Lecture 7. 1 Normalized Adjacency and Laplacian Matrices

Size: px
Start display at page:

Download "Lecture 7. 1 Normalized Adjacency and Laplacian Matrices"

Transcription

1 ORIE 6334 Spectral Graph Theory September 3, 206 Lecturer: David P. Williamson Lecture 7 Scribe: Sam Gutekunst In this lecture, we introduce normalized adjacency and Laplacian matrices. We state and begin to prove Cheeger s inequality, which relates the second eigenvalue of the normalized Laplacian matrix to a graph s connectivity. Before stating the inequality, we will also define three related measures of expansion properties of a graph: conductance, edge) expansion, and sparsity. Normalized Adjacency and Laplacian Matrices We use notation from Lap Chi Lau. Definition The normalized adjacency matrix is A D /2 AD /2, where A is the adjacency matrix of G and D diagd) for di) the degree of node i. For a graph G with no isolated vertices), we can see that 0 0 d) 0 0 D /2 d2) Definition 2 The normalized Laplacian matrix is L I A. dn) Notice that L I A D /2 D A)D /2 D /2 L G D /2, for L G the unnormalized) Laplacian. Recall that for the largest eigenvalue λ of A and the maximum degree of a vertex in a graph, d avg λ. Normalizing the adjacency matrix makes its largest eigenvalue, so the analogous result for normalized matrices is the following: Claim Let α α n be the eigenvalues of A and let λ λ n be the eigenvalues of L. Then α α n, 0 λ λ n 2. 0 This lecture is derived from Lau s 202 notes, Week 2, csc560/notes/l02.pdf. 7-

2 Proof: First, we show that 0 is an eigenvalue of L using the vector x D /2 e. Then L D /2 e) D /2 L G D /2 D /2 e D /2 L G e 0, since e is a eigenvector of L G corresponding to eigenvalue 0. This shows that D /2 e is an eigenvector of L of eigenvalue 0. To show that it s the smallest eigenvalue, notice that L is positive semidefinite, as for any x R n : x T L x x T I A )x i V 0. xi 2xi)xj) di)dj) ) xi) xj) 2 di) dj) xi) The last equality can be see in reverse by expanding xj). We have di) dj) now shown that L has nonnegative eigenvalues, so indeed λ 0. To show that α, we make use of the positive semidefiniteness of L I A. This gives us that, for all x R n : x T I A )x 0 x T x x T A x 0 xt A x x T x. ) This Rayleigh quotient gives us the upper bound that α. To get equality, consider again x D /2 e. Since, for this x, x T L x 0 x T I A )x 0. The exact same steps as in Equation yield xt A x, as we now have equality. x T x To get a similar lower bound on α n, we can show that I +A is positive semidefinite using a similar sum expansion 2. Then x T I + A )x 0 x T x + x T A x 0 xt A x x T x α n. A slick proof that does not make use of this quadratic is to use the fact that L G is positive semidefinite. Thus L G BB T for some B, so that L V V T for V D /2 B. 2 This time, use x T I + A )x i V xi + 2xi)xj) di)dj) xi) + xj) 0. di) dj) 7-2

3 Finally, notice that x T I + A )x 0 implies the following chain: x T A x x T x x T Ix x T A x 2x T x xt L x x T x 2 λ n 2, using the same Rayleigh quotient trick and that λ n is the maximizer of that quotient. Remark Notice that, given the spectrum of A, we have the following: A has spectrum negatives of A, and I A adds one to each eigenvalue of A. Hence, 0 λ λ n 2 follows directly from α α n. 2 Connectivity and λ 2 L ) Recall that λ 2 L G ) 0 if and only if G is disconnected. The same is true for λ 2 L ), and we can say more! 2. Flavors of Connectivity Let S V. Recall that δs) denotes the set of edges with exactly one endpoint in S, and define vols) i S di). Definition 3 The conductance of S V is φs) The edge expansion of S is δs) min{vols), volv S)}. αs) δs), for S n S 2. The sparsity of S is ρs) δs) S V S. These measures are similar if G is d-regular i.e., di) d for all i V ). In this case, n αs) dφs), ρs) αs) nρs). 2 To see the first equality, e.g., notice that the volume of S is d S. In general, notice that 0 φs) for all S V. We re usually interested in finding the sets S that minimize these quantities over the entire graph. 7-3

