Phys 102 Lecture 25 The quantum mechanical model of light

Size: px
Start display at page:

Download "Phys 102 Lecture 25 The quantum mechanical model of light"

Transcription

1 Phys 102 Lecture 25 The quatum mechaical model of light 1

2 Recall last time Problems with classical physics Stability of atoms Atomic spectra Photoelectric effect Quatum model of the atom Bohr model oly orbits that fit e λ allowed Agular mometum, eergy, radius quatized L Today: Quatum model of light istei s photo model 2 Today Z 13.6eV 2 r 2 Z m 1, 2, 3... Phys. 102, Lecture 25, Slide 2

3 Atomic uits At atomic scales, Joules, meters, kg, etc. are ot coveiet uits lectro Volt eergy gaied by charge +1e whe accelerated by 1 Volt: U qv 1e = C, so 1 ev = J Plack costat: h = J s Speed of light: c = m/s hc J m 1240 ev m lectro mass: m = kg mc J 511, 000 ev Phys. 102, Lecture 24, Slide 3

4 Photoelectric effect Light shiig o a metal ca eject electros out of atoms (UV) Light Photoelectro Maximum kietic eergy of electro K W Light must provide eough eergy to overcome Coulomb attractio of electro to uclei: W 0 ( Work fuctio ) e light ergy of M wave 0 Work fuctio of metal Phys. 102, Lecture 25, Slide 4

5 Classical model vs. experimet Classical predictio K W 1. Icreasig itesity should icrease light, K e 2. Chagig f (or λ) of light should chage othig e light 0 I uc light light xperimetal result 1. Icreasig itesity results i more e, at same K e 2. Decreasig f (or icreasig λ) decreases K e, ad below critical value f 0, e emissio stops DMO Phys. 102, Lecture 25, Slide 5

6 Photo Model of Light istei proposed that light comes i discrete packets called photos, with eergy: Photo eergy photo hf Frequecy of M wave f c λ Plack s costat 34 h Js x: eergy of a sigle gree photo (λ = 530 m, i vacuum) photo hc λ 1240eV m 530 m 2.3eV hc 1240eV m ergy i a beam of gree light (ex: laser poiter) light Nphotophoto CheckPoit 2.1: Higher/lower λ = lower/higher Phys. 102, Lecture 25, Slide 6

7 ACT: CheckPoit 2.2 A red ad blue light emittig diode (LDs) both output 2.5 mw of light power. Which oe emits more photos/secod? A. Red B. Blue C. The same Phys. 102, Lecture 25, Slide 7

8 Photoelectric effect explaied Quatum model 1. Icreasig itesity results i more photos of the same eergy 2. Decreasig f (or icreasig λ) decreases photo eergy xperimetal result 1. More e emitted at same K e 2. Lower K e ad if hf photo < hf 0 = W 0 e emissio stops K hf W e 0 K e W 0 Phys. 102, Lecture 25, Slide 8

9 ACT: Photoelectric effect You make a burglar alarm usig ifrared laser light (λ = 1000 m) & the photoelectric effect. If the beam hits a metal detector, a curret is geerated; if blocked the curret stops ad the alarm is triggered. Metal 1 W 0 = 1 ev Metal 2 W 0 = 1.5 ev Metal 3 W 0 = 2 ev You have a choice of 3metals. Which will work? A. 1 ad 2 B. 2 ad 3 C. 1 oly D. 3 oly Phys. 102, Lecture 25, Slide 9

10 Atomic spectra lectros i atom are i discrete eergy levels = 4 = 3 2 Z 13.6eV 2 r e ca jump from oe level to aother by absorbig or emittig a photo Absorptio (e jumps up i eergy) hf i f = 2 Absorptio missio missio (e jumps dow i eergy) hf i f = 1 Oly certai f (or λ) are emitted or absorbed > spectral lies ergy levels are differet for elemets, so spectra are differet ergy is coserved hf DMO Phys. 102, Lecture 25, Slide 10

