Random Walks and Evolving Sets: Faster Convergences and Limitations

Size: px
Start display at page:

Download "Random Walks and Evolving Sets: Faster Convergences and Limitations"

Transcription

1 Random Walks and Evolving Sets: Faster Convergences and Limitations Siu On Chan 1 Tsz Chiu Kwok 2 Lap Chi Lau 2 1 The Chinese University of Hong Kong 2 University of Waterloo Jan 18, /23

2 Finding small clusters Given 1-regular graph with edge weights w (Edge) expansion φ(s) w(s, V \ S) S Task: compute φ δ (G) min S δn φ(s) 2/23

3 Algorithm 1: Random walk For finding small clusters [Spielman Teng 04, Andersen Chung Lang 06, ] Theorem ([Kwok Lau 12]) Random walk returns S with φ(s) = O( φ(s )/ε) and S = O( S 1+ε ) in poly time, when start from nice vertices in S When ε = 1/ log S φ(s) = O( φ(s ) log S ) and S = O( S ) 3/23

4 Analysis: Lovász Simonovits [ 90] Measure progress of lazy random walk mixing with a curve Large φ(g) implies fast mixing (lazy = self-loop of weight 1/2 at every vertex) More on this later 4/23

5 Evolving Set Process [Morris 02] Yields strong bounds on mixing times [Morris Peres 05] Evolving Set Process is Markov Chain {S t } on subsets of V Given S t, choose U uniformly from [0, 1] S t+1 {v V w(s t, v) U} small U S t large U S t+1 5/23

6 Algorithm 2: Evolving Set Process Can find small clusters [Andersen Peres 09, Oveis Gharan Trevisan 12] Theorem ([Oveis Gharan Trevisan 12, AOPT 16]) Evolving Set Process returns S with φ(s) = O( φ(s )/ε) and S = O( S 1+ε ) in poly time, when start from nice vertices in S 6/23

7 Algorithm 2: Evolving Set Process Can find small clusters [Andersen Peres 09, Oveis Gharan Trevisan 12] Theorem ([Oveis Gharan Trevisan 12, AOPT 16]) Evolving Set Process returns S with φ(s) = O( φ(s )/ε) and S = O( S 1+ε ) in poly time, when start from nice vertices in S Conjecture [Oveis Gharan 13, AOPT 16] With non-trivial probability, in fact S = O( S ) If true, will refute Small-Set-Expansion Hypothesis that φ δ (G) is hard to approximate [Raghavendra Steurer 10] (cousin of Unique-Games Conjecture) 6/23

8 Our results: Generalized Lovász Simonovits analysis Also measure random walk mixing with LS curve 1. Large combinatorial gap ϕ(g) implies fast mixing 2. Large robust vertex expansion φ V (G) + laziness imply fast mixing 7/23

9 Our results: Combinatorial gap Large combinatorial gap ϕ(g) implies fast mixing ϕ(g) w(s, T) min 1 S = T n/2 S 1. Similar definition as φ(g) (which only allows T = S) 2. ϕ(g) = φ(g) for lazy graphs 3. ϕ(g) small if G has near-bipartite component Corollary (Expansion of graph powers) φ δ/4 (G t ) = min{ω( tφ δ (G)), 1/20} without laziness assumption of [Kwok Lau 14] 8/23

10 Our results: Vertex expansion Robust vertex expansion φ V defined by [Kannan Lovász Montenegro 06] Theorem Evolving Set Process returns S with φ(s) = O(φ(S )/(εφ V (S))) and S = O( S 1+ε ) in poly time, when start from nice vertices in S Compare: φ(s) = O( φ(s )/ε) in [APOT 16] 9/23

11 Our results: Vertex expansion Robust vertex expansion φ V defined by [Kannan Lovász Montenegro 06] Theorem Evolving Set Process returns S with φ(s) = O(φ(S )/(εφ V (S))) and S = O( S 1+ε ) in poly time, when start from nice vertices in S Compare: φ(s) = O( φ(s )/ε) in [APOT 16] Implies constant factor approximation when φ V (G) min S n/2 φv (S) is Ω(1) Evolving Set Process analog of spectral partitioning result in [Kwok Lau Lee 16] 9/23

12 Our results: Hard instances Theorem For arbitrarily small δ, some graphs have a hidden small cluster S φ(s ) ε and S = δn but Evolving Set Process never returns S with φ(s) 1 ε and S δ ε n Refute the conjecture in [Oveis Gharan 13, AOPT 16] Also limitation of random walk, PageRank, etc 10/23

13 Details: Generalized Lovász Simonovits Analysis 11/23

14 Lovász Simonovits Let p be probability vector Measure random walk mixing with curve C(p, x) C(p, x) sum of first x largest elements in p for integer x C(p, x) C(Ap, x) 12/23

