Laplacian Matrices of Graphs: Spectral and Electrical Theory

Size: px
Start display at page:

Download "Laplacian Matrices of Graphs: Spectral and Electrical Theory"

Transcription

1 Laplacian Matrices of Graphs: Spectral and Electrical Theory Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale University Toronto, Sep. 28, 2

2 Outline Introduction to graphs Physical metaphors Laplacian matrices Spectral graph theory A very fast survey Trailer for lectures 2 and 3

3 Graphs and Networks V: a set of vertices (nodes) E: a set of edges an edge is a pair of vertices Dan Nikhil Donna Allan Shang- Hua Maria Gary Difficult to draw when big

4 Examples of Graphs

5 Examples of Graphs

6 Examples of Graphs

7 How to understand a graph Use physical metaphors Edges as rubber bands Edges as resistors Examine processes Diffusion of gas Spilling paint Identify structures Communities

8 How to understand a graph Use physical metaphors Edges as rubber bands Edges as resistors Examine processes Diffusion of gas Spilling paint Identify structures Communities

9 Graphs as Spring Networks View edges as rubber bands or ideal linear springs spring constant (for now) Nail down some ver8ces, let rest se<le

10 Graphs as Spring Networks View edges as rubber bands or ideal linear springs spring constant (for now) Nail down some ver8ces, let rest se<le When stretched to length poten8al energy is 2 /2

11 Graphs as Spring Networks Nail down some ver8ces, let rest se<le. x(a) a Physics: posi8on minimizes total poten8al energy (x(a) x(b)) 2 2 (a,b) E subject to boundary constraints (nails)

12 Graphs as Spring Networks Nail down some ver8ces, let rest se<le x(a) a Energy minimized when free ver8ces are averages of neighbors x(a) = d a (a,b) E x(b) d a is degree of a, number of attached edges

13 Tutte s Theorem 63 If nail down a face of a planar 3- connected graph, get a planar embedding!

14 Tutte s Theorem connected: cannot break graph by curng 2 edges

15 Tutte s Theorem connected: cannot break graph by curng 2 edges

16 Tutte s Theorem connected: cannot break graph by curng 2 edges

17 Tutte s Theorem connected: cannot break graph by curng 2 edges

18 Graphs as Resistor Networks View edges as resistors connecting vertices Apply voltages at some vertices. Measure induced voltages and current flow. V V

19 Graphs as Resistor Networks View edges as resistors connecting vertices Apply voltages at some vertices. Measure induced voltages and current flow. Current flow measures strength of connection between endpoints. More short disjoint paths lead to higher flow.

20 Graphs as Resistor Networks View edges as resistors connecting vertices Apply voltages at some vertices. Measure induced voltages and current flow..5v.5v V V.375V.625V

21 Graphs as Resistor Networks View edges as resistors connecting vertices Apply voltages at some vertices. Measure induced voltages and current flow. Induced voltages minimize (v(a) v(b)) 2 (a,b) E Subject to fixed voltages (by battery)

22 Learning on Graphs [Zhu- Ghahramani- Lafferty 3] Infer values of a function at all vertices from known values at a few vertices. Minimize (a,b) E Subject to known values (x(a) x(b)) 2

23 Learning on Graphs [Zhu- Ghahramani- Lafferty 3] Infer values of a function at all vertices from known values at a few vertices. Minimize (a,b) E Subject to known values (x(a) x(b))

24 The Laplacian quadratic form (x(a) x(b)) 2 (a,b) E

25 The Laplacian matrix of a graph x T Lx = (a,b) E (x(a) x(b)) 2

26 The Laplacian matrix of a graph x T Lx = (a,b) E (x(a) x(b)) 2 To minimize subject to boundary constraints, set derivative to zero. Solve equation of form Lx = b

27 Weighted Graphs (a, b) Edge assigned a non-negative real weight w a,b R measuring strength of connection spring constant /resistance x T Lx = (a,b) E w a,b (x(a) x(b)) 2

28 Weighted Graphs (a, b) Edge assigned a non-negative real weight w a,b R measuring strength of connection spring constant /resistance x T Lx = (a,b) E w a,b (x(a) x(b)) 2 I ll show the matrix entries tomorrow

29 Measuring boundaries of sets Boundary: edges leaving a set S

30 Measuring boundaries of sets Boundary: edges leaving a set S

31 Measuring boundaries of sets Boundary: edges leaving a set Characteristic Vector of S: x(a) = a in S a not in S S S

32 Measuring boundaries of sets Boundary: edges leaving a set Characteristic Vector of S: x(a) = a in S a not in S S S x T Lx = (x(a) x(b)) 2 = boundary(s) (a,b) E

