Theory Point of

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Spectral Clustering. Guokun Lai 2016/10

Spectral Clustering. Guokun Lai 2016/10 Spectral Clustering Guokun Lai 2016/10 1 / 37 Organization Graph Cut Fundamental Limitations of Spectral Clustering Ng 2002 paper (if we have time) 2 / 37 Notation We define a undirected weighted graph

More information

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes Erik Sudderth & Michael Jordan University of California, Berkeley Parsing Visual Scenes sky skyscraper sky dome buildings trees

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 567: Mathematical Techniques in Data Science Clustering II Dominique Guillot Departments

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

Object Detection and Segmentation from Joint Embedding of Parts and Pixels

Object Detection and Segmentation from Joint Embedding of Parts and Pixels Object Detection and Segmentation from Joint Embedding of Parts and Pixels Michael Maire 1, Stella X. Yu 2, Pietro Perona 1 1 California Institute of Technology - Pasadena, CA 91125 2 Boston College -

More information

Spectral Methods for Subgraph Detection

Spectral Methods for Subgraph Detection Spectral Methods for Subgraph Detection Nadya T. Bliss & Benjamin A. Miller Embedded and High Performance Computing Patrick J. Wolfe Statistics and Information Laboratory Harvard University 12 July 2010

More information

Laplacian Matrices of Graphs: Spectral and Electrical Theory

Laplacian Matrices of Graphs: Spectral and Electrical Theory Laplacian Matrices of Graphs: Spectral and Electrical Theory Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale University Toronto, Sep. 28, 2 Outline Introduction to graphs

More information

Solving Constrained Rayleigh Quotient Optimization Problem by Projected QEP Method

Solving Constrained Rayleigh Quotient Optimization Problem by Projected QEP Method Solving Constrained Rayleigh Quotient Optimization Problem by Projected QEP Method Yunshen Zhou Advisor: Prof. Zhaojun Bai University of California, Davis yszhou@math.ucdavis.edu June 15, 2017 Yunshen

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Le Song Machine Learning I CSE 674, Fall 23 Unsupervised learning Learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification of

More information

Spectral Generative Models for Graphs

Spectral Generative Models for Graphs Spectral Generative Models for Graphs David White and Richard C. Wilson Department of Computer Science University of York Heslington, York, UK wilson@cs.york.ac.uk Abstract Generative models are well known

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences

Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences Martijn Wieling Department of Computational Linguistics, University of Groningen Seminar in Methodology and Statistics

More information

Combinatorial Types of Tropical Eigenvector

Combinatorial Types of Tropical Eigenvector Combinatorial Types of Tropical Eigenvector arxiv:1105.55504 Ngoc Mai Tran Department of Statistics, UC Berkeley Joint work with Bernd Sturmfels 2 / 13 Tropical eigenvalues and eigenvectors Max-plus: (R,,

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224W: Social and Information Network Analysis Fall 2014 David Hallac Based on Peter Lofgren, Yu Wayne Wu, and Borja Pelato s previous versions Matrices and

More information

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter Classification Semi-supervised learning based on network Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS 249-2 2017 Winter Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Xiaojin

More information

Spectral and Electrical Graph Theory. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral and Electrical Graph Theory. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral and Electrical Graph Theory Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Spectral Graph Theory: Understand graphs through eigenvectors and

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information

Image Segmentation Using Minimum st Cut

Image Segmentation Using Minimum st Cut Image Segmentation Using Minimum st Cut Tomas Werner Center for Machine Perception Czech Technical University Prague Minimum st Cut 2 Undirected graph (V, ) with nodes v V and edges vv ( ) V 2 very edge

More information

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING Luis Rademacher, Ohio State University, Computer Science and Engineering. Joint work with Mikhail Belkin and James Voss This talk A new approach to multi-way

More information

Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples

Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Spectral Bounds on the Chromatic Number

Spectral Bounds on the Chromatic Number Spectral Bounds on the Chromatic Number Naneh Apkarian March 14, 2013 Abstract The purpose of this paper is to discuss spectral bounds on the chromatic number of a graph. The classic result by Hoffman,