15 Lovász Simonovits Let p be probability vector Measure random walk mixing with curve C(p, x) C(p, x) sum of first x largest elements in p for integer x C(p, x) C(Ap, x) x x(1 φ(g)) x(1 + φ(g)) When lazy C(Ap, x) 1 (C(p, x(1 φ(g))) + C(p, x(1 + φ(g)))) 2 12/23

16 Lovász Simonovits Let p be probability vector Measure random walk mixing with curve C(p, x) C(p, x) sum of first x largest elements in p for integer x C(p, x) C(Ap, x) x x(1 φ(g)) x(1 + φ(g)) When lazy C(Ap, x) 1 (C(p, x(1 φ(g))) + C(p, x(1 + φ(g)))) 2 By induction: C(A t p, x) x n + x (1 φ(g)2 8 ) t 12/23

17 Generalizing Lovász Simonovits x x(1 ϕ(g)) x(1 + ϕ(g)) C(Ap, x) 1 (C(p, x(1 ϕ(g))) + C(p, x(1 + ϕ(g)))) 2 ϕ(g) in place of φ(g) laziness not required ϕ(g) = φ(g) for lazy graphs generalizing LS to non-lazy More intuitive analysis 13/23

18 Sketch of main ideas C(Ap, S ) 1 (C(p, S (1 ϕ(g))) + C(p, S (1 + ϕ(g)))) 2 Sort vertices by decreasing d S (i) w(i, S) (Ap)(S) = 0 i n d S (i)p(i) = (d S (i) d S (i + 1)) p(j) 0 i n 1 j i } {{ } C(p,i) 14/23

19 Sketch of main ideas C(Ap, S ) 1 (C(p, S (1 ϕ(g))) + C(p, S (1 + ϕ(g)))) 2 Sort vertices by decreasing d S (i) w(i, S) (Ap)(S) = 0 i n d S (i)p(i) = (d S (i) d S (i + 1)) p(j) 0 i n 1 j i } {{ } C(p,i) 14/23

20 Sketch of main ideas C(Ap, S ) 1 (C(p, S (1 ϕ(g))) + C(p, S (1 + ϕ(g)))) 2 Sort vertices by decreasing d S (i) w(i, S) (Ap)(S) = 0 i n d S (i)p(i) = (d S (i) d S (i + 1)) p(j) 0 i n 1 j i } {{ } C(p,i) 1 d S (i) 14/23

21 Sketch of main ideas C(Ap, S ) 1 (C(p, S (1 ϕ(g))) + C(p, S (1 + ϕ(g)))) 2 Sort vertices by decreasing d S (i) w(i, S) (Ap)(S) = 0 i n d S (i)p(i) = (d S (i) d S (i + 1)) p(j) 0 i n 1 j i } {{ } C(p,i) 1 d S (i) d S (i) d S (i + 1) 14/23

22 Sketch of main ideas C(Ap, S ) 1 (C(p, S (1 ϕ(g))) + C(p, S (1 + ϕ(g)))) 2 From earlier (Ap)(S) (d S (i) d S (i + 1))C(p, i) 0 i n 1 d S (i) w(i, S) 1 2 Upper Area 1 S (1 ϕ(g)) 2 15/23

23 Sketch of main ideas C(Ap, S ) 1 (C(p, S (1 ϕ(g))) + C(p, S (1 + ϕ(g)))) 2 From earlier (Ap)(S) (d S (i) d S (i + 1))C(p, i) 0 i n 1 d S (i) w(i, S) 1 2 Upper Area i T d S (i) 1 S (1 ϕ(g)) 2 15/23

24 Details: Hard instances for Evolving Set Process 16/23

25 Hard instances: Noisy hypercube Noisy k-ary hypercube (k = 1/δ) k d vertices, each represented by a string of length d over [k] Transition probability from x { to y: x i When x = x 1 x 2... x d, y i = uniformly from [k] Coordinate cut S = {x x 1 = 0} satisfies φ(s) ε and S = δn prob ε prob 1 ε 17/23

26 Why local algorithms fail Lets start from S 0 = { 0} Evolving Set Process treats all vertices with the same Hamming weight equally The process only explores sets S t that are symmetric under coordinate permutations (in fact, Hamming balls) Small Hamming balls on noisy k-ary hypercube are expanding [Chan Mossel Neeman 14] 18/23

27 Hamming balls B expand B = {x [k] d x r} φ(b) = Pr x y[x, y B] Pr x [x B] 19/23

28 Hamming balls B expand B = {x [k] d x r} φ(b) = Pr x y[x, y B] Pr x [x B] Pr[x B] = E x [1 x xd 0 r] x Pr[g r ] Gaussian g Pr [x, y B] = E x,y 1 xi 0 r and 1 yi 0 r x y 1 i d Pr[g r and h r ] 1 i d Gaussians g, h 19/23

