Partitioning Algorithms that Combine Spectral and Flow Methods

Size: px
Start display at page:

Download "Partitioning Algorithms that Combine Spectral and Flow Methods"

Transcription

1 CS369M: Algorithms for Modern Massive Data Set Analysis Lecture 15-11/11/2009 Partitioning Algorithms that Combine Spectral and Flow Methods Lecturer: Michael Mahoney Scribes: Kshipra Bhawalkar and Deyan Simeonov *Unedited notes Last time we looked at flow based graph partitioning. Today we will show why it works. We are given a graph G = (V, E), a cost function c : E R + and k pairs of nodes (s i, t i ). Let x(e) indicate if an edge e is cut, y(i) indicate if commodity i is cut and P i, i = 1, 2,..., k be the set of paths between s i and t i. Then we want: e E min c(e)x(e) k, s.t. d(i)y() x(e) y(i) P P i i = 1, 2,..., k e P y(i) {0, 1}, x(e) {0, 1} We relax x and y to be in [0, 1] and, given that for any feasible solution (x, y) and any α > 0, (αx, αy) is a feasible solution, we get the following LP: min e E c(e)x(e), s.t. Our strategy: solve the LP round the solution. k d(i)y(i) = 1 x(e) y(i) P P i i = 1, 2,..., k e P x(e) 0, y(i) 0 Recall: x R n, x p = ( n xp i ) 1 p - p-norm. Its induced metric is x y p. Theorem (Bourgain 85). Any n-point metric space admits an α-distortion embedding in l p with α = O(log n). Proof idea: Use as coordinates the minimal distances of points to suitably chosen random sets. Comparison between l 1 and l 2 : l 2 has good dimension reduction properties, l 1 doesn t. There is a fast (polytime, O(n 3 )) algorithm to get the best l 2 embedding, for l 1 it is NP. 1

2 l 2 has strong connection to diffusion, low dimensional spaces and manifolds, l 1 has strong connection to cuts, partition in graphs, multicommodity flows. Connection between l 1 and Cut metrics: There exists a representation of l 1 metrics in terms of combination of cut metrics. Cut metrics - Extreme rays of the cone of l 1 metrics. minimum ratio function over cone minimum over extreme rays. Definition. Given a graph G(V, E) and S V, say δ S is the cut-metric for S, if δ s (x, y) is the indicator of x and y being on different sides of S. Claim. The set of l 1 metrics is a convex cone, i.e.: If d 1, d 2 l 1, α 1, α 2 0, then α 1 d 1 + α 2 d 2 l 1. Does not hold for l 2! Proof: Line metric is an l 1 metric but d (i) (x, y) = x i y i for x i, y i R n. If d is an l! metric then it is a line metric. We can then argue for each dimension. Claim. Let d be a finite l 1 metric then we can write d as d = S V α S δ S α S R, δ S cut metric i.e. CUT n = {d : d = α S δ S, α S 0} S V = {positive cone generated by this metric} = {all n-points subsets of R n under l 1 metric Proof: (CUT n l 1 ) d = S V α Sδ S CUT n. Introduce one dimension for each pair of vertices. For a pair of points (i, j) value in the dimension (i, j) is sum of α S for all cuts (S, S) over all cuts that put i and j in different sets. (l 1 CUT n ): Consider a dimension d and sort points along that dimension in increasing values. Let v 1, v 2,...v k be the set of distinct values along that dimension. Define k-1 cut metrics S i = {x : x d v i 1 } and let α i = v i+1 v i. So along that dimention, Do this for each dimension. x d y d = Usefulness - you can optimize over l 1 metrics: Let C R n - convex cone. f, g : R n R +. Then: k α i δ Si f(x) min x C g(x) = min f(x) x extreme ray ofc g(x) 2