4 Definition 4 We define φg) min φs), αg) min αs), S V S V : S n 2 ρg) min S V ρs). We call a graph G an expander if φg) or αg)) is large i.e. a constant 3 ). Otherwise, we say that G has a sparse cut. One algorithm for finding a sparse cut that works well in practice, but that lacks strong theoretical guarantees is called spectral partitioning. Algorithm : Spectral Partitioning Compute x 2 of L the eigenvector corresponding to λ 2 L )); 2 Sort V such that x 2 ) x 2 n).; 3 Define the sweep cuts for i,..., n by S i {,..., i}.; 4 Return min i {,...,n } φs i ).; The following picture illustrates the idea of the algorithm; sweep cuts correspond to cuts between consecutive bars: x 2 ) x 2 2) x 2 3) x 2 n ) x 2 n) Cheeger s inequality provides some insight into why this algorithm works well. 3 Cheeger s Inequality We now work towards proving the following: Theorem 2 Cheeger s Inequality) Let λ 2 be the second smallest eigenvalue of L. Then: λ 2 2 φg) 2λ 2. The theorem proved by Jeff Cheeger actually has to do with manifolds and hypersurfaces; the theorem above is considered to be a discrete analog of Cheeger s original inequality. But the name has stuck. Typically, people think of the first inequality being easy and the second being hard. We ll prove the first inequality, and start the proof of the second inequality. 3 One should then ask A constant with respect to what? Usually one defines families of graphs of increasing size as families of expanders, in which case we want the conductance or expansion constant with respect to the number of vertices. 7-4

5 Proof: Recall that λ 2 x T L x min x:<x,d /2 e>0 x T x min x:<x,d /2 e>0 x T D /2 L G D /2 x. x T x Consider the change of variables obtained by setting y D /2 x and x D /2 y : λ 2 min y:<d /2 y,d /2 e>0 y T L G y D /2 y) T D /2 y) min y T L G y y:<d /2 y,d /2 e>0 y T Dy. The minimum is being taken over all y such that < D /2 y, D /2 e > 0. That is, over y such that: D /2 y) T D /2 e 0 y T De 0 i V di)yi) 0. Hence, we have that λ 2 min y: i V di)yi)0 yi) yj))2. i V di)yi)2 Now let S be such that φg) φs ), and try defining {, i S ŷi) 0, else. It would be great if λ 2 was bounded by δs ) δs ) i S di) vols ). However, there are two problems. We have i V di)ŷi) 0; moreover δs ) might not be vols ) φs ), as we want the denominator to be min{vols ), volv S )}. Hence, we redefine Now we notice that: di)ŷi) i V ŷi) {, vols ) volv S ), i S else. i S di) i/ S di) vols ) volv S ) 0. Thus, this is a feasible solution to the minimization problem defining λ 2, and we have that the only edges contributing anything nonzero to the numerator are those with exactly one endpoint in S. Thus: λ 2 i S di) δs ) vols ) + vols ) volv S ) + i/ S di) volv S ) 7-5

6 δs ) + vols ) volv S ) + vols ) volv S ) ) δs ) vols ) + volv S ) { } 2 δs ) max vols ), volv S ) 2 δs ) min{vols ), volv S )} 2φG). This completes the proof of the first inequality. To get the second, the idea is to suppose we had a y with Ry) yi) yj))2. i V di)yi)2 Claim 3 We ll be able to find a cut S suppy ) {i V δs) 2Ry). vols) : yi) 0} with This will not suffice to prove the second part of the inequality, as δs) need not vols) equal φs), but we ll come back to this next lecture. Proof: Without loss of generality, we assume yi), as we can scale y if not. Our trick from Trevisan) is to pick t 0, ] uniformly at random, and let S t {i V : yi t}. Notice that: E[volS t )] i V di)pr[i S t ] i V di)yi, and assuming 4 that i, j) E yi yj, E[ δs t ) ] Pr[i, j) δs t )] Pr[yi < t yj ] yj yi ). 4 We make this assumption without loss of generality because it doesn t matter in the end and is notationally convenient. 7-6