29 Hamming balls B expand B = {x [k] d x r} φ(b) = Pr x y[x, y B] Pr x [x B] 1 i d Pr g,h[g, h r ] Pr g [g r ] Pr[x B] = E x [1 x xd 0 r] x Pr[g r ] Gaussian g Pr [x, y B] = E x,y 1 xi 0 r and 1 yi 0 r x y Pr[g r and h r ] 1 i d Gaussians g, h 19/23

30 Expansion in Gaussian space B = {x [k] d x r} φ(b) = Pr x y[x, y B] Pr x [x B] Pr g,h[g, h r ] Pr g [g r ] r 0 1 r 0 20/23

31 Symmetry Obstacles to all local clustering algorithms Evolving Set Process, random walk, PageRank, etc All fall for the symmetry Folded noisy hypercubes are hard instances for SDP Folding necessary to rule out sparse cuts in those instances In our situation, we cannot fold Our instances are easy for Lasserre/sum-of-squares 21/23

32 Summary New analysis of Lovász Simonovits curve Faster convergence with large combinatorial gap ϕ(g) or robust vertex expansion φ V (G) x x(1 ϕ(g)) x(1 + ϕ(g)) Limitations of all local clustering algorithms: Coordinate cuts vs Hamming balls under symmetry 22/23

33 Open problems Ω( φ(s ) log S ) lower bound for Evolving Set Process and random walk? Thank you 23/23

Graph Partitioning Algorithms and Laplacian Eigenvalues

Graph Partitioning Algorithms and Laplacian Eigenvalues Graph Partitioning Algorithms and Laplacian Eigenvalues Luca Trevisan Stanford Based on work with Tsz Chiu Kwok, Lap Chi Lau, James Lee, Yin Tat Lee, and Shayan Oveis Gharan spectral graph theory Use linear

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

Markov chain methods for small-set expansion

Markov chain methods for small-set expansion Markov chain methods for small-set expansion Ryan O Donnell David Witmer November 4, 03 Abstract Consider a finite irreducible Markov chain with invariant distribution π. We use the inner product induced

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

LOCAL CHEEGER INEQUALITIES AND SPARSE CUTS

LOCAL CHEEGER INEQUALITIES AND SPARSE CUTS LOCAL CHEEGER INEQUALITIES AND SPARSE CUTS CAELAN GARRETT 18.434 FINAL PROJECT CAELAN@MIT.EDU Abstract. When computing on massive graphs, it is not tractable to iterate over the full graph. Local graph

More information

Convergence of Random Walks and Conductance - Draft

Convergence of Random Walks and Conductance - Draft Graphs and Networks Lecture 0 Convergence of Random Walks and Conductance - Draft Daniel A. Spielman October, 03 0. Overview I present a bound on the rate of convergence of random walks in graphs that

More information

Testing Cluster Structure of Graphs. Artur Czumaj

Testing Cluster Structure of Graphs. Artur Czumaj Testing Cluster Structure of Graphs Artur Czumaj DIMAP and Department of Computer Science University of Warwick Joint work with Pan Peng and Christian Sohler (TU Dortmund) Dealing with BigData in Graphs

More information

Four graph partitioning algorithms. Fan Chung University of California, San Diego

Four graph partitioning algorithms. Fan Chung University of California, San Diego Four graph partitioning algorithms Fan Chung University of California, San Diego History of graph partitioning NP-hard approximation algorithms Spectral method, Fiedler 73, Folklore Multicommunity flow,

More information

Personal PageRank and Spilling Paint

Personal PageRank and Spilling Paint Graphs and Networks Lecture 11 Personal PageRank and Spilling Paint Daniel A. Spielman October 7, 2010 11.1 Overview These lecture notes are not complete. The paint spilling metaphor is due to Berkhin

More information

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Recent Advances in Approximation Algorithms Spring 2015 Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Lecturer: Shayan Oveis Gharan June 1st Disclaimer: These notes have not been subjected

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

Reductions Between Expansion Problems

Reductions Between Expansion Problems Reductions Between Expansion Problems Prasad Raghavendra David Steurer Madhur Tulsiani November 11, 2010 Abstract The Small-Set Expansion Hypothesis (Raghavendra, Steurer, STOC 2010) is a natural hardness

More information

Cutting Graphs, Personal PageRank and Spilling Paint

Cutting Graphs, Personal PageRank and Spilling Paint Graphs and Networks Lecture 11 Cutting Graphs, Personal PageRank and Spilling Paint Daniel A. Spielman October 3, 2013 11.1 Disclaimer These notes are not necessarily an accurate representation of what