More information

Lecture 13 Spectral Graph Algorithms

Lecture 13 Spectral Graph Algorithms COMS 995-3: Advanced Algorithms March 6, 7 Lecture 3 Spectral Graph Algorithms Instructor: Alex Andoni Scribe: Srikar Varadaraj Introduction Today s topics: Finish proof from last lecture Example of random

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Spectra of Adjacency and Laplacian Matrices

Spectra of Adjacency and Laplacian Matrices Spectra of Adjacency and Laplacian Matrices Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Spectra

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

Spectral Clustering using Multilinear SVD

Spectral Clustering using Multilinear SVD Spectral Clustering using Multilinear SVD Analysis, Approximations and Applications Debarghya Ghoshdastidar, Ambedkar Dukkipati Dept. of Computer Science & Automation Indian Institute of Science Clustering:

More information

Math 115: Review for Chapter 2

Math 115: Review for Chapter 2 Math 5: Review for Chapter Can ou determine algebraicall whether an equation is smmetric with respect to the - ais, the -ais, or the origin?. Algebraicall determine whether each equation below is smmetric

More information

Embedding and Spectrum of Graphs

Embedding and Spectrum of Graphs Embedding and Spectrum of Graphs Ali Shokoufandeh, Department of Computer Science, Drexel University Overview Approximation Algorithms Geometry of Graphs and Graphs Encoding the Geometry Spectral Graph

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Unsupervised Clustering of Human Pose Using Spectral Embedding

Unsupervised Clustering of Human Pose Using Spectral Embedding Unsupervised Clustering of Human Pose Using Spectral Embedding Muhammad Haseeb and Edwin R Hancock Department of Computer Science, The University of York, UK Abstract In this paper we use the spectra of

More information

Spectral Clustering on Handwritten Digits Database

Spectral Clustering on Handwritten Digits Database University of Maryland-College Park Advance Scientific Computing I,II Spectral Clustering on Handwritten Digits Database Author: Danielle Middlebrooks Dmiddle1@math.umd.edu Second year AMSC Student Advisor:

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

Graph Partitioning by Spectral Rounding: Applications in Image Segmentation and Clustering

Graph Partitioning by Spectral Rounding: Applications in Image Segmentation and Clustering Graph Partitioning by Spectral Rounding: Applications in Image Segmentation and Clustering David A. Tolliver Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213. tolliver@ri.cmu.edu Gary

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

Mid-year Report Linear and Non-linear Dimentionality. Reduction. applied to gene expression data of cancer tissue samples

Mid-year Report Linear and Non-linear Dimentionality. Reduction. applied to gene expression data of cancer tissue samples Mid-year Report Linear and Non-linear Dimentionality applied to gene expression data of cancer tissue samples Franck Olivier Ndjakou Njeunje Applied Mathematics, Statistics, and Scientific Computation

More information

NETWORKS (a.k.a. graphs) are important data structures

NETWORKS (a.k.a. graphs) are important data structures PREPRINT Mixed-Order Spectral Clustering for Networks Yan Ge, Haiping Lu, and Pan Peng arxiv:82.040v [cs.lg] 25 Dec 208 Abstract Clustering is fundamental for gaining insights from complex networks, and

More information

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface Image Analysis & Retrieval Lec 14 Eigenface and Fisherface Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li, Image Analysis & Retrv, Spring

More information

Lucas-Kanade Optical Flow. Computer Vision Carnegie Mellon University (Kris Kitani)

Lucas-Kanade Optical Flow. Computer Vision Carnegie Mellon University (Kris Kitani) Lucas-Kanade Optical Flow Computer Vision 16-385 Carnegie Mellon University (Kris Kitani) I x u + I y v + I t =0 I x = @I @x I y = @I u = dx v = dy I @y t = @I dt dt @t spatial derivative optical flow

More information

Joint Optimization of Segmentation and Appearance Models

Joint Optimization of Segmentation and Appearance Models Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19 Overview 1 Recap: Image Segmentation 2 Optimization

More information

Sparse PCA in High Dimensions

Sparse PCA in High Dimensions Sparse PCA in High Dimensions Jing Lei, Department of Statistics, Carnegie Mellon Workshop on Big Data and Differential Privacy Simons Institute, Dec, 2013 (Based on joint work with V. Q. Vu, J. Cho, and