3 Conductance and Sparsity Given a graph G(V,E) we define the conductance h G and sparsity φ G as follows, h G := min S V E(S, S) min{ S, S } E(S, φ G := min S) S V S S Claim. φ G = {min d l1metric i,j E d ijs.t. i,j d ij = 1} Idea: Relax to optimization over a larger set i.e. a metric. 1 n λ := min i,j E d ij s.t. d ij = 1 i,j d ij 0 d ij = d ji d ij + d jk d ik Clearly λ φ. Less obviously φ O(log n)λ (homework 3). Algorithm: Given G. Solve the LP to get metric d, Use bourgain embedding result to approximate by l 1 metric (with loss O(log n). Round the solution to get a cut. For each dimension covert the l 1 metric along that to a cut metric. Choose the best. Note: If have l 1 embedding with distortion factor ξ then can approximate the cut upto ξ. (Homework 3). What else can you relax to? l 2 - not convex l2 2 - convex but distortion Omega(n). (Not a metric) (this happens in spectral technique. Can get eigenvalue λ s.t. λ is close to h(g) upto quadratic factor. (Cheegar Inequality). l2 2 + triangle inequality gives a metric This works. Arora, Rao Vazirani. 3

4 Various relaxations of spectral cut. Actual problem: Φ G = min S V E(S, S) S S = min x 0,1 V Spectral Method: replace l 1 with l 2. i,j d λ 2 = min A ij(x i x j ) 2 x R V i,j (x i x j ) 2 Leighton, Rao i,j A ij x i x j i,j x i x j i,j min A ijd ij d metric i,j d ij Leighton,Rao approach is bad in expanders, but is good in sparse graphs. Definition. l 2 2 representation of a graph G is an assignment of a point vector to each node v i R k for each i. s.t. v i v j v j v k 2 2 v i v k 2 2 It is a unit l 2 2 representation if on unit sphere i.e. v i = 1, i. Thing to note: Condition that l 2 2 distance form a metric all triangles are acute. l 2 2 metric is a convex cone. d l 1 = d l 2 2. Relax to vectors on unit sphere that form a metric, min A ij x i x j i,j E s.t. i,j x i x j 2 2 = 1 x i x j x j x k 2 2 x i x k 2 2 This it the semi-definite program(sdp) from Arora, Rao, Vazirani. Theorem: For uniform sparsest cut d ij = 1 i, j SDP integrality gap is θ( log n). For general sparsest cut, SDP integrality gap is θ( log n log log n). Main structure theorem: Let v, v 2,...v n be points on the unit vall in R n. s.t. d ij = v i v j 2 2 is a metric and all points are wellseperated. i,j d ij/n 2 δ = Ω(1). then S, T disjoint subsets of V s.t. S, T Ω(n) min i S,j T d ij Ω(1/ log n) Flow methods: Embed scaled version of complete graphs into G. - O(log n) ARV: embed an arbitrary graph H(iterative construction) such that H is a good expander or we find a cut. Iterative construction: multiplicative update method online learning. 4

5 References 1. Arora, Rao, and Vazirani, CACM article, Geometry, flows, and graph-partitioning algorithms 2. Khandekar, Rao, and Vazirani, Graph partitioning using single commodity flows 3. Orecchia, Schulman, Vazirani, and Vishnoi, On Partitioning Graphs via Single Commodity Flows 5

Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007

Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007 CS880: Approximations Algorithms Scribe: Tom Watson Lecturer: Shuchi Chawla Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007 In the last lecture, we described an O(log k log D)-approximation

More information

Lecture: Flow-based Methods for Partitioning Graphs (1 of 2)

Lecture: Flow-based Methods for Partitioning Graphs (1 of 2) Stat260/CS294: Spectral Graph Methods Lecture 10-02/24/2015 Lecture: Flow-based Methods for Partitioning Graphs (1 of 2) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

ORIE 6334 Spectral Graph Theory November 22, Lecture 25

ORIE 6334 Spectral Graph Theory November 22, Lecture 25 ORIE 64 Spectral Graph Theory November 22, 206 Lecture 25 Lecturer: David P. Williamson Scribe: Pu Yang In the remaining three lectures, we will cover a prominent result by Arora, Rao, and Vazirani for