33 Cluster Quality Number of edges leaving S Size of S = boundary(s) S def = Φ(S) (sparsity) S S

34 Cluster Quality Number of edges leaving S Size of S = boundary(s) S def = Φ(S) (sparsity) S S = xt Lx x T x = (a,b) E (x(a) x(b))2 a x(a)2 The Rayleigh Quotient of x with respect to L

35 Spectral Graph Theory A n-by-n symmetric matrix has n real eigenvalues λ λ 2 λ n and eigenvectors v,...,v n such that Lv i = λ i v i

36 Spectral Graph Theory A n-by-n symmetric matrix has n real eigenvalues λ λ 2 λ n and eigenvectors v,...,v n such that These eigenvalues and eigenvectors tell us a lot about a graph! Theorems Algorithms Heuristics Lv i = λ i v i

37 The Rayleigh Quotient and Eigenvalues A n-by-n symmetric matrix has n real eigenvalues λ λ 2 λ n and eigenvectors v,...,v n such that Lv i = λ i v i Courant-Fischer Theorem: λ =min x= x T Lx x T x v = arg min x= x T Lx x T x

38 The Courant Fischer Theorem

39 The Courant Fischer Theorem λ k = min x v,...,v k x T Lx x T x

40 The first eigenvalue λ =min x= =min x= x T Lx x T x (a,b) E (x(a) x(b))2 x 2 Setting x(a) = for all a We find λ = and v =

41 The second eigenvalue λ 2 > if and only if G is connected Proof: if G is not connected, are two functions with Rayleigh quotient zero

42 The second eigenvalue λ 2 > if and only if G is connected Proof: if G is not connected, are two functions with Rayleigh quotient zero

43 The second eigenvalue λ 2 > if and only if G is connected Proof: if G is connected, x means a x(a) = So must be an edge (a,b) for which x(a) <x(b) and so (x(a) x(b)) 2 > + -

44 The second eigenvalue λ 2 > if and only if G is connected Proof: if G is connected, x means a x(a) = So must be an edge (a,b) for which x(a) <x(b) and so (x(a) x(b)) 2 >

45 The second eigenvalue λ 2 > if and only if G is connected Fiedler ( 73) called the algebraic connectivity of a graph The further from, the more connected.

46 Cheeger s Inequality [Cheeger 7] [Alon-Milman 85, Jerrum-Sinclair 89, Diaconis-Stroock 9]. is big if and only if G does not have good clusters. 2. If is small, can use v 2 to find a good cluster.

47 Cheeger s Inequality [Cheeger 7] [Alon-Milman 85, Jerrum-Sinclair 89, Diaconis-Stroock 9]. is big if and only if G does not have good clusters. When every vertex has d edges, λ 2 /2 min S n/2 Φ(S) 2dλ 2 Φ(S) = boundary(s) S

48 Cheeger s Inequality [Cheeger 7] [Alon-Milman 85, Jerrum-Sinclair 89, Diaconis-Stroock 9]. is big if and only if G does not have good clusters. 2. If is small, can use v 2 to find a good cluster. In a moment

49 Spectral Graph Drawing [Hall 7] Arbitrary Drawing

50 Spectral Graph Drawing [Hall 7] Plot vertex a at (v 2 (a),v 3 (a)) draw edges as straight lines Arbitrary Drawing 9 7 Spectral Drawing 8

51 A Graph

52 Drawing of the graph using v 2, v 3 Plot vertex a at (v 2 (a),v 3 (a))

53

54 The Airfoil Graph, original coordinates

55 The Airfoil Graph, spectral coordinates

56 The Airfoil Graph, spectral coordinates

57 Spectral drawing of Streets in Rome

58 Spectral drawing of Erdos graph: edge between co-authors of papers

59 Dodecahedron Best embedded by first three eigenvectors

60 Spectral graph drawing: Tutte justification Condition for eigenvector Gives x(a) = d a λ (a,b) E x(b) for all a λ small says x(a) near average of neighbors

61 Spectral graph drawing: Tutte justification Condition for eigenvector Gives x(a) = d a λ (a,b) E x(b) for all a λ small says x(a) near average of neighbors For planar graphs: λ 2 8d/n [S-Teng 96] λ 3 O(d/n) [Kelner-Lee-Price-Teng 9]

62 Small eigenvalues are not enough Plot vertex a at (v 3 (a),v 4 (a))

63 Spectral Graph Partitioning [Donath-Hoffman 72, Barnes 82, Hagen-Kahng 92] S = {a : v 2 (a) t} for some t

64 Spectral Graph Partitioning [Donath-Hoffman 72, Barnes 82, Hagen-Kahng 92] S = {a : v 2 (a) t} for some Cheeger s Inequality says there is a t t so that Φ(S) 2dλ 2

65 Major topics in spectral graph theory Graph Isomorphism: determining if two graphs are the same Independent sets: large sets of vertices containing no edges Graph Coloring: so that edges connect different colors

66 Major topics in spectral graph theory Graph Isomorphism Independent sets Graph Coloring Behavior under graph transformations Random Walks and Diffusion PageRank and Hits Colin de Verdière invariant Special Graphs from groups from meshes Machine learning Image processing

67 Solving linear equations in Laplacians For energy minimization and computation of eigenvectors and eigenvalues Can do it in time nearly-linear in the number of edges in the graph! A powerful computational primitive.