More information

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis .. December 20, 2013 Todays lecture. (PCA) (PLS-R) (LDA) . (PCA) is a method often used to reduce the dimension of a large dataset to one of a more manageble size. The new dataset can then be used to make

More information

Graph Partitioning Algorithms and Laplacian Eigenvalues

Graph Partitioning Algorithms and Laplacian Eigenvalues Graph Partitioning Algorithms and Laplacian Eigenvalues Luca Trevisan Stanford Based on work with Tsz Chiu Kwok, Lap Chi Lau, James Lee, Yin Tat Lee, and Shayan Oveis Gharan spectral graph theory Use linear

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224w: Social and Information Network Analysis Fall 2012 Yu Wayne Wu Based on Borja Pelato s version in Fall 2011 Matrices and Vectors Matrix: A rectangular

More information

7.5 Bipartite Matching

7.5 Bipartite Matching 7. Bipartite Matching Matching Matching. Input: undirected graph G = (V, E). M E is a matching if each node appears in at most edge in M. Max matching: find a max cardinality matching. Bipartite Matching

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

Measuring Convexity for Figure/Ground Separation

Measuring Convexity for Figure/Ground Separation In 7th IEEE International Conference on Computer Vision, Sep. 999, Kerkyra, Greece Measuring Convexity for Figure/Ground Separation Hsing-Kuo Pao Courant Institute New York University New York, NY 002

More information

K-Means, Expectation Maximization and Segmentation. D.A. Forsyth, CS543

K-Means, Expectation Maximization and Segmentation. D.A. Forsyth, CS543 K-Means, Expectation Maximization and Segmentation D.A. Forsyth, CS543 K-Means Choose a fixed number of clusters Choose cluster centers and point-cluster allocations to minimize error can t do this by

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures

Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures Spectral Clustering of Polarimetric SAR Data With Wishart-Derived Distance Measures STIAN NORMANN ANFINSEN ROBERT JENSSEN TORBJØRN ELTOFT COMPUTATIONAL EARTH OBSERVATION AND MACHINE LEARNING LABORATORY

More information

Filtering via a Reference Set. A.Haddad, D. Kushnir, R.R. Coifman Technical Report YALEU/DCS/TR-1441 February 21, 2011

Filtering via a Reference Set. A.Haddad, D. Kushnir, R.R. Coifman Technical Report YALEU/DCS/TR-1441 February 21, 2011 Patch-based de-noising algorithms and patch manifold smoothing have emerged as efficient de-noising methods. This paper provides a new insight on these methods, such as the Non Local Means or the image

More information

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface

Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 14 - Eigenface & Fisherface Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E, Contact:

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II Spectral clustering: overview MATH 567: Mathematical Techniques in Data Science Clustering II Dominique uillot Departments of Mathematical Sciences University of Delaware Overview of spectral clustering:

More information

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission DOI:.38/NNANO.25.86 Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission Amir Arbabi, Yu Horie, Mahmood Bagheri, and Andrei

More information

Claw-free Graphs. III. Sparse decomposition

Claw-free Graphs. III. Sparse decomposition Claw-free Graphs. III. Sparse decomposition Maria Chudnovsky 1 and Paul Seymour Princeton University, Princeton NJ 08544 October 14, 003; revised May 8, 004 1 This research was conducted while the author

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials by Phillip Krahenbuhl and Vladlen Koltun Presented by Adam Stambler Multi-class image segmentation Assign a class label to each

More information

Image Compression Based on Visual Saliency at Individual Scales

Image Compression Based on Visual Saliency at Individual Scales Image Compression Based on Visual Saliency at Individual Scales Stella X. Yu 1 Dimitri A. Lisin 2 1 Computer Science Department Boston College Chestnut Hill, MA 2 VideoIQ, Inc. Bedford, MA November 30,

More information

MATH 829: Introduction to Data Mining and Analysis Principal component analysis

MATH 829: Introduction to Data Mining and Analysis Principal component analysis 1/11 MATH 829: Introduction to Data Mining and Analysis Principal component analysis Dominique Guillot Departments of Mathematical Sciences University of Delaware April 4, 2016 Motivation 2/11 High-dimensional