11 Calculatio: H spectral lies Calculate the wavelegth of light emitted by hydroge electros as they trasitio from the = 3 to = 2 levels = 4 = 3 = 2 missio: hf i f hc Z 13.6eV λ 2 2 f i 1 Z 1 1 λ m 2 2 f i 7 λ m Usig hc 1240eV m = 1 Phys. 102, Lecture 25, Slide 11

12 Solar spectrum Spectrum from celestial bodies ca be used to idetify its compositio Hydroge Solar spectrum Su radiates over large rage of λ because it is hot (5800K). Black spectral lies appear because elemets iside su absorb light at those λ. Phys. 102, Lecture 25, Slide 12

13 ACT: CheckPoit 3.1 lectro A falls from eergy level = 2 to = 1. lectro B falls from eergy level = 3 to eergy level = 1. Which photo has a loger wavelegth? A. Photo A B. Photo B C. Both the same = 4 = 3 = 2 = 1 Phys. 102, Lecture 25, Slide 13

14 ACT: CheckPoit 3.2 The electros i a large group of hydroge atoms are excited to the = 3 level. How may spectral lies will be produced? A. 1 B. 2 C. 3 D = 4 = 3 = 2 = 1 Phys. 102, Lecture 25, Slide 14

15 Fluorescece Molecules, like atoms, have discrete eergy levels. Usually may more, ad orgaized i bads Decay is o radiative, usually goes ito vibratioal/rotatioal eergy of molecule Absorptio missio emissio emissio Groud state DMO λ λ absorptio absorptio Fluorescet molecules that emit visible light absorb shorter λ (ex: UV) Phys. 102, Lecture 25, Slide 15

16 Youg s double slit revisited Light itesity is reduced util oe photo passes at a time Iterferece patter = probability d si θ mλ Wait! Is light a wave or a particle? Both! What if we measure which slit the photo passes through? Iterferece disappears! Phys. 102, Lecture 25, Slide 16

17 ACT: Photos & electros A free photo ad a electro have the same eergy of 1 ev. Therefore they must have the same wavelegth. A. True B. False Phys. 102, Lecture 25, Slide 17

18 Summary of today s lecture Quatum model of light Light comes i discrete packets of eergy Light itesity is related to umber of photos, ot photo eergy Spectral lies Trasitios betwee eergy levels Wave particle duality Waves behave like particles (photos) Particles behave like waves (electros) photo hf hf hc λ Phys. 102, Lecture 25, Slide 18

The power of analytical spectroscopy

The power of analytical spectroscopy The power of aalytical spectroscopy Daiila et al. J. Rama Spectr. 33, 807 (00) Reflected light Red lake varish UV light Rama spectrum Lead white ciabar Caput mortuum Byzatie Ico (AD Our 534), Lady, Our

More information

PHYS-3301 Lecture 7. CHAPTER 4 Structure of the Atom. Rutherford Scattering. Sep. 18, 2018

PHYS-3301 Lecture 7. CHAPTER 4 Structure of the Atom. Rutherford Scattering. Sep. 18, 2018 CHAPTER 4 Structure of the Atom PHYS-3301 Lecture 7 4.1 The Atomic Models of Thomso ad Rutherford 4.2 Rutherford Scatterig 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydroge Atom 4.5 Successes

More information

Experimental Fact: E = nhf

Experimental Fact: E = nhf CHAPTR 3 The xperimetal Basis of Quatum PHYS-3301 Lecture 4 Sep. 6, 2018 3.1 Discovery of the X Ray ad the lectro 3.2 Determiatio of lectro Charge 3.3 Lie Spectra 3.4 Quatizatio 3.5 Blackbody Radiatio

More information

Physics Methods in Art and Archaeology

Physics Methods in Art and Archaeology Physics Methods i Art ad Archaeology Michael Wiescher PHYS 78 Archaeologist i the 90ties Somewhere i South America 80 years later --- i the Valley of the Kigs, gypt Physics Tools & Techology Dager & Adveture

More information

Shedding light on atomic energy levels (segment of Hydrogen spectrum)