68 Maximum flow problem Send as much stuff as possible from s to t. At most one unit can go through each edge. s t

69 Maximum flow problem Send as much stuff as possible from s to t. At most one unit can go through each edge. s t

70 Maximum flow problem Send as much stuff as possible from s to t. At most one unit can go through each edge. s t Standard approach: incrementally add flow paths

71 Maximum flow problem Send as much stuff as possible from s to t. At most one unit can go through each edge. s t Standard approach: incrementally add flow paths

72 Maximum flow problem Send as much stuff as possible from s to t. At most one unit can go through each edge. s t Standard approach: incrementally add flow paths

73 Maximum flow problem Send as much stuff as possible from s to t. At most one unit can go through each edge. s t Standard approach: incrementally add flow paths Issue: sometimes requires backtracking

74 Maximum flow problem, electrical approach [Christiano-Kelner-Madry-S-Teng ]. Try the electrical flow. 2.8 V.9.9 s V t

75 Maximum flow problem, electrical approach [Christiano-Kelner-Madry-S-Teng ]. Try the electrical flow. 2. Increase resistance when too much flow 2.8 V.9.9 s V t

76 Maximum flow problem, electrical approach [Christiano-Kelner-Madry-S-Teng ]. Try the electrical flow. 2. Increase resistance when too much flow 2. V.5.5 s V t

77 Solving linear equations in Laplacians For energy minimization and computation of eigenvectors and eigenvalues Can do it in time nearly-linear in the number of edges in the graph! Key ideas: how to approximate a graph by a tree or by a very sparse graph random matrix theory numerical linear algebra

78 Approximating Graphs A graph H is an -approximation of G if for all x + xt L H x x T L G x +

79 Approximating Graphs A graph H is an -approximation of G if for all x + xt L H x x T L G x + To solve linear equations quickly, approximate G by a simpler graph H

80 Approximating Graphs A graph H is an -approximation of G if for all x + xt L H x x T L G x + A very strong notion of approximation Preserves all electrical and spectral properties

81 Approximating Graphs A graph H is an -approximation of G if for all x + xt L H x x T L G x + Theorem [Batson-S-Srivastava 9] Every graph G has an -approximation H with V (2 + ) 2 / 2 edges

82 Approximating Graphs A graph H is an -approximation of G if for all x + xt L H x x T L G x + Theorem [Batson-S-Srivastava 9] Every graph G has an -approximation H with V (2 + ) 2 / 2 edges A powerful technique in linear algebra many applications

83 To learn more Lectures 2 and 3: More precision More notation Similar sophistication

84 To learn more See my lecture notes from Spectral Graph Theory and Graphs and Networks

Spectral and Electrical Graph Theory. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral and Electrical Graph Theory. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral and Electrical Graph Theory Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Spectral Graph Theory: Understand graphs through eigenvectors and

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016 Graphs, Vectors, and Matrices Daniel A. Spielman Yale University AMS Josiah Willard Gibbs Lecture January 6, 2016 From Applied to Pure Mathematics Algebraic and Spectral Graph Theory Sparsification: approximating

More information

Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons. Daniel A. Spielman Yale University

Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons. Daniel A. Spielman Yale University Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons Daniel A. Spielman Yale University Rutgers, Dec 6, 2011 Outline Linear Systems in Laplacian Matrices What? Why? Classic ways to solve

More information

Sparsification of Graphs and Matrices

Sparsification of Graphs and Matrices Sparsification of Graphs and Matrices Daniel A. Spielman Yale University joint work with Joshua Batson (MIT) Nikhil Srivastava (MSR) Shang- Hua Teng (USC) HUJI, May 21, 2014 Objective of Sparsification:

More information

Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm

Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm Shang-Hua Teng Computer Science, Viterbi School of Engineering USC Massive Data and Massive Graphs 500 billions web

More information

Physical Metaphors for Graphs

Physical Metaphors for Graphs Graphs and Networks Lecture 3 Physical Metaphors for Graphs Daniel A. Spielman October 9, 203 3. Overview We will examine physical metaphors for graphs. We begin with a spring model and then discuss resistor