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

Energy Minimization via Graph Cuts

Energy Minimization via Graph Cuts Energy Minimization via Graph Cuts Xiaowei Zhou, June 11, 2010, Journal Club Presentation 1 outline Introduction MAP formulation for vision problems Min-cut and Max-flow Problem Energy Minimization via

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

A spectral clustering algorithm based on Gram operators

A spectral clustering algorithm based on Gram operators A spectral clustering algorithm based on Gram operators Ilaria Giulini De partement de Mathe matiques et Applications ENS, Paris Joint work with Olivier Catoni 1 july 2015 Clustering task of grouping

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

CSC 411 Lecture 12: Principal Component Analysis

CSC 411 Lecture 12: Principal Component Analysis CSC 411 Lecture 12: Principal Component Analysis Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 12-PCA 1 / 23 Overview Today we ll cover the first unsupervised

More information

Robust Motion Segmentation by Spectral Clustering

Robust Motion Segmentation by Spectral Clustering Robust Motion Segmentation by Spectral Clustering Hongbin Wang and Phil F. Culverhouse Centre for Robotics Intelligent Systems University of Plymouth Plymouth, PL4 8AA, UK {hongbin.wang, P.Culverhouse}@plymouth.ac.uk

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu Task: Find coalitions in signed networks Incentives: European

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach

Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach Zhenguo Li Xiao-Ming Wu Shih-Fu Chang Dept. of Electrical Engineering, Columbia University, New York {zgli,xmwu,sfchang}@ee.columbia.edu

More information

Statistical and Computational Analysis of Locality Preserving Projection

Statistical and Computational Analysis of Locality Preserving Projection Statistical and Computational Analysis of Locality Preserving Projection Xiaofei He xiaofei@cs.uchicago.edu Department of Computer Science, University of Chicago, 00 East 58th Street, Chicago, IL 60637

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks

Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks Unsupervised Image Segmentation Using Comparative Reasoning and Random Walks Anuva Kulkarni Carnegie Mellon University Filipe Condessa Carnegie Mellon, IST-University of Lisbon Jelena Kovacevic Carnegie

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths H. Murat AFSAR Olivier BRIANT Murat.Afsar@g-scop.inpg.fr Olivier.Briant@g-scop.inpg.fr G-SCOP Laboratory Grenoble Institute of Technology

More information

The slope, m, compares the change in y-values to the change in x-values. Use the points (2, 4) and (6, 6) to determine the slope.

The slope, m, compares the change in y-values to the change in x-values. Use the points (2, 4) and (6, 6) to determine the slope. LESSON Relating Slope and -intercept to Linear Equations UNDERSTAND The slope of a line is the ratio of the line s vertical change, called the rise, to its horizontal change, called the run. You can find

More information

Random walks and anisotropic interpolation on graphs. Filip Malmberg

Random walks and anisotropic interpolation on graphs. Filip Malmberg Random walks and anisotropic interpolation on graphs. Filip Malmberg Interpolation of missing data Assume that we have a graph where we have defined some (real) values for a subset of the nodes, and that

More information

Graph Theory and Spectral Methods for Pattern Recognition. Richard C. Wilson Dept. of Computer Science University of York

Graph Theory and Spectral Methods for Pattern Recognition. Richard C. Wilson Dept. of Computer Science University of York Graph Theory and Spectral Methods for Pattern Recognition Richard C. Wilson Dept. of Computer Science University of York Graphs and Networks Graphs and networks are all around us Simple networks 10s to

More information

An Interlacing Approach for Bounding the Sum of Laplacian Eigenvalues of Graphs

An Interlacing Approach for Bounding the Sum of Laplacian Eigenvalues of Graphs An Interlacing Approach for Bounding the Sum of Laplacian Eigenvalues of Graphs Tilburg University joint work with M.A. Fiol, W.H. Haemers and G. Perarnau Laplacian matrix Eigenvalue interlacing Two cases

More information

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016 Graphs, Vectors, and Matrices Daniel A. Spielman Yale University AMS Josiah Willard Gibbs Lecture January 6, 2016 From Applied to Pure Mathematics Algebraic and Spectral Graph Theory Sparsification: approximating

More information