More information

On a Cut-Matching Game for the Sparsest Cut Problem

On a Cut-Matching Game for the Sparsest Cut Problem On a Cut-Matching Game for the Sparsest Cut Problem Rohit Khandekar Subhash A. Khot Lorenzo Orecchia Nisheeth K. Vishnoi Electrical Engineering and Computer Sciences University of California at Berkeley

More information

Hierarchies. 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n )

Hierarchies. 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n ) Hierarchies Today 1. Some more familiarity with Hierarchies 2. Examples of some basic upper and lower bounds 3. Survey of recent results (possible material for future talks) Hierarchies 1. Lovasz-Schrijver

More information

Lecture 5. Max-cut, Expansion and Grothendieck s Inequality

Lecture 5. Max-cut, Expansion and Grothendieck s Inequality CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017 Lecture 5. Max-cut, Expansion and Grothendieck s Inequality Professor Moses Charikar Scribes: Kiran Shiragur Overview Here we derive

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Manor Mendel, CMI, Caltech 1 Finite Metric Spaces Definition of (semi) metric. (M, ρ): M a (finite) set of points. ρ a distance function

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem

Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Recent Advances in Approximation Algorithms Spring 2015 Lecture 17: Cheeger s Inequality and the Sparsest Cut Problem Lecturer: Shayan Oveis Gharan June 1st Disclaimer: These notes have not been subjected

More information

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix ORIE 6334 Spectral Graph Theory December, 06 Lecturer: David P. Williamson Lecture 7 Remix Scribe: Qinru Shi Note: This is an altered version of the lecture I actually gave, which followed the structure

More information

16.1 Min-Cut as an LP

16.1 Min-Cut as an LP 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: LPs as Metrics: Min Cut and Multiway Cut Date: 4//5 Scribe: Gabriel Kaptchuk 6. Min-Cut as an LP We recall the basic definition

More information

Lecture 15 (Oct 6): LP Duality

Lecture 15 (Oct 6): LP Duality CMPUT 675: Approximation Algorithms Fall 2014 Lecturer: Zachary Friggstad Lecture 15 (Oct 6): LP Duality Scribe: Zachary Friggstad 15.1 Introduction by Example Given a linear program and a feasible solution

More information

Partitioning Metric Spaces

Partitioning Metric Spaces Partitioning Metric Spaces Computational and Metric Geometry Instructor: Yury Makarychev 1 Multiway Cut Problem 1.1 Preliminaries Definition 1.1. We are given a graph G = (V, E) and a set of terminals

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Lecture: Expanders, in theory and in practice (2 of 2)

Lecture: Expanders, in theory and in practice (2 of 2) Stat260/CS294: Spectral Graph Methods Lecture 9-02/19/2015 Lecture: Expanders, in theory and in practice (2 of 2) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 8 Luca Trevisan September 19, 2017 Scribed by Luowen Qian Lecture 8 In which we use spectral techniques to find certificates of unsatisfiability

More information

A better approximation ratio for the Vertex Cover problem

A better approximation ratio for the Vertex Cover problem A better approximation ratio for the Vertex Cover problem George Karakostas Dept. of Computing and Software McMaster University October 5, 004 Abstract We reduce the approximation factor for Vertex Cover

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Norms of Random Matrices & Low-Rank via Sampling

Norms of Random Matrices & Low-Rank via Sampling CS369M: Algorithms for Modern Massive Data Set Analysis Lecture 4-10/05/2009 Norms of Random Matrices & Low-Rank via Sampling Lecturer: Michael Mahoney Scribes: Jacob Bien and Noah Youngs *Unedited Notes

More information

Lecture 17 (Nov 3, 2011 ): Approximation via rounding SDP: Max-Cut

Lecture 17 (Nov 3, 2011 ): Approximation via rounding SDP: Max-Cut CMPUT 675: Approximation Algorithms Fall 011 Lecture 17 (Nov 3, 011 ): Approximation via rounding SDP: Max-Cut Lecturer: Mohammad R. Salavatipour Scribe: based on older notes 17.1 Approximation Algorithm

More information

Convex and Semidefinite Programming for Approximation

Convex and Semidefinite Programming for Approximation Convex and Semidefinite Programming for Approximation We have seen linear programming based methods to solve NP-hard problems. One perspective on this is that linear programming is a meta-method since