More information

Lecture 1. 1 if (i, j) E a i,j = 0 otherwise, l i,j = d i if i = j, and

Lecture 1. 1 if (i, j) E a i,j = 0 otherwise, l i,j = d i if i = j, and Specral Graph Theory and its Applications September 2, 24 Lecturer: Daniel A. Spielman Lecture. A quick introduction First of all, please call me Dan. If such informality makes you uncomfortable, you can

More information

Walks, Springs, and Resistor Networks

Walks, Springs, and Resistor Networks Spectral Graph Theory Lecture 12 Walks, Springs, and Resistor Networks Daniel A. Spielman October 8, 2018 12.1 Overview In this lecture we will see how the analysis of random walks, spring networks, and

More information

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians. Daniel A. Spielman Yale University

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians. Daniel A. Spielman Yale University Algorithms, Graph Theory, and Linear Equa9ons in Laplacians Daniel A. Spielman Yale University Shang- Hua Teng Carter Fussell TPS David Harbater UPenn Pavel Cur9s Todd Knoblock CTY Serge Lang 1927-2005

More information

Effective Resistance and Schur Complements

Effective Resistance and Schur Complements Spectral Graph Theory Lecture 8 Effective Resistance and Schur Complements Daniel A Spielman September 28, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in

More information

Spectral Analysis of Random Walks

Spectral Analysis of Random Walks Graphs and Networks Lecture 9 Spectral Analysis of Random Walks Daniel A. Spielman September 26, 2013 9.1 Disclaimer These notes are not necessarily an accurate representation of what happened in class.

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality Lecturer: Shayan Oveis Gharan May 4th Scribe: Gabriel Cadamuro Disclaimer:

More information

Conductance, the Normalized Laplacian, and Cheeger s Inequality

Conductance, the Normalized Laplacian, and Cheeger s Inequality Spectral Graph Theory Lecture 6 Conductance, the Normalized Laplacian, and Cheeger s Inequality Daniel A. Spielman September 17, 2012 6.1 About these notes These notes are not necessarily an accurate representation

More information

Graph Sparsification I : Effective Resistance Sampling

Graph Sparsification I : Effective Resistance Sampling Graph Sparsification I : Effective Resistance Sampling Nikhil Srivastava Microsoft Research India Simons Institute, August 26 2014 Graphs G G=(V,E,w) undirected V = n w: E R + Sparsification Approximate

More information

Fitting a Graph to Vector Data. Samuel I. Daitch (Yale) Jonathan A. Kelner (MIT) Daniel A. Spielman (Yale)

Fitting a Graph to Vector Data. Samuel I. Daitch (Yale) Jonathan A. Kelner (MIT) Daniel A. Spielman (Yale) Fitting a Graph to Vector Data Samuel I. Daitch (Yale) Jonathan A. Kelner (MIT) Daniel A. Spielman (Yale) Machine Learning Summer School, June 2009 Given a collection of vectors x 1,..., x n IR d 1,, n

More information

Lecture: Modeling graphs with electrical networks

Lecture: Modeling graphs with electrical networks Stat260/CS294: Spectral Graph Methods Lecture 16-03/17/2015 Lecture: Modeling graphs with electrical networks Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Spectral Graph Theory Lecture 3. Fundamental Graphs. Daniel A. Spielman September 5, 2018

Spectral Graph Theory Lecture 3. Fundamental Graphs. Daniel A. Spielman September 5, 2018 Spectral Graph Theory Lecture 3 Fundamental Graphs Daniel A. Spielman September 5, 2018 3.1 Overview We will bound and derive the eigenvalues of the Laplacian matrices of some fundamental graphs, including

More information

Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving. 22 Element-wise Sampling of Graphs and Linear Equation Solving

Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving. 22 Element-wise Sampling of Graphs and Linear Equation Solving Stat260/CS294: Randomized Algorithms for Matrices and Data Lecture 24-12/02/2013 Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving Lecturer: Michael Mahoney Scribe: Michael Mahoney

More information

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min Spectral Graph Theory Lecture 2 The Laplacian Daniel A. Spielman September 4, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The notes written before

More information

An Algorithmist s Toolkit September 10, Lecture 1

An Algorithmist s Toolkit September 10, Lecture 1 18.409 An Algorithmist s Toolkit September 10, 2009 Lecture 1 Lecturer: Jonathan Kelner Scribe: Jesse Geneson (2009) 1 Overview The class s goals, requirements, and policies were introduced, and topics

More information

Specral Graph Theory and its Applications September 7, Lecture 2 L G1,2 = 1 1.