7 Rewriting the above using difference of squares and using Cauchy-Schwarz, yj) yi))yj) + yi)) yj) yi)) 2 yj) + yi) i,h) E This gives that yj) yi) 2 yi)) yj 2di)yi i V 2Ry) di)yi. E[ δs t ) ] E[volS t )] Ry) E[ δs t ) 2Ry) vols t )] 0. This means that there exists a t such that i V δs t ) vols t ) 2Ry). yj + yi ) To derandomize the algorithm, look at each of the n possible cuts S t by looking at sweep cuts for the order y y2 yn. 7-7

ORIE 6334 Spectral Graph Theory November 22, Lecture 25

ORIE 6334 Spectral Graph Theory November 22, Lecture 25 ORIE 64 Spectral Graph Theory November 22, 206 Lecture 25 Lecturer: David P. Williamson Scribe: Pu Yang In the remaining three lectures, we will cover a prominent result by Arora, Rao, and Vazirani for

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

ORIE 6334 Spectral Graph Theory September 22, Lecture 11

ORIE 6334 Spectral Graph Theory September 22, Lecture 11 ORIE 6334 Spectral Graph Theory September, 06 Lecturer: David P. Williamson Lecture Scribe: Pu Yang In today s lecture we will focus on discrete time random walks on undirected graphs. Specifically, we

More information

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality Lecturer: Shayan Oveis Gharan May 4th Scribe: Gabriel Cadamuro Disclaimer:

More information

1 Review: symmetric matrices, their eigenvalues and eigenvectors

1 Review: symmetric matrices, their eigenvalues and eigenvectors Cornell University, Fall 2012 Lecture notes on spectral methods in algorithm design CS 6820: Algorithms Studying the eigenvalues and eigenvectors of matrices has powerful consequences for at least three

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Lecture 10: October 27, 2016

Lecture 10: October 27, 2016 Mathematical Toolkit Autumn 206 Lecturer: Madhur Tulsiani Lecture 0: October 27, 206 The conjugate gradient method In the last lecture we saw the steepest descent or gradient descent method for finding

More information

Conductance, the Normalized Laplacian, and Cheeger s Inequality

Conductance, the Normalized Laplacian, and Cheeger s Inequality Spectral Graph Theory Lecture 6 Conductance, the Normalized Laplacian, and Cheeger s Inequality Daniel A. Spielman September 17, 2012 6.1 About these notes These notes are not necessarily an accurate representation

More information

Graph Partitioning Algorithms and Laplacian Eigenvalues

Graph Partitioning Algorithms and Laplacian Eigenvalues Graph Partitioning Algorithms and Laplacian Eigenvalues Luca Trevisan Stanford Based on work with Tsz Chiu Kwok, Lap Chi Lau, James Lee, Yin Tat Lee, and Shayan Oveis Gharan spectral graph theory Use linear

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

1 Adjacency matrix and eigenvalues

1 Adjacency matrix and eigenvalues CSC 5170: Theory of Computational Complexity Lecture 7 The Chinese University of Hong Kong 1 March 2010 Our objective of study today is the random walk algorithm for deciding if two vertices in an undirected

More information

Lecture: Local Spectral Methods (3 of 4) 20 An optimization perspective on local spectral methods

Lecture: Local Spectral Methods (3 of 4) 20 An optimization perspective on local spectral methods Stat260/CS294: Spectral Graph Methods Lecture 20-04/07/205 Lecture: Local Spectral Methods (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013

Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013 Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013 Lecture 13 In which we construct a family of expander graphs. The problem of constructing expander graphs

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

Lecture: Flow-based Methods for Partitioning Graphs (1 of 2)

Lecture: Flow-based Methods for Partitioning Graphs (1 of 2) Stat260/CS294: Spectral Graph Methods Lecture 10-02/24/2015 Lecture: Flow-based Methods for Partitioning Graphs (1 of 2) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still

More information

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix ORIE 6334 Spectral Graph Theory December, 06 Lecturer: David P. Williamson Lecture 7 Remix Scribe: Qinru Shi Note: This is an altered version of the lecture I actually gave, which followed the structure

More information

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory Tim Roughgarden & Gregory Valiant May 2, 2016 Spectral graph theory is the powerful and beautiful theory that arises from

More information

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012

Lecture Introduction. 2 Brief Recap of Lecture 10. CS-621 Theory Gems October 24, 2012 CS-62 Theory Gems October 24, 202 Lecture Lecturer: Aleksander Mądry Scribes: Carsten Moldenhauer and Robin Scheibler Introduction In Lecture 0, we introduced a fundamental object of spectral graph theory:

More information

ORIE 6334 Spectral Graph Theory September 8, Lecture 6. In order to do the first proof, we need to use the following fact.

ORIE 6334 Spectral Graph Theory September 8, Lecture 6. In order to do the first proof, we need to use the following fact. ORIE 6334 Spectral Graph Theory September 8, 2016 Lecture 6 Lecturer: David P. Williamson Scribe: Faisal Alkaabneh 1 The Matrix-Tree Theorem In this lecture, we continue to see the usefulness of the graph

More information

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Recent Advances in Approximation Algorithms Spring 2015 Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Lecturer: Shayan Oveis Gharan June 1st Disclaimer: These notes have not been subjected

More information

Lectures 15: Cayley Graphs of Abelian Groups

Lectures 15: Cayley Graphs of Abelian Groups U.C. Berkeley CS294: Spectral Methods and Expanders Handout 15 Luca Trevisan March 14, 2016 Lectures 15: Cayley Graphs of Abelian Groups In which we show how to find the eigenvalues and eigenvectors of

More information

18.S096: Spectral Clustering and Cheeger s Inequality

18.S096: Spectral Clustering and Cheeger s Inequality 18.S096: Spectral Clustering and Cheeger s Inequality Topics in Mathematics of Data Science (Fall 015) Afonso S. Bandeira bandeira@mit.edu http://math.mit.edu/~bandeira October 6, 015 These are lecture

More information

Spectra of Adjacency and Laplacian Matrices

Spectra of Adjacency and Laplacian Matrices Spectra of Adjacency and Laplacian Matrices Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Spectra

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Laplacian Matrices of Graphs: Spectral and Electrical Theory

Laplacian Matrices of Graphs: Spectral and Electrical Theory Laplacian Matrices of Graphs: Spectral and Electrical Theory Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale University Toronto, Sep. 28, 2 Outline Introduction to graphs

More information

Diffusion and random walks on graphs

Diffusion and random walks on graphs Diffusion and random walks on graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural

More information

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Radu Balan January 31, 2017 G = (V, E) An undirected graph G is given by two pieces of information: a set of vertices V and a set of edges E, G =

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Chapter 26 Semidefinite Programming Zacharias Pitouras 1 Introduction LP place a good lower bound on OPT for NP-hard problems Are there other ways of doing this? Vector programs

More information

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure Stat260/CS294: Spectral Graph Methods Lecture 19-04/02/2015 Lecture: Local Spectral Methods (2 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

16.1 Min-Cut as an LP

16.1 Min-Cut as an LP 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: LPs as Metrics: Min Cut and Multiway Cut Date: 4//5 Scribe: Gabriel Kaptchuk 6. Min-Cut as an LP We recall the basic definition

More information

Lecture 9: Low Rank Approximation

Lecture 9: Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Fall 2018 Lecture 9: Low Rank Approximation Lecturer: Shayan Oveis Gharan February 8th Scribe: Jun Qi Disclaimer: These notes have not been subjected to the

More information

Specral Graph Theory and its Applications September 7, Lecture 2 L G1,2 = 1 1.