More information

Spherical Euclidean Distance Embedding of a Graph

Spherical Euclidean Distance Embedding of a Graph Spherical Euclidean Distance Embedding of a Graph Hou-Duo Qi University of Southampton Presented at Isaac Newton Institute Polynomial Optimization August 9, 2013 Spherical Embedding Problem The Problem:

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Fréchet embeddings of negative type metrics

Fréchet embeddings of negative type metrics Fréchet embeddings of negative type metrics Sanjeev Arora James R Lee Assaf Naor Abstract We show that every n-point metric of negative type (in particular, every n-point subset of L 1 ) admits a Fréchet

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Expander Flows, Geometric Embeddings and Graph Partitioning

Expander Flows, Geometric Embeddings and Graph Partitioning 5 Expander Flows, Geometric Embeddings and Graph Partitioning SANJEEV ARORA Princeton University, Princeton, New Jersey AND SATISH RAO AND UMESH VAZIRANI UC Berkeley, Berkeley, California Abstract. We

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

New algorithms for Disjoint Paths and Routing Problems

New algorithms for Disjoint Paths and Routing Problems New algorithms for Disjoint Paths and Routing Problems Chandra Chekuri Dept. of Computer Science Univ. of Illinois (UIUC) Menger s Theorem Theorem: The maximum number of s-t edgedisjoint paths in a graph

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

Hierarchical Clustering via Spreading Metrics

Hierarchical Clustering via Spreading Metrics Journal of Machine Learning Research 18 2017) 1-35 Submitted 2/17; Revised 5/17; Published 8/17 Hierarchical Clustering via Spreading Metrics Aurko Roy College of Computing Georgia Institute of Technology

More information

Lecture: Local Spectral Methods (3 of 4) 20 An optimization perspective on local spectral methods

Lecture: Local Spectral Methods (3 of 4) 20 An optimization perspective on local spectral methods Stat260/CS294: Spectral Graph Methods Lecture 20-04/07/205 Lecture: Local Spectral Methods (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

eigenvalue bounds and metric uniformization Punya Biswal & James R. Lee University of Washington Satish Rao U. C. Berkeley

eigenvalue bounds and metric uniformization Punya Biswal & James R. Lee University of Washington Satish Rao U. C. Berkeley eigenvalue bounds and metric uniformization Punya Biswal & James R. Lee University of Washington Satish Rao U. C. Berkeley separators in planar graphs Lipton and Tarjan (1980) showed that every n-vertex

More information

arxiv: v1 [cs.lg] 5 Jun 2018

arxiv: v1 [cs.lg] 5 Jun 2018 A PROJECTION METHOD FOR METRIC-CONSTRAINED OPTIMIZATION NATE VELDT 1, DAVID F. GLEICH 2, ANTHONY WIRTH 3, AND JAMES SAUNDERSON 4 arxiv:1806.01678v1 [cs.lg] 5 Jun 2018 Abstract. We outline a new approach

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information

Graph Partitioning Algorithms and Laplacian Eigenvalues

Graph Partitioning Algorithms and Laplacian Eigenvalues Graph Partitioning Algorithms and Laplacian Eigenvalues Luca Trevisan Stanford Based on work with Tsz Chiu Kwok, Lap Chi Lau, James Lee, Yin Tat Lee, and Shayan Oveis Gharan spectral graph theory Use linear

More information

arxiv:cs/ v1 [cs.cc] 7 Sep 2006

arxiv:cs/ v1 [cs.cc] 7 Sep 2006 Approximation Algorithms for the Bipartite Multi-cut problem arxiv:cs/0609031v1 [cs.cc] 7 Sep 2006 Sreyash Kenkre Sundar Vishwanathan Department Of Computer Science & Engineering, IIT Bombay, Powai-00076,

More information

Lecture 5 : Projections

Lecture 5 : Projections Lecture 5 : Projections EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Up until now, we have seen convergence rates of unconstrained gradient descent. Now, we consider a constrained minimization