More information

Approximation & Complexity

Approximation & Complexity Summer school on semidefinite optimization Approximation & Complexity David Steurer Cornell University Part 1 September 6, 2012 Overview Part 1 Unique Games Conjecture & Basic SDP Part 2 SDP Hierarchies:

More information

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality

Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 12: Introduction to Spectral Graph Theory, Cheeger s inequality Lecturer: Shayan Oveis Gharan May 4th Scribe: Gabriel Cadamuro Disclaimer:

More information

Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm

Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm Shang-Hua Teng Computer Science, Viterbi School of Engineering USC Massive Data and Massive Graphs 500 billions web

More information

The Rainbow Turán Problem for Even Cycles

The Rainbow Turán Problem for Even Cycles The Rainbow Turán Problem for Even Cycles Shagnik Das University of California, Los Angeles Aug 20, 2012 Joint work with Choongbum Lee and Benny Sudakov Plan 1 Historical Background Turán Problems Colouring

More information

Geometry of Similarity Search

Geometry of Similarity Search Geometry of Similarity Search Alex Andoni (Columbia University) Find pairs of similar images how should we measure similarity? Naïvely: about n 2 comparisons Can we do better? 2 Measuring similarity 000000

More information

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians. Daniel A. Spielman Yale University

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians. Daniel A. Spielman Yale University Algorithms, Graph Theory, and Linear Equa9ons in Laplacians Daniel A. Spielman Yale University Shang- Hua Teng Carter Fussell TPS David Harbater UPenn Pavel Cur9s Todd Knoblock CTY Serge Lang 1927-2005

More information

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell Lower bounds on the size of semidefinite relaxations David Steurer Cornell James R. Lee Washington Prasad Raghavendra Berkeley Institute for Advanced Study, November 2015 overview of results unconditional

More information

linear programming and approximate constraint satisfaction

linear programming and approximate constraint satisfaction linear programming and approximate constraint satisfaction Siu On Chan MSR New England James R. Lee University of Washington Prasad Raghavendra UC Berkeley David Steurer Cornell results MAIN THEOREM: Any

More information

Lecture 7. 1 Normalized Adjacency and Laplacian Matrices

Lecture 7. 1 Normalized Adjacency and Laplacian Matrices ORIE 6334 Spectral Graph Theory September 3, 206 Lecturer: David P. Williamson Lecture 7 Scribe: Sam Gutekunst In this lecture, we introduce normalized adjacency and Laplacian matrices. We state and begin

More information

Lecture 1: Contraction Algorithm

Lecture 1: Contraction Algorithm CSE 5: Design and Analysis of Algorithms I Spring 06 Lecture : Contraction Algorithm Lecturer: Shayan Oveis Gharan March 8th Scribe: Mohammad Javad Hosseini Disclaimer: These notes have not been subjected

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

Reed-Muller testing and approximating small set expansion & hypergraph coloring

Reed-Muller testing and approximating small set expansion & hypergraph coloring Reed-Muller testing and approximating small set expansion & hypergraph coloring Venkatesan Guruswami Carnegie Mellon University (Spring 14 @ Microsoft Research New England) 2014 Bertinoro Workshop on Sublinear

More information

Probability & Computing

Probability & Computing Probability & Computing Stochastic Process time t {X t t 2 T } state space Ω X t 2 state x 2 discrete time: T is countable T = {0,, 2,...} discrete space: Ω is finite or countably infinite X 0,X,X 2,...

More information

Holistic Convergence of Random Walks

Holistic Convergence of Random Walks Graphs and Networks Lecture 1 Holistic Convergence of Random Walks Daniel A. Spielman October 5, 1 1.1 Overview There are two things that I want to do in this lecture. The first is the holistic proof of

More information

The Markov Chain Monte Carlo Method

The Markov Chain Monte Carlo Method The Markov Chain Monte Carlo Method Idea: define an ergodic Markov chain whose stationary distribution is the desired probability distribution. Let X 0, X 1, X 2,..., X n be the run of the chain. The Markov

More information

Approximate Counting and Markov Chain Monte Carlo

Approximate Counting and Markov Chain Monte Carlo Approximate Counting and Markov Chain Monte Carlo A Randomized Approach Arindam Pal Department of Computer Science and Engineering Indian Institute of Technology Delhi March 18, 2011 April 8, 2011 Arindam

More information

Unique Games Conjecture & Polynomial Optimization. David Steurer

Unique Games Conjecture & Polynomial Optimization. David Steurer Unique Games Conjecture & Polynomial Optimization David Steurer Newton Institute, Cambridge, July 2013 overview Proof Complexity Approximability Polynomial Optimization Quantum Information computational

More information

Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session

Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session Scribes: Antonio Blanca, Sarah Cannon, Yumeng Zhang February 4th, 06 Yuval Peres: Simple Random Walk on