Specral Graph Theory and its Applications September 7, Lecture 2 L G1,2 = 1 1. Specral Graph Theory and its Applications September 7, 2004 Lecturer: Daniel A. Spielman Lecture 2 2.1 The Laplacian, again We ll begin by redefining the Laplacian. First, let G 1,2 be the graph on two

More information

Cutting Graphs, Personal PageRank and Spilling Paint

Cutting Graphs, Personal PageRank and Spilling Paint Graphs and Networks Lecture 11 Cutting Graphs, Personal PageRank and Spilling Paint Daniel A. Spielman October 3, 2013 11.1 Disclaimer These notes are not necessarily an accurate representation of what

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

Diffusion and random walks on graphs

Diffusion and random walks on graphs Diffusion and random walks on graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural

More information

Convergence of Random Walks

Convergence of Random Walks Graphs and Networks Lecture 9 Convergence of Random Walks Daniel A. Spielman September 30, 010 9.1 Overview We begin by reviewing the basics of spectral theory. We then apply this theory to show that lazy

More information

Spectral Graph Theory

Spectral Graph Theory Spectral Graph Theory Aaron Mishtal April 27, 2016 1 / 36 Outline Overview Linear Algebra Primer History Theory Applications Open Problems Homework Problems References 2 / 36 Outline Overview Linear Algebra

More information

Properties of Expanders Expanders as Approximations of the Complete Graph

Properties of Expanders Expanders as Approximations of the Complete Graph Spectral Graph Theory Lecture 10 Properties of Expanders Daniel A. Spielman October 2, 2009 10.1 Expanders as Approximations of the Complete Graph Last lecture, we defined an expander graph to be a d-regular

More information

Graph Partitioning Algorithms and Laplacian Eigenvalues

Graph Partitioning Algorithms and Laplacian Eigenvalues Graph Partitioning Algorithms and Laplacian Eigenvalues Luca Trevisan Stanford Based on work with Tsz Chiu Kwok, Lap Chi Lau, James Lee, Yin Tat Lee, and Shayan Oveis Gharan spectral graph theory Use linear

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory Tim Roughgarden & Gregory Valiant May 2, 2016 Spectral graph theory is the powerful and beautiful theory that arises from

More information

Lecture 7. 1 Normalized Adjacency and Laplacian Matrices

Lecture 7. 1 Normalized Adjacency and Laplacian Matrices ORIE 6334 Spectral Graph Theory September 3, 206 Lecturer: David P. Williamson Lecture 7 Scribe: Sam Gutekunst In this lecture, we introduce normalized adjacency and Laplacian matrices. We state and begin

More information

eigenvalue bounds and metric uniformization Punya Biswal & James R. Lee University of Washington Satish Rao U. C. Berkeley

eigenvalue bounds and metric uniformization Punya Biswal & James R. Lee University of Washington Satish Rao U. C. Berkeley eigenvalue bounds and metric uniformization Punya Biswal & James R. Lee University of Washington Satish Rao U. C. Berkeley separators in planar graphs Lipton and Tarjan (1980) showed that every n-vertex

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure Stat260/CS294: Spectral Graph Methods Lecture 19-04/02/2015 Lecture: Local Spectral Methods (2 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman January 27, 2015 MVA 2014/2015

More information

Graph Sparsifiers: A Survey

Graph Sparsifiers: A Survey Graph Sparsifiers: A Survey Nick Harvey UBC Based on work by: Batson, Benczur, de Carli Silva, Fung, Hariharan, Harvey, Karger, Panigrahi, Sato, Spielman, Srivastava and Teng Approximating Dense Objects

More information

ON THE QUALITY OF SPECTRAL SEPARATORS

ON THE QUALITY OF SPECTRAL SEPARATORS ON THE QUALITY OF SPECTRAL SEPARATORS STEPHEN GUATTERY AND GARY L. MILLER Abstract. Computing graph separators is an important step in many graph algorithms. A popular technique for finding separators

More information

Introduction. Disclaimer. 1.1 First Things. 1.2 Introduction. Spectral Graph Theory Lecture 1. Daniel A. Spielman September 2, 2015

Introduction. Disclaimer. 1.1 First Things. 1.2 Introduction. Spectral Graph Theory Lecture 1. Daniel A. Spielman September 2, 2015 Spectral Graph Theory Lecture 1 Introduction Daniel A. Spielman September 2, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The notes written before

More information

1 Adjacency matrix and eigenvalues

1 Adjacency matrix and eigenvalues CSC 5170: Theory of Computational Complexity Lecture 7 The Chinese University of Hong Kong 1 March 2010 Our objective of study today is the random walk algorithm for deciding if two vertices in an undirected

More information

Lecture: Local Spectral Methods (3 of 4) 20 An optimization perspective on local spectral methods

Lecture: Local Spectral Methods (3 of 4) 20 An optimization perspective on local spectral methods Stat260/CS294: Spectral Graph Methods Lecture 20-04/07/205 Lecture: Local Spectral Methods (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Personal PageRank and Spilling Paint