Specral Graph Theory and its Applications September 7, Lecture 2 L G1,2 = 1 1. Specral Graph Theory and its Applications September 7, 2004 Lecturer: Daniel A. Spielman Lecture 2 2.1 The Laplacian, again We ll begin by redefining the Laplacian. First, let G 1,2 be the graph on two

More information

Lecture Approximate Potentials from Approximate Flow

Lecture Approximate Potentials from Approximate Flow ORIE 6334 Spectral Graph Theory October 20, 2016 Lecturer: David P. Williamson Lecture 17 Scribe: Yingjie Bi 1 Approximate Potentials from Approximate Flow In the last lecture, we presented a combinatorial

More information

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min

Spectral Graph Theory Lecture 2. The Laplacian. Daniel A. Spielman September 4, x T M x. ψ i = arg min Spectral Graph Theory Lecture 2 The Laplacian Daniel A. Spielman September 4, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The notes written before

More information

ORIE 6334 Spectral Graph Theory October 13, Lecture 15

ORIE 6334 Spectral Graph Theory October 13, Lecture 15 ORIE 6334 Spectral Graph heory October 3, 206 Lecture 5 Lecturer: David P. Williamson Scribe: Shijin Rajakrishnan Iterative Methods We have seen in the previous lectures that given an electrical network,

More information

Fiedler s Theorems on Nodal Domains

Fiedler s Theorems on Nodal Domains Spectral Graph Theory Lecture 7 Fiedler s Theorems on Nodal Domains Daniel A Spielman September 9, 202 7 About these notes These notes are not necessarily an accurate representation of what happened in

More information

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21 U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Scribe: Anupam Last revised Lecture 21 1 Laplacian systems in nearly linear time Building upon the ideas introduced in the

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

Lecture 7: Spectral Graph Theory II

Lecture 7: Spectral Graph Theory II A Theorist s Toolkit (CMU 18-859T, Fall 2013) Lecture 7: Spectral Graph Theory II September 30, 2013 Lecturer: Ryan O Donnell Scribe: Christian Tjandraatmadja 1 Review We spend a page to review the previous

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

Partitioning Algorithms that Combine Spectral and Flow Methods

Partitioning Algorithms that Combine Spectral and Flow Methods CS369M: Algorithms for Modern Massive Data Set Analysis Lecture 15-11/11/2009 Partitioning Algorithms that Combine Spectral and Flow Methods Lecturer: Michael Mahoney Scribes: Kshipra Bhawalkar and Deyan

More information

Lecture 13 Spectral Graph Algorithms

Lecture 13 Spectral Graph Algorithms COMS 995-3: Advanced Algorithms March 6, 7 Lecture 3 Spectral Graph Algorithms Instructor: Alex Andoni Scribe: Srikar Varadaraj Introduction Today s topics: Finish proof from last lecture Example of random

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

Graph fundamentals. Matrices associated with a graph

Graph fundamentals. Matrices associated with a graph Graph fundamentals Matrices associated with a graph Drawing a picture of a graph is one way to represent it. Another type of representation is via a matrix. Let G be a graph with V (G) ={v 1,v,...,v n

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 Scribed by Luowen Qian Lecture 8 In which we use spectral techniques to find certificates of unsatisfiability

More information

Fiedler s Theorems on Nodal Domains

Fiedler s Theorems on Nodal Domains Spectral Graph Theory Lecture 7 Fiedler s Theorems on Nodal Domains Daniel A. Spielman September 19, 2018 7.1 Overview In today s lecture we will justify some of the behavior we observed when using eigenvectors