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Lecture 15: Expanders

Lecture 15: Expanders CS 710: Complexity Theory 10/7/011 Lecture 15: Expanders Instructor: Dieter van Melkebeek Scribe: Li-Hsiang Kuo In the last lecture we introduced randomized computation in terms of machines that have access

More information

Graph Clustering Algorithms

Graph Clustering Algorithms PhD Course on Graph Mining Algorithms, Università di Pisa February, 2018 Clustering: Intuition to Formalization Task Partition a graph into natural groups so that the nodes in the same cluster are more

More information

Lecture 2: September 8

Lecture 2: September 8 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 2: September 8 Lecturer: Prof. Alistair Sinclair Scribes: Anand Bhaskar and Anindya De Disclaimer: These notes have not been

More information

CS6999 Probabilistic Methods in Integer Programming Randomized Rounding Andrew D. Smith April 2003

CS6999 Probabilistic Methods in Integer Programming Randomized Rounding Andrew D. Smith April 2003 CS6999 Probabilistic Methods in Integer Programming Randomized Rounding April 2003 Overview 2 Background Randomized Rounding Handling Feasibility Derandomization Advanced Techniques Integer Programming

More information

Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons. Daniel A. Spielman Yale University

Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons. Daniel A. Spielman Yale University Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons Daniel A. Spielman Yale University Rutgers, Dec 6, 2011 Outline Linear Systems in Laplacian Matrices What? Why? Classic ways to solve

More information

GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] 1. Preliminaries

GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] 1. Preliminaries GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] notes by Petar MAYMOUNKOV Theme The algorithmic problem of finding a sparsest cut is related to the combinatorial problem of building expander graphs

More information

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010 Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu COMPSTAT

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013

Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013 Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013 Lecture 13 In which we construct a family of expander graphs. The problem of constructing expander graphs

More information

Spectral Algorithms for Graph Mining and Analysis. Yiannis Kou:s. University of Puerto Rico - Rio Piedras NSF CAREER CCF

Spectral Algorithms for Graph Mining and Analysis. Yiannis Kou:s. University of Puerto Rico - Rio Piedras NSF CAREER CCF Spectral Algorithms for Graph Mining and Analysis Yiannis Kou:s University of Puerto Rico - Rio Piedras NSF CAREER CCF-1149048 The Spectral Lens A graph drawing using Laplacian eigenvectors Outline Basic

More information

Label Cover Algorithms via the Log-Density Threshold

Label Cover Algorithms via the Log-Density Threshold Label Cover Algorithms via the Log-Density Threshold Jimmy Wu jimmyjwu@stanford.edu June 13, 2017 1 Introduction Since the discovery of the PCP Theorem and its implications for approximation algorithms,

More information

A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover

A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover Grant Schoenebeck Luca Trevisan Madhur Tulsiani Abstract We study semidefinite programming relaxations of Vertex Cover arising

More information

On the Logarithmic Calculus and Sidorenko s Conjecture

On the Logarithmic Calculus and Sidorenko s Conjecture On the Logarithmic Calculus and Sidorenko s Conjecture by Xiang Li A thesis submitted in conformity with the requirements for the degree of Msc. Mathematics Graduate Department of Mathematics University

More information

Szemerédi s regularity lemma revisited. Lewis Memorial Lecture March 14, Terence Tao (UCLA)

Szemerédi s regularity lemma revisited. Lewis Memorial Lecture March 14, Terence Tao (UCLA) Szemerédi s regularity lemma revisited Lewis Memorial Lecture March 14, 2008 Terence Tao (UCLA) 1 Finding models of large dense graphs Suppose we are given a large dense graph G = (V, E), where V is a

More information

Markov Chains, Conductance and Mixing Time

Markov Chains, Conductance and Mixing Time Markov Chains, Conductance and Mixing Time Lecturer: Santosh Vempala Scribe: Kevin Zatloukal Markov Chains A random walk is a Markov chain. As before, we have a state space Ω. We also have a set of subsets

More information

Spectral Analysis of Random Walks

Spectral Analysis of Random Walks Graphs and Networks Lecture 9 Spectral Analysis of Random Walks Daniel A. Spielman September 26, 2013 9.1 Disclaimer These notes are not necessarily an accurate representation of what happened in class.