Personal PageRank and Spilling Paint Graphs and Networks Lecture 11 Personal PageRank and Spilling Paint Daniel A. Spielman October 7, 2010 11.1 Overview These lecture notes are not complete. The paint spilling metaphor is due to Berkhin

More information

Fiedler s Theorems on Nodal Domains

Fiedler s Theorems on Nodal Domains Spectral Graph Theory Lecture 7 Fiedler s Theorems on Nodal Domains Daniel A Spielman September 9, 202 7 About these notes These notes are not necessarily an accurate representation of what happened in

More information

Introduction. 1.1 First Things. 1.2 Introduction. 1.3 Mechanics. Spectral Graph Theory Lecture 1. Daniel A. Spielman August 29, 2018

Introduction. 1.1 First Things. 1.2 Introduction. 1.3 Mechanics. Spectral Graph Theory Lecture 1. Daniel A. Spielman August 29, 2018 Spectral Graph Theory Lecture 1 Introduction Daniel A. Spielman August 29, 2018 1.1 First Things 1. Please call me Dan. If such informality makes you uncomfortable, you can try Professor Dan. If that fails,

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko Inria Lille - Nord Europe, France TA: Pierre Perrault Partially based on material by: Ulrike von Luxburg, Gary Miller, Mikhail Belkin October 16th, 2017 MVA 2017/2018

More information

Spectra of Adjacency and Laplacian Matrices

Spectra of Adjacency and Laplacian Matrices Spectra of Adjacency and Laplacian Matrices Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Spectra

More information

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012 CS-62 Theory Gems October 24, 202 Lecture Lecturer: Aleksander Mądry Scribes: Carsten Moldenhauer and Robin Scheibler Introduction In Lecture 0, we introduced a fundamental object of spectral graph theory:

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Networks and Their Spectra

Networks and Their Spectra Networks and Their Spectra Victor Amelkin University of California, Santa Barbara Department of Computer Science victor@cs.ucsb.edu December 4, 2017 1 / 18 Introduction Networks (= graphs) are everywhere.

More information

Fiedler s Theorems on Nodal Domains

Fiedler s Theorems on Nodal Domains Spectral Graph Theory Lecture 7 Fiedler s Theorems on Nodal Domains Daniel A. Spielman September 19, 2018 7.1 Overview In today s lecture we will justify some of the behavior we observed when using eigenvectors

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Constant Arboricity Spectral Sparsifiers

Constant Arboricity Spectral Sparsifiers Constant Arboricity Spectral Sparsifiers arxiv:1808.0566v1 [cs.ds] 16 Aug 018 Timothy Chu oogle timchu@google.com Jakub W. Pachocki Carnegie Mellon University pachocki@cs.cmu.edu August 0, 018 Abstract

More information

Eight theorems in extremal spectral graph theory

Eight theorems in extremal spectral graph theory Eight theorems in extremal spectral graph theory Michael Tait Carnegie Mellon University mtait@cmu.edu ICOMAS 2018 May 11, 2018 Michael Tait (CMU) May 11, 2018 1 / 1 Questions in extremal graph theory

More information

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21 U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Scribe: Anupam Last revised Lecture 21 1 Laplacian systems in nearly linear time Building upon the ideas introduced in the

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

Towards Practically-Efficient Spectral Sparsification of Graphs. Zhuo Feng

Towards Practically-Efficient Spectral Sparsification of Graphs. Zhuo Feng Design Automation Group Towards Practically-Efficient Spectral Sparsification of Graphs Zhuo Feng Acknowledgements: PhD students: Xueqian Zhao, Lengfei Han, Zhiqiang Zhao, Yongyu Wang NSF CCF CAREER grant

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

Matching Polynomials of Graphs

Matching Polynomials of Graphs Spectral Graph Theory Lecture 25 Matching Polynomials of Graphs Daniel A Spielman December 7, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class The notes

More information

Holistic Convergence of Random Walks

Holistic Convergence of Random Walks Graphs and Networks Lecture 1 Holistic Convergence of Random Walks Daniel A. Spielman October 5, 1 1.1 Overview There are two things that I want to do in this lecture. The first is the holistic proof of

More information

Lecture 13 Spectral Graph Algorithms

Lecture 13 Spectral Graph Algorithms COMS 995-3: Advanced Algorithms March 6, 7 Lecture 3 Spectral Graph Algorithms Instructor: Alex Andoni Scribe: Srikar Varadaraj Introduction Today s topics: Finish proof from last lecture Example of random