More information

Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering. Some Slides

Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering. Some Slides Spectral Theory of Unsigned and Signed Graphs Applications to Graph Clustering Some Slides Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104,

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

Lecture 1. 1 if (i, j) E a i,j = 0 otherwise, l i,j = d i if i = j, and

Lecture 1. 1 if (i, j) E a i,j = 0 otherwise, l i,j = d i if i = j, and Specral Graph Theory and its Applications September 2, 24 Lecturer: Daniel A. Spielman Lecture. A quick introduction First of all, please call me Dan. If such informality makes you uncomfortable, you can

More information

Introduction to Spectral Graph Theory and Graph Clustering

Introduction to Spectral Graph Theory and Graph Clustering Introduction to Spectral Graph Theory and Graph Clustering Chengming Jiang ECS 231 Spring 2016 University of California, Davis 1 / 40 Motivation Image partitioning in computer vision 2 / 40 Motivation

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

COMPSCI 514: Algorithms for Data Science

COMPSCI 514: Algorithms for Data Science COMPSCI 514: Algorithms for Data Science Arya Mazumdar University of Massachusetts at Amherst Fall 2018 Lecture 8 Spectral Clustering Spectral clustering Curse of dimensionality Dimensionality Reduction

More information

17.1 Directed Graphs, Undirected Graphs, Incidence Matrices, Adjacency Matrices, Weighted Graphs

17.1 Directed Graphs, Undirected Graphs, Incidence Matrices, Adjacency Matrices, Weighted Graphs Chapter 17 Graphs and Graph Laplacians 17.1 Directed Graphs, Undirected Graphs, Incidence Matrices, Adjacency Matrices, Weighted Graphs Definition 17.1. A directed graph isa pairg =(V,E), where V = {v

More information

ORIE 6334 Spectral Graph Theory October 25, Lecture 18

ORIE 6334 Spectral Graph Theory October 25, Lecture 18 ORIE 6334 Spectral Graph Theory October 25, 2016 Lecturer: David P Williamson Lecture 18 Scribe: Venus Lo 1 Max Flow in Undirected Graphs 11 Max flow We start by reviewing the maximum flow problem We are

More information

Lecture 5. Max-cut, Expansion and Grothendieck s Inequality

Lecture 5. Max-cut, Expansion and Grothendieck s Inequality CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017 Lecture 5. Max-cut, Expansion and Grothendieck s Inequality Professor Moses Charikar Scribes: Kiran Shiragur Overview Here we derive

More information

Laplacian eigenvalues and optimality: II. The Laplacian of a graph. R. A. Bailey and Peter Cameron

Laplacian eigenvalues and optimality: II. The Laplacian of a graph. R. A. Bailey and Peter Cameron Laplacian eigenvalues and optimality: II. The Laplacian of a graph R. A. Bailey and Peter Cameron London Taught Course Centre, June 2012 The Laplacian of a graph This lecture will be about the Laplacian

More information

An Algorithmist s Toolkit September 15, Lecture 2

An Algorithmist s Toolkit September 15, Lecture 2 18.409 An Algorithmist s Toolkit September 15, 007 Lecture Lecturer: Jonathan Kelner Scribe: Mergen Nachin 009 1 Administrative Details Signup online for scribing. Review of Lecture 1 All of the following

More information

Lecture 8: Spectral Graph Theory III

Lecture 8: Spectral Graph Theory III A Theorist s Toolkit (CMU 18-859T, Fall 13) Lecture 8: Spectral Graph Theory III October, 13 Lecturer: Ryan O Donnell Scribe: Jeremy Karp 1 Recap Last time we showed that every function f : V R is uniquely

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 12 Luca Trevisan October 3, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 12 Luca Trevisan October 3, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analysis Handout 1 Luca Trevisan October 3, 017 Scribed by Maxim Rabinovich Lecture 1 In which we begin to prove that the SDP relaxation exactly recovers communities