More information

Maximum cut and related problems

Maximum cut and related problems Proof, beliefs, and algorithms through the lens of sum-of-squares 1 Maximum cut and related problems Figure 1: The graph of Renato Paes Leme s friends on the social network Orkut, the partition to top

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

Finding is as easy as detecting for quantum walks

Finding is as easy as detecting for quantum walks Finding is as easy as detecting for quantum walks Jérémie Roland Hari Krovi Frédéric Magniez Maris Ozols LIAFA [ICALP 2010, arxiv:1002.2419] Jérémie Roland (NEC Labs) QIP 2011 1 / 14 Spatial search on

More information

Vertex and edge expansion properties for rapid mixing

Vertex and edge expansion properties for rapid mixing Vertex and edge expansion properties for rapid mixing Ravi Montenegro Abstract We show a strict hierarchy among various edge and vertex expansion properties of Markov chains. This gives easy proofs of

More information

A local algorithm for finding dense bipartite-like subgraphs

A local algorithm for finding dense bipartite-like subgraphs A local algorithm for finding dense bipartite-like subgraphs Pan Peng 1,2 1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences 2 School of Information Science

More information

Coupling. 2/3/2010 and 2/5/2010

Coupling. 2/3/2010 and 2/5/2010 Coupling 2/3/2010 and 2/5/2010 1 Introduction Consider the move to middle shuffle where a card from the top is placed uniformly at random at a position in the deck. It is easy to see that this Markov Chain

More information

A quantum walk based search algorithm, and its optical realisation

A quantum walk based search algorithm, and its optical realisation A quantum walk based search algorithm, and its optical realisation Aurél Gábris FJFI, Czech Technical University in Prague with Tamás Kiss and Igor Jex Prague, Budapest Student Colloquium and School on

More information

Lecture 5: Random Walks and Markov Chain

Lecture 5: Random Walks and Markov Chain Spectral Graph Theory and Applications WS 20/202 Lecture 5: Random Walks and Markov Chain Lecturer: Thomas Sauerwald & He Sun Introduction to Markov Chains Definition 5.. A sequence of random variables

More information

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward.

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward. Mathematics 10 Page 1 of 8 Quadratic Relations in Vertex Form The expression y ax p q defines a quadratic relation in form. The coordinates of the of the corresponding parabola are p, q. If a > 0, the

More information

Detecting Sharp Drops in PageRank and a Simplified Local Partitioning Algorithm

Detecting Sharp Drops in PageRank and a Simplified Local Partitioning Algorithm Detecting Sharp Drops in PageRank and a Simplified Local Partitioning Algorithm Reid Andersen and Fan Chung University of California at San Diego, La Jolla CA 92093, USA, fan@ucsd.edu, http://www.math.ucsd.edu/~fan/,

More information

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505 INTRODUCTION TO MCMC AND PAGERANK Eric Vigoda Georgia Tech Lecture for CS 6505 1 MARKOV CHAIN BASICS 2 ERGODICITY 3 WHAT IS THE STATIONARY DISTRIBUTION? 4 PAGERANK 5 MIXING TIME 6 PREVIEW OF FURTHER TOPICS

More information

Conductance and Rapidly Mixing Markov Chains

Conductance and Rapidly Mixing Markov Chains Conductance and Rapidly Mixing Markov Chains Jamie King james.king@uwaterloo.ca March 26, 2003 Abstract Conductance is a measure of a Markov chain that quantifies its tendency to circulate around its states.

More information

arxiv: v4 [cs.ds] 23 Jun 2015

arxiv: v4 [cs.ds] 23 Jun 2015 Spectral Concentration and Greedy k-clustering Tamal K. Dey Pan Peng Alfred Rossi Anastasios Sidiropoulos June 25, 2015 arxiv:1404.1008v4 [cs.ds] 23 Jun 2015 Abstract A popular graph clustering method

More information

From query complexity to computational complexity (for optimization of submodular functions)

From query complexity to computational complexity (for optimization of submodular functions) From query complexity to computational complexity (for optimization of submodular functions) Shahar Dobzinski 1 Jan Vondrák 2 1 Cornell University Ithaca, NY 2 IBM Almaden Research Center San Jose, CA

More information

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505 INTRODUCTION TO MCMC AND PAGERANK Eric Vigoda Georgia Tech Lecture for CS 6505 1 MARKOV CHAIN BASICS 2 ERGODICITY 3 WHAT IS THE STATIONARY DISTRIBUTION? 4 PAGERANK 5 MIXING TIME 6 PREVIEW OF FURTHER TOPICS

More information

1 Adjacency matrix and eigenvalues

1 Adjacency matrix and eigenvalues CSC 5170: Theory of Computational Complexity Lecture 7 The Chinese University of Hong Kong 1 March 2010 Our objective of study today is the random walk algorithm for deciding if two vertices in an undirected

More information

Not all counting problems are efficiently approximable. We open with a simple example.