More information

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut Lecture 10 Semidefinite Programs and the Max-Cut Problem In this class we will finally introduce the content from the second half of the course title, Semidefinite Programs We will first motivate the discussion

More information

Basic Properties of Metric and Normed Spaces

Basic Properties of Metric and Normed Spaces Basic Properties of Metric and Normed Spaces Computational and Metric Geometry Instructor: Yury Makarychev The second part of this course is about metric geometry. We will study metric spaces, low distortion

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] 1. Preliminaries

GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] 1. Preliminaries GRAPH PARTITIONING USING SINGLE COMMODITY FLOWS [KRV 06] notes by Petar MAYMOUNKOV Theme The algorithmic problem of finding a sparsest cut is related to the combinatorial problem of building expander graphs

More information

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016 Lecture 1: Introduction and Review We begin with a short introduction to the course, and logistics. We then survey some basics about approximation algorithms and probability. We also introduce some of

More information

Lecture 7. 1 Normalized Adjacency and Laplacian Matrices

Lecture 7. 1 Normalized Adjacency and Laplacian Matrices ORIE 6334 Spectral Graph Theory September 3, 206 Lecturer: David P. Williamson Lecture 7 Scribe: Sam Gutekunst In this lecture, we introduce normalized adjacency and Laplacian matrices. We state and begin

More information

The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l 1

The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l 1 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of egative Type Metrics into l Subhash A. Khot College of Computing, Georgia Institute of Technology, 80 Atlantic Drive,

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

Positive Semi-definite programing and applications for approximation

Positive Semi-definite programing and applications for approximation Combinatorial Optimization 1 Positive Semi-definite programing and applications for approximation Guy Kortsarz Combinatorial Optimization 2 Positive Sem-Definite (PSD) matrices, a definition Note that

More information

CSC Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method

CSC Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method CSC2411 - Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method Notes taken by Stefan Mathe April 28, 2007 Summary: Throughout the course, we have seen the importance

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

Topics in Theoretical Computer Science April 08, Lecture 8

Topics in Theoretical Computer Science April 08, Lecture 8 Topics in Theoretical Computer Science April 08, 204 Lecture 8 Lecturer: Ola Svensson Scribes: David Leydier and Samuel Grütter Introduction In this lecture we will introduce Linear Programming. It was

More information

Vertical Versus Horizontal Poincare Inequalities. Assaf Naor Courant Institute

Vertical Versus Horizontal Poincare Inequalities. Assaf Naor Courant Institute Vertical Versus Horizontal Poincare Inequalities Assaf Naor Courant Institute Bi-Lipschitz distortion a metric space and (M; d M ) (X; k k X ) a Banach space. c X (M) = the infimum over those D 2 (1; 1]

More information

1 Strict local optimality in unconstrained optimization

1 Strict local optimality in unconstrained optimization ORF 53 Lecture 14 Spring 016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, April 14, 016 When in doubt on the accuracy of these notes, please cross check with the instructor s

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Hardness of Embedding Metric Spaces of Equal Size

Hardness of Embedding Metric Spaces of Equal Size Hardness of Embedding Metric Spaces of Equal Size Subhash Khot and Rishi Saket Georgia Institute of Technology {khot,saket}@cc.gatech.edu Abstract. We study the problem embedding an n-point metric space

More information

Lecture 6 January 21, 2013

Lecture 6 January 21, 2013 UBC CPSC 536N: Sparse Approximations Winter 03 Prof. Nick Harvey Lecture 6 January, 03 Scribe: Zachary Drudi In the previous lecture, we discussed max flow problems. Today, we consider the Travelling Salesman

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

Approximation Algorithms and Hardness of Integral Concurrent Flow

Approximation Algorithms and Hardness of Integral Concurrent Flow Approximation Algorithms and Hardness of Integral Concurrent Flow Parinya Chalermsook Julia Chuzhoy Alina Ene Shi Li May 16, 2012 Abstract We study an integral counterpart of the classical Maximum Concurrent