More information

Communities, Spectral Clustering, and Random Walks

Communities, Spectral Clustering, and Random Walks Communities, Spectral Clustering, and Random Walks David Bindel Department of Computer Science Cornell University 26 Sep 2011 20 21 19 16 22 28 17 18 29 26 27 30 23 1 25 5 8 24 2 4 14 3 9 13 15 11 10 12

More information

25.1 Markov Chain Monte Carlo (MCMC)

25.1 Markov Chain Monte Carlo (MCMC) CS880: Approximations Algorithms Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla Topic: Approx counting/sampling, MCMC methods Date: 4/4/07 The previous lecture showed that, for self-reducible problems,

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information

EIGENVECTOR NORMS MATTER IN SPECTRAL GRAPH THEORY

EIGENVECTOR NORMS MATTER IN SPECTRAL GRAPH THEORY EIGENVECTOR NORMS MATTER IN SPECTRAL GRAPH THEORY Franklin H. J. Kenter Rice University ( United States Naval Academy 206) orange@rice.edu Connections in Discrete Mathematics, A Celebration of Ron Graham

More information

Lecture 6: Random Walks versus Independent Sampling

Lecture 6: Random Walks versus Independent Sampling Spectral Graph Theory and Applications WS 011/01 Lecture 6: Random Walks versus Independent Sampling Lecturer: Thomas Sauerwald & He Sun For many problems it is necessary to draw samples from some distribution

More information

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun 1 Probabilistic Method Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun Turning the MaxCut proof into an algorithm. { Las Vegas Algorithm Algorithm

More information

Lecture 9: SVD, Low Rank Approximation

Lecture 9: SVD, Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 9: SVD, Low Rank Approimation Lecturer: Shayan Oveis Gharan April 25th Scribe: Koosha Khalvati Disclaimer: hese notes have not been subjected

More information

Lecture Semidefinite Programming and Graph Partitioning

Lecture Semidefinite Programming and Graph Partitioning Approximation Algorithms and Hardness of Approximation April 16, 013 Lecture 14 Lecturer: Alantha Newman Scribes: Marwa El Halabi 1 Semidefinite Programming and Graph Partitioning In previous lectures,

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

Rings, Paths, and Cayley Graphs

Rings, Paths, and Cayley Graphs Spectral Graph Theory Lecture 5 Rings, Paths, and Cayley Graphs Daniel A. Spielman September 16, 2014 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The

More information

Effective Resistance and Schur Complements

Effective Resistance and Schur Complements Spectral Graph Theory Lecture 8 Effective Resistance and Schur Complements Daniel A Spielman September 28, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened in

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Walks, Springs, and Resistor Networks

Walks, Springs, and Resistor Networks Spectral Graph Theory Lecture 12 Walks, Springs, and Resistor Networks Daniel A. Spielman October 8, 2018 12.1 Overview In this lecture we will see how the analysis of random walks, spring networks, and

More information

Spectral Analysis of Random Walks

Spectral Analysis of Random Walks Graphs and Networks Lecture 9 Spectral Analysis of Random Walks Daniel A. Spielman September 26, 2013 9.1 Disclaimer These notes are not necessarily an accurate representation of what happened in class.

More information

Eigenvalues, random walks and Ramanujan graphs

Eigenvalues, random walks and Ramanujan graphs Eigenvalues, random walks and Ramanujan graphs David Ellis 1 The Expander Mixing lemma We have seen that a bounded-degree graph is a good edge-expander if and only if if has large spectral gap If G = (V,

More information

Convergence of Random Walks

Convergence of Random Walks Graphs and Networks Lecture 9 Convergence of Random Walks Daniel A. Spielman September 30, 010 9.1 Overview We begin by reviewing the basics of spectral theory. We then apply this theory to show that lazy

More information

Iterative solvers for linear equations

Iterative solvers for linear equations Spectral Graph Theory Lecture 23 Iterative solvers for linear equations Daniel A. Spielman November 26, 2018 23.1 Overview In this and the next lecture, I will discuss iterative algorithms for solving