Not all counting problems are efficiently approximable. We open with a simple example. Chapter 7 Inapproximability Not all counting problems are efficiently approximable. We open with a simple example. Fact 7.1. Unless RP = NP there can be no FPRAS for the number of Hamilton cycles in a

More information

An Analysis of Top Trading Cycles in Two-Sided Matching Markets

An Analysis of Top Trading Cycles in Two-Sided Matching Markets An Analysis of Top Trading Cycles in Two-Sided Matching Markets Yeon-Koo Che Olivier Tercieux July 30, 2015 Preliminary and incomplete. Abstract We study top trading cycles in a two-sided matching environment

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Dissertation Defense

Dissertation Defense Clustering Algorithms for Random and Pseudo-random Structures Dissertation Defense Pradipta Mitra 1 1 Department of Computer Science Yale University April 23, 2008 Mitra (Yale University) Dissertation

More information

Convergence of Random Walks

Convergence of Random Walks Graphs and Networks Lecture 9 Convergence of Random Walks Daniel A. Spielman September 30, 010 9.1 Overview We begin by reviewing the basics of spectral theory. We then apply this theory to show that lazy

More information

How Robust are Thresholds for Community Detection?

How Robust are Thresholds for Community Detection? How Robust are Thresholds for Community Detection? Ankur Moitra (MIT) joint work with Amelia Perry (MIT) and Alex Wein (MIT) Let me tell you a story about the success of belief propagation and statistical

More information

Lecture 4: Applications: random trees, determinantal measures and sampling

Lecture 4: Applications: random trees, determinantal measures and sampling Lecture 4: Applications: random trees, determinantal measures and sampling Robin Pemantle University of Pennsylvania pemantle@math.upenn.edu Minerva Lectures at Columbia University 09 November, 2016 Sampling

More information

CSE 291: Fourier analysis Chapter 2: Social choice theory

CSE 291: Fourier analysis Chapter 2: Social choice theory CSE 91: Fourier analysis Chapter : Social choice theory 1 Basic definitions We can view a boolean function f : { 1, 1} n { 1, 1} as a means to aggregate votes in a -outcome election. Common examples are:

More information

(K2) For sum of the potential differences around any cycle is equal to zero. r uv resistance of {u, v}. [In other words, V ir.]

(K2) For sum of the potential differences around any cycle is equal to zero. r uv resistance of {u, v}. [In other words, V ir.] Lectures 16-17: Random walks on graphs CSE 525, Winter 2015 Instructor: James R. Lee 1 Random walks Let G V, E) be an undirected graph. The random walk on G is a Markov chain on V that, at each time step,

More information

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure Stat260/CS294: Spectral Graph Methods Lecture 19-04/02/2015 Lecture: Local Spectral Methods (2 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Spectral radius, symmetric and positive matrices

Spectral radius, symmetric and positive matrices Spectral radius, symmetric and positive matrices Zdeněk Dvořák April 28, 2016 1 Spectral radius Definition 1. The spectral radius of a square matrix A is ρ(a) = max{ λ : λ is an eigenvalue of A}. For an

More information

Discrete Mathematics. Kernels by monochromatic paths in digraphs with covering number 2

Discrete Mathematics. Kernels by monochromatic paths in digraphs with covering number 2 Discrete Mathematics 311 (2011) 1111 1118 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Kernels by monochromatic paths in digraphs with covering

More information

The Lovász Local Lemma: constructive aspects, stronger variants and the hard core model

The Lovász Local Lemma: constructive aspects, stronger variants and the hard core model The Lovász Local Lemma: constructive aspects, stronger variants and the hard core model Jan Vondrák 1 1 Dept. of Mathematics Stanford University joint work with Nick Harvey (UBC) The Lovász Local Lemma

More information

Lecture 9: Counting Matchings

Lecture 9: Counting Matchings Counting and Sampling Fall 207 Lecture 9: Counting Matchings Lecturer: Shayan Oveis Gharan October 20 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 8: (Boolean) Matrix Multiplication Karl Bringmann Recall: Boolean Matrix Multiplication given n n matrices A, B with entries in {0,1} compute matrix

More information

The Green-Tao theorem and a relative Szemerédi theorem

The Green-Tao theorem and a relative Szemerédi theorem The Green-Tao theorem and a relative Szemerédi theorem Yufei Zhao Massachusetts Institute of Technology Based on joint work with David Conlon (Oxford) and Jacob Fox (MIT) Green Tao Theorem (arxiv 2004;

More information

Approximating Maximum Constraint Satisfaction Problems

Approximating Maximum Constraint Satisfaction Problems Approximating Maximum Constraint Satisfaction Problems Johan Håstad some slides by Per Austrin Shafi and Silvio celebration, December 10, 2013 The Swedish Angle Today we are celebrating a Turing Award.