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

1 Review: symmetric matrices, their eigenvalues and eigenvectors

1 Review: symmetric matrices, their eigenvalues and eigenvectors Cornell University, Fall 2012 Lecture notes on spectral methods in algorithm design CS 6820: Algorithms Studying the eigenvalues and eigenvectors of matrices has powerful consequences for at least three

More information

Dissertation Defense

Dissertation Defense Clustering Algorithms for Random and Pseudo-random Structures Dissertation Defense Pradipta Mitra 1 1 Department of Computer Science Yale University April 23, 2008 Mitra (Yale University) Dissertation

More information

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Recent Advances in Approximation Algorithms Spring 2015 Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Lecturer: Shayan Oveis Gharan June 1st Disclaimer: These notes have not been subjected

More information

Lecture 10. Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis

Lecture 10. Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis CS-621 Theory Gems October 18, 2012 Lecture 10 Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis 1 Introduction In this lecture, we will see how one can use random walks to

More information

Rings, Paths, and Paley Graphs

Rings, Paths, and Paley Graphs Spectral Graph Theory Lecture 5 Rings, Paths, and Paley Graphs Daniel A. Spielman September 12, 2012 5.1 About these notes These notes are not necessarily an accurate representation of what happened in

More information

The Simplest Construction of Expanders

The Simplest Construction of Expanders Spectral Graph Theory Lecture 14 The Simplest Construction of Expanders Daniel A. Spielman October 16, 2009 14.1 Overview I am going to present the simplest construction of expanders that I have been able

More information

Convergence of Random Walks and Conductance - Draft

Convergence of Random Walks and Conductance - Draft Graphs and Networks Lecture 0 Convergence of Random Walks and Conductance - Draft Daniel A. Spielman October, 03 0. Overview I present a bound on the rate of convergence of random walks in graphs that

More information

CMPSCI 791BB: Advanced ML: Laplacian Learning

CMPSCI 791BB: Advanced ML: Laplacian Learning CMPSCI 791BB: Advanced ML: Laplacian Learning Sridhar Mahadevan Outline! Spectral graph operators! Combinatorial graph Laplacian! Normalized graph Laplacian! Random walks! Machine learning on graphs! Clustering!

More information

Space-Variant Computer Vision: A Graph Theoretic Approach

Space-Variant Computer Vision: A Graph Theoretic Approach p.1/65 Space-Variant Computer Vision: A Graph Theoretic Approach Leo Grady Cognitive and Neural Systems Boston University p.2/65 Outline of talk Space-variant vision - Why and how of graph theory Anisotropic

More information

Spectral Algorithms for Graph Mining and Analysis. Yiannis Kou:s. University of Puerto Rico - Rio Piedras NSF CAREER CCF

Spectral Algorithms for Graph Mining and Analysis. Yiannis Kou:s. University of Puerto Rico - Rio Piedras NSF CAREER CCF Spectral Algorithms for Graph Mining and Analysis Yiannis Kou:s University of Puerto Rico - Rio Piedras NSF CAREER CCF-1149048 The Spectral Lens A graph drawing using Laplacian eigenvectors Outline Basic

More information

Ramanujan Graphs of Every Size

Ramanujan Graphs of Every Size Spectral Graph Theory Lecture 24 Ramanujan Graphs of Every Size Daniel A. Spielman December 2, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The

More information

A NOTE ON THE POINCARÉ AND CHEEGER INEQUALITIES FOR SIMPLE RANDOM WALK ON A CONNECTED GRAPH. John Pike

A NOTE ON THE POINCARÉ AND CHEEGER INEQUALITIES FOR SIMPLE RANDOM WALK ON A CONNECTED GRAPH. John Pike A NOTE ON THE POINCARÉ AND CHEEGER INEQUALITIES FOR SIMPLE RANDOM WALK ON A CONNECTED GRAPH John Pike Department of Mathematics University of Southern California jpike@usc.edu Abstract. In 1991, Persi

More information

Four graph partitioning algorithms. Fan Chung University of California, San Diego

Four graph partitioning algorithms. Fan Chung University of California, San Diego Four graph partitioning algorithms Fan Chung University of California, San Diego History of graph partitioning NP-hard approximation algorithms Spectral method, Fiedler 73, Folklore Multicommunity flow,

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 567: Mathematical Techniques in Data Science Clustering II Dominique Guillot Departments

More information

Spectral Clustering on Handwritten Digits Database

Spectral Clustering on Handwritten Digits Database University of Maryland-College Park Advance Scientific Computing I,II Spectral Clustering on Handwritten Digits Database Author: Danielle Middlebrooks Dmiddle1@math.umd.edu Second year AMSC Student Advisor:

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

Using Local Spectral Methods in Theory and in Practice

Using Local Spectral Methods in Theory and in Practice Using Local Spectral Methods in Theory and in Practice Michael W. Mahoney ICSI and Dept of Statistics, UC Berkeley ( For more info, see: http: // www. stat. berkeley. edu/ ~ mmahoney or Google on Michael