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

The Simplest Construction of Expanders

The Simplest Construction of Expanders Spectral Graph Theory Lecture 14 The Simplest Construction of Expanders Daniel A. Spielman October 16, 2009 14.1 Overview I am going to present the simplest construction of expanders that I have been able

More information

Lecture 10. Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis

Lecture 10. Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis CS-621 Theory Gems October 18, 2012 Lecture 10 Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis 1 Introduction In this lecture, we will see how one can use random walks to

More information

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods Spectral Clustering Seungjin Choi Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr 1 Spectral methods Spectral Clustering? Methods using eigenvectors of some matrices Involve eigen-decomposition

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Laplacian Integral Graphs with Maximum Degree 3

Laplacian Integral Graphs with Maximum Degree 3 Laplacian Integral Graphs with Maximum Degree Steve Kirkland Department of Mathematics and Statistics University of Regina Regina, Saskatchewan, Canada S4S 0A kirkland@math.uregina.ca Submitted: Nov 5,

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Random Walks and Evolving Sets: Faster Convergences and Limitations

Random Walks and Evolving Sets: Faster Convergences and Limitations Random Walks and Evolving Sets: Faster Convergences and Limitations Siu On Chan 1 Tsz Chiu Kwok 2 Lap Chi Lau 2 1 The Chinese University of Hong Kong 2 University of Waterloo Jan 18, 2017 1/23 Finding

More information

ORIE 6300 Mathematical Programming I August 25, Lecture 2

ORIE 6300 Mathematical Programming I August 25, Lecture 2 ORIE 6300 Mathematical Programming I August 25, 2016 Lecturer: Damek Davis Lecture 2 Scribe: Johan Bjorck Last time, we considered the dual of linear programs in our basic form: max(c T x : Ax b). We also

More information

Show that the following problems are NP-complete

Show that the following problems are NP-complete Show that the following problems are NP-complete April 7, 2018 Below is a list of 30 exercises in which you are asked to prove that some problem is NP-complete. The goal is to better understand the theory

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Properties of Expanders Expanders as Approximations of the Complete Graph

Properties of Expanders Expanders as Approximations of the Complete Graph Spectral Graph Theory Lecture 10 Properties of Expanders Daniel A. Spielman October 2, 2009 10.1 Expanders as Approximations of the Complete Graph Last lecture, we defined an expander graph to be a d-regular

More information

2.1 Laplacian Variants

2.1 Laplacian Variants -3 MS&E 337: Spectral Graph heory and Algorithmic Applications Spring 2015 Lecturer: Prof. Amin Saberi Lecture 2-3: 4/7/2015 Scribe: Simon Anastasiadis and Nolan Skochdopole Disclaimer: hese notes have

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II Spectral clustering: overview MATH 567: Mathematical Techniques in Data Science Clustering II Dominique uillot Departments of Mathematical Sciences University of Delaware Overview of spectral clustering:

More information

CS168: The Modern Algorithmic Toolbox Lecture #19: Expander Codes

CS168: The Modern Algorithmic Toolbox Lecture #19: Expander Codes CS168: The Modern Algorithmic Toolbox Lecture #19: Expander Codes Tim Roughgarden & Gregory Valiant June 1, 2016 In the first lecture of CS168, we talked about modern techniques in data storage (consistent

More information

Practice Calculus Test without Trig

Practice Calculus Test without Trig Practice Calculus Test without Trig The problems here are similar to those on the practice test Slight changes have been made 1 What is the domain of the function f (x) = 3x 1? Express the answer in interval

More information

Computing Word Senses by Semantic Mirroring and Spectral Graph Partitioning

Computing Word Senses by Semantic Mirroring and Spectral Graph Partitioning Computing Word Senses by Semantic Mirroring and Spectral Graph Partitioning Masters Thesis by Martin Fagerlund Martin Fagerlund, Magnus Merkel, Lars Eldén, Lars Ahrenberg Departments of Mathematics and

More information