More information

18.S096: Spectral Clustering and Cheeger s Inequality

18.S096: Spectral Clustering and Cheeger s Inequality 18.S096: Spectral Clustering and Cheeger s Inequality Topics in Mathematics of Data Science (Fall 015) Afonso S. Bandeira bandeira@mit.edu http://math.mit.edu/~bandeira October 6, 015 These are lecture

More information

THE STRUCTURE OF ALMOST ALL GRAPHS IN A HEREDITARY PROPERTY

THE STRUCTURE OF ALMOST ALL GRAPHS IN A HEREDITARY PROPERTY THE STRUCTURE OF ALMOST ALL GRAPHS IN A HEREDITARY PROPERTY NOGA ALON, JÓZSEF BALOGH, BÉLA BOLLOBÁS, AND ROBERT MORRIS Abstract. A hereditary property of graphs is a collection of graphs which is closed

More information

COMMUNITY DETECTION IN SPARSE NETWORKS VIA GROTHENDIECK S INEQUALITY

COMMUNITY DETECTION IN SPARSE NETWORKS VIA GROTHENDIECK S INEQUALITY COMMUNITY DETECTION IN SPARSE NETWORKS VIA GROTHENDIECK S INEQUALITY OLIVIER GUÉDON AND ROMAN VERSHYNIN Abstract. We present a simple and flexible method to prove consistency of semidefinite optimization

More information

Graph-Constrained Group Testing

Graph-Constrained Group Testing Mahdi Cheraghchi et al. presented by Ying Xuan May 20, 2010 Table of contents 1 Motivation and Problem Definitions 2 3 Correctness Proof 4 Applications call for connected pools detection of congested links

More information

Approximating Sparsest Cut in Graphs of Bounded Treewidth

Approximating Sparsest Cut in Graphs of Bounded Treewidth Approximating Sparsest Cut in Graphs of Bounded Treewidth Eden Chlamtac Weizmann Institute Robert Krauthgamer Weizmann Institute Prasad Raghavendra Microsoft Research New England Abstract We give the first

More information

Low degree almost Boolean functions are sparse juntas

Low degree almost Boolean functions are sparse juntas Low degree almost Boolean functions are sparse juntas Irit Dinur Yuval Filmus Prahladh Harsha November 19, 2017 Abstract Nisan and Szegedy showed that low degree Boolean functions are juntas. Kindler and

More information

On splitting digraphs

On splitting digraphs On splitting digraphs arxiv:707.03600v [math.co] 0 Apr 08 Donglei Yang a,, Yandong Bai b,, Guanghui Wang a,, Jianliang Wu a, a School of Mathematics, Shandong University, Jinan, 5000, P. R. China b Department

More information

Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets

Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets Raphael Yuster 1 Department of Mathematics, University of Haifa, Haifa, Israel raphy@math.haifa.ac.il

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 Scribed by Luowen Qian Lecture 8 In which we use spectral techniques to find certificates of unsatisfiability

More information

On the Dynamic Chromatic Number of Graphs

On the Dynamic Chromatic Number of Graphs On the Dynamic Chromatic Number of Graphs Maryam Ghanbari Joint Work with S. Akbari and S. Jahanbekam Sharif University of Technology m_phonix@math.sharif.ir 1. Introduction Let G be a graph. A vertex

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

Graph Limits: Some Open Problems

Graph Limits: Some Open Problems Graph Limits: Some Open Problems 1 Introduction Here are some questions from the open problems session that was held during the AIM Workshop Graph and Hypergraph Limits, Palo Alto, August 15-19, 2011.

More information

arxiv: v3 [math.co] 10 Mar 2018

arxiv: v3 [math.co] 10 Mar 2018 New Bounds for the Acyclic Chromatic Index Anton Bernshteyn University of Illinois at Urbana-Champaign arxiv:1412.6237v3 [math.co] 10 Mar 2018 Abstract An edge coloring of a graph G is called an acyclic

More information

A Schur Complement Cheeger Inequality

A Schur Complement Cheeger Inequality A Schur Complement Cheeger Inequality arxiv:8.834v [cs.dm] 27 Nov 28 Aaron Schild University of California, Berkeley EECS aschild@berkeley.edu November 28, 28 Abstract Cheeger s inequality shows that any

More information

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature.

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature. Markov Chains Markov chains: 2SAT: Powerful tool for sampling from complicated distributions rely only on local moves to explore state space. Many use Markov chains to model events that arise in nature.

More information

Unpredictable Walks on the Integers

Unpredictable Walks on the Integers Unpredictable Walks on the Integers EJ Infeld March 5, 213 Abstract In 1997 Benjamini, Premantle and Peres introduced a construction of a walk on Z that has a faster decaying predictability profile than

More information

The Green-Tao theorem and a relative Szemerédi theorem

The Green-Tao theorem and a relative Szemerédi theorem The Green-Tao theorem and a relative Szemerédi theorem Yufei Zhao Massachusetts Institute of Technology Joint work with David Conlon (Oxford) and Jacob Fox (MIT) Simons Institute December 2013 Green Tao

More information

Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families

Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families Nikhil Srivastava Microsoft Research India Simons Institute, August 27, 2014 The Last Two Lectures Lecture 1. Every weighted

More information