More information

A Unified Theorem on SDP Rank Reduction. yyye

A Unified Theorem on SDP Rank Reduction.   yyye SDP Rank Reduction Yinyu Ye, EURO XXII 1 A Unified Theorem on SDP Rank Reduction Yinyu Ye Department of Management Science and Engineering and Institute of Computational and Mathematical Engineering Stanford

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

Expander Flows, Geometric Embeddings and Graph Partitioning

Expander Flows, Geometric Embeddings and Graph Partitioning Expander Flows, Geometric Embeddings and Graph Partitioning (Longer version of an ACM STOC 2004 paper) Sanjeev Arora Satish Rao Umesh Vazirani April 2, 2007 Abstract We give a O( log n)-approximation algorithm

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

Convex relaxation. In example below, we have N = 6, and the cut we are considering

Convex relaxation. In example below, we have N = 6, and the cut we are considering Convex relaxation The art and science of convex relaxation revolves around taking a non-convex problem that you want to solve, and replacing it with a convex problem which you can actually solve the solution

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

Duality. Geoff Gordon & Ryan Tibshirani Optimization /

Duality. Geoff Gordon & Ryan Tibshirani Optimization / Duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Duality in linear programs Suppose we want to find lower bound on the optimal value in our convex problem, B min x C f(x) E.g., consider

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

Algorithms for 2-Route Cut Problems

Algorithms for 2-Route Cut Problems Algorithms for 2-Route Cut Problems Chandra Chekuri 1 and Sanjeev Khanna 2 1 Dept. of Computer Science, University of Illinois, Urbana, IL 61801. chekuri@cs.uiuc.edu 2 Dept. of CIS, Univ. of Pennsylvania,

More information

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following

More information

Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming

Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305,

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Chapter 26 Semidefinite Programming Zacharias Pitouras 1 Introduction LP place a good lower bound on OPT for NP-hard problems Are there other ways of doing this? Vector programs

More information

Lecture: Modeling graphs with electrical networks

Lecture: Modeling graphs with electrical networks Stat260/CS294: Spectral Graph Methods Lecture 16-03/17/2015 Lecture: Modeling graphs with electrical networks Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Approximating the isoperimetric number of strongly regular graphs

Approximating the isoperimetric number of strongly regular graphs Electronic Journal of Linear Algebra Volume 13 Volume 13 (005) Article 7 005 Approximating the isoperimetric number of strongly regular graphs Sivaramakrishnan Sivasubramanian skrishna@tcs.tifr.res.in

More information

Topics in Approximation Algorithms Solution for Homework 3

Topics in Approximation Algorithms Solution for Homework 3 Topics in Approximation Algorithms Solution for Homework 3 Problem 1 We show that any solution {U t } can be modified to satisfy U τ L τ as follows. Suppose U τ L τ, so there is a vertex v U τ but v L

More information

CSC Metric Embeddings Lecture 7: Lower bounds on the embeddability in via expander graphs and some algorithmic connections to

CSC Metric Embeddings Lecture 7: Lower bounds on the embeddability in via expander graphs and some algorithmic connections to CSC2414 - Metric Embeddings Lecture 7: Lower bounds on the embeddability in via expander graphs and some algorithmic connections to Notes taken by Periklis Papakonstantinou revised by Hamed Hatami Summary:

More information

Locally-biased analytics

Locally-biased analytics Locally-biased analytics You have BIG data and want to analyze a small part of it: Solution 1: Cut out small part and use traditional methods Challenge: cutting out may be difficult a priori Solution 2:

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

Small distortion and volume preserving embedding for Planar and Euclidian metrics Satish Rao

Small distortion and volume preserving embedding for Planar and Euclidian metrics Satish Rao Small distortion and volume preserving embedding for Planar and Euclidian metrics Satish Rao presented by Fjóla Rún Björnsdóttir CSE 254 - Metric Embeddings Winter 2007 CSE 254 - Metric Embeddings - Winter

More information

Introduction to LP and SDP Hierarchies

Introduction to LP and SDP Hierarchies Introduction to LP and SDP Hierarchies Madhur Tulsiani Princeton University Local Constraints in Approximation Algorithms Linear Programming (LP) or Semidefinite Programming (SDP) based approximation algorithms

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

Easy and not so easy multifacility location problems... (In 20 minutes.)