More information

Locally-biased analytics

Locally-biased analytics Locally-biased analytics You have BIG data and want to analyze a small part of it: Solution 1: Cut out small part and use traditional methods Challenge: cutting out may be difficult a priori Solution 2:

More information

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 Justin Solomon MIT, Spring 2017 http://pngimg.com/upload/hammer_png3886.png You can learn a lot about a shape by hitting it (lightly) with a hammer! What can you learn about its shape from vibration frequencies

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

Laplacian Integral Graphs with Maximum Degree 3

Laplacian Integral Graphs with Maximum Degree 3 Laplacian Integral Graphs with Maximum Degree Steve Kirkland Department of Mathematics and Statistics University of Regina Regina, Saskatchewan, Canada S4S 0A kirkland@math.uregina.ca Submitted: Nov 5,

More information

arxiv: v1 [math.co] 1 Mar 2017

arxiv: v1 [math.co] 1 Mar 2017 IMPROVEMENTS ON SPECTRAL BISECTION ISRAEL ROCHA arxiv:1703.00268v1 [math.co] 1 Mar 2017 Abstract. We investigate combinatorial properties of certain configurations of a graph partition which are related

More information

Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families

Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families Nikhil Srivastava Microsoft Research India Simons Institute, August 27, 2014 The Last Two Lectures Lecture 1. Every weighted

More information

Eigenvalue comparisons in graph theory

Eigenvalue comparisons in graph theory Eigenvalue comparisons in graph theory Gregory T. Quenell July 1994 1 Introduction A standard technique for estimating the eigenvalues of the Laplacian on a compact Riemannian manifold M with bounded curvature

More information

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course Spectral Algorithms I Slides based on Spectral Mesh Processing Siggraph 2010 course Why Spectral? A different way to look at functions on a domain Why Spectral? Better representations lead to simpler solutions

More information

ECS231: Spectral Partitioning. Based on Berkeley s CS267 lecture on graph partition

ECS231: Spectral Partitioning. Based on Berkeley s CS267 lecture on graph partition ECS231: Spectral Partitioning Based on Berkeley s CS267 lecture on graph partition 1 Definition of graph partitioning Given a graph G = (N, E, W N, W E ) N = nodes (or vertices), E = edges W N = node weights

More information

EIGENVECTOR NORMS MATTER IN SPECTRAL GRAPH THEORY

EIGENVECTOR NORMS MATTER IN SPECTRAL GRAPH THEORY EIGENVECTOR NORMS MATTER IN SPECTRAL GRAPH THEORY Franklin H. J. Kenter Rice University ( United States Naval Academy 206) orange@rice.edu Connections in Discrete Mathematics, A Celebration of Ron Graham

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Petar Maymounkov Problem Set 1 MIT with Prof. Jonathan Kelner, Fall 07

Petar Maymounkov Problem Set 1 MIT with Prof. Jonathan Kelner, Fall 07 Petar Maymounkov Problem Set 1 MIT 18.409 with Prof. Jonathan Kelner, Fall 07 Problem 1.2. Part a): Let u 1,..., u n and v 1,..., v n be the eigenvalues of A and B respectively. Since A B is positive semi-definite,

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Facebook Friends! and Matrix Functions

Facebook Friends! and Matrix Functions Facebook Friends! and Matrix Functions! Graduate Research Day Joint with David F. Gleich, (Purdue), supported by" NSF CAREER 1149756-CCF Kyle Kloster! Purdue University! Network Analysis Use linear algebra

More information

Part I: Preliminary Results. Pak K. Chan, Martine Schlag and Jason Zien. Computer Engineering Board of Studies. University of California, Santa Cruz

Part I: Preliminary Results. Pak K. Chan, Martine Schlag and Jason Zien. Computer Engineering Board of Studies. University of California, Santa Cruz Spectral K-Way Ratio-Cut Partitioning Part I: Preliminary Results Pak K. Chan, Martine Schlag and Jason Zien Computer Engineering Board of Studies University of California, Santa Cruz May, 99 Abstract

More information

Lecture 9: Low Rank Approximation

Lecture 9: Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Fall 2018 Lecture 9: Low Rank Approximation Lecturer: Shayan Oveis Gharan February 8th Scribe: Jun Qi Disclaimer: These notes have not been subjected to the

More information

Embedding and Spectrum of Graphs

Embedding and Spectrum of Graphs Embedding and Spectrum of Graphs Ali Shokoufandeh, Department of Computer Science, Drexel University Overview Approximation Algorithms Geometry of Graphs and Graphs Encoding the Geometry Spectral Graph

More information