Easy and not so easy multifacility location problems... (In 20 minutes.) Easy and not so easy multifacility location problems... (In 20 minutes.) MINLP 2014 Pittsburgh, June 2014 Justo Puerto Institute of Mathematics (IMUS) Universidad de Sevilla Outline 1 Introduction (In

More information

Lec. 2: Approximation Algorithms for NP-hard Problems (Part II)

Lec. 2: Approximation Algorithms for NP-hard Problems (Part II) Limits of Approximation Algorithms 28 Jan, 2010 (TIFR) Lec. 2: Approximation Algorithms for NP-hard Problems (Part II) Lecturer: Prahladh Harsha Scribe: S. Ajesh Babu We will continue the survey of approximation

More information

Integrality gaps of semidefinite programs for Vertex Cover and relations to l 1 embeddability of negative type metrics

Integrality gaps of semidefinite programs for Vertex Cover and relations to l 1 embeddability of negative type metrics Integrality gaps of semidefinite programs for Vertex Cover and relations to l 1 embeddability of negative type metrics Hamed Hatami, Avner Magen, and Evangelos Markakis Department of Computer Science,

More information

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory Tim Roughgarden & Gregory Valiant May 2, 2016 Spectral graph theory is the powerful and beautiful theory that arises from

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Inderjit Dhillon The University of Texas at Austin

Inderjit Dhillon The University of Texas at Austin Inderjit Dhillon The University of Texas at Austin ( Universidad Carlos III de Madrid; 15 th June, 2012) (Based on joint work with J. Brickell, S. Sra, J. Tropp) Introduction 2 / 29 Notion of distance

More information

Linear and Integer Programming - ideas

Linear and Integer Programming - ideas Linear and Integer Programming - ideas Paweł Zieliński Institute of Mathematics and Computer Science, Wrocław University of Technology, Poland http://www.im.pwr.wroc.pl/ pziel/ Toulouse, France 2012 Literature

More information

Convex relaxation. In example below, we have N = 6, and the cut we are considering

Convex relaxation. In example below, we have N = 6, and the cut we are considering Convex relaxation The art and science of convex relaxation revolves around taking a non-convex problem that you want to solve, and replacing it with a convex problem which you can actually solve the solution

More information

Global Optimization of Polynomials

Global Optimization of Polynomials Semidefinite Programming Lecture 9 OR 637 Spring 2008 April 9, 2008 Scribe: Dennis Leventhal Global Optimization of Polynomials Recall we were considering the problem min z R n p(z) where p(z) is a degree

More information

Lecture: Cone programming. Approximating the Lorentz cone.

Lecture: Cone programming. Approximating the Lorentz cone. Strong relaxations for discrete optimization problems 10/05/16 Lecture: Cone programming. Approximating the Lorentz cone. Lecturer: Yuri Faenza Scribes: Igor Malinović 1 Introduction Cone programming is

More information

Non-Uniform Graph Partitioning

Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute Technion Microsoft Research Microsoft Research Problem Definition Introduction Definitions Related Work Our Result Input: G =

More information

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018

U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 U.C. Berkeley Better-than-Worst-Case Analysis Handout 3 Luca Trevisan May 24, 2018 Lecture 3 In which we show how to find a planted clique in a random graph. 1 Finding a Planted Clique We will analyze

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

1 The independent set problem

1 The independent set problem ORF 523 Lecture 11 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Tuesday, March 29, 2016 When in doubt on the accuracy of these notes, please cross chec with the instructor

More information

Lecture 3: Huge-scale optimization problems

Lecture 3: Huge-scale optimization problems Liege University: Francqui Chair 2011-2012 Lecture 3: Huge-scale optimization problems Yurii Nesterov, CORE/INMA (UCL) March 9, 2012 Yu. Nesterov () Huge-scale optimization problems 1/32March 9, 2012 1

More information

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University UNDERDETERMINED LINEAR EQUATIONS We

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information