Shedding light on atomic energy levels (segment of Hydrogen spectrum) 3.0 ev.85 ev.55 ev.69 ev Fri. 8.4-.7 More Eergy Quatizatio RE 8.b Mo. Tues. Wed. Lab Fri. 9.-., (.8) Mometum ad Eergy i Multiparticle Systems 9.3 Rotatioal Eergy Quiz 8 Review Exam (Ch 5-8) Exam (Ch 5-8)

More information

Name Solutions to Test 2 October 14, 2015

Name Solutions to Test 2 October 14, 2015 Name Solutios to Test October 4, 05 This test cosists of three parts. Please ote that i parts II ad III, you ca skip oe questio of those offered. The equatios below may be helpful with some problems. Costats

More information

Development of QM. What do we know from classical physics? 1. Energy can take any continuous value.

Development of QM. What do we know from classical physics? 1. Energy can take any continuous value. Developmet of QM 1-1 What do we kow from classical physics? 1. Eergy ca take ay cotiuous value.. Electromagetic radiatio is a electric field oscillatig perpedicular to the directio of propagatio. 3. Ay

More information

PHYS-3301 Lecture 3. EM- Waves behaving like Particles. CHAPTER 3 The Experimental Basis of Quantum. CHAPTER 3 The Experimental Basis of Quantum

PHYS-3301 Lecture 3. EM- Waves behaving like Particles. CHAPTER 3 The Experimental Basis of Quantum. CHAPTER 3 The Experimental Basis of Quantum CHAPTER 3 The Experimetal Basis of Quatum PHYS-3301 Lecture 3 Sep. 4, 2018 3.1 Discovery of the X Ray ad the Electro 3.2 Determiatio of Electro Charge 3.3 Lie Spectra 3.4 Quatizatio 3.5 Blackbody Radiatio

More information

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep.

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep. Aoucemet Course webpage http://www.phys.ttu.edu/~slee/3301/ PHYS-3301 Lecture 10 HW3 (due 10/4) Chapter 5 4, 8, 11, 15, 22, 27, 36, 40, 42 Sep. 27, 2018 Exam 1 (10/4) Chapters 3, 4, & 5 CHAPTER 5 Wave

More information

Exercises and Problems

Exercises and Problems HW Chapter 4: Oe-Dimesioal Quatum Mechaics Coceptual Questios 4.. Five. 4.4.. is idepedet of. a b c mu ( E). a b m( ev 5 ev) c m(6 ev ev) Exercises ad Problems 4.. Model: Model the electro as a particle

More information

Things you should know when you leave Discussion today for one-electron atoms:

Things you should know when you leave Discussion today for one-electron atoms: E = -R Thigs ou should kow whe ou leave Discussio toda for oe-electro atoms: = -.79 0-8 J = -.6eV ΔEmatter=E-Em ; Ioizatio Eerg=E E(iitial) ΔΕlight=hνlight= IE +KE. Cosider the followig eerg levels of

More information

Bohr s Atomic Model Quantum Mechanical Model

Bohr s Atomic Model Quantum Mechanical Model September 7, 0 - Summary - Itroductio to Atomic Theory Bohr s Atomic Model Quatum Mechaical Model 3- Some Defiitio 3- Projects Temperature Pressure Website Subject Areas Plasma is a Mixture of electros,

More information

5. Quantum Nature of the Nano-world ( Fundamental of. Quantum mechanics)

5. Quantum Nature of the Nano-world ( Fundamental of. Quantum mechanics) 5. Quatu Nature of the Nao-world Fudaetal of What is the defiitio of aoaterials?? Quatu echaics i Origial: quatu size effect where the electroic properties of solids are altered with great reductios i

More information

PHYS-3301 Lecture 5. CHAPTER 3 The Experimental Basis of Quantum. 3.8: Compton Effect. 3.8: Compton Effect. Sep. 11, 2018

PHYS-3301 Lecture 5. CHAPTER 3 The Experimental Basis of Quantum. 3.8: Compton Effect. 3.8: Compton Effect. Sep. 11, 2018 CHAPTER 3 The Experimetal Basis of Quatum PHYS-3301 Lecture 5 Sep. 11, 2018 3.1 Discovery of the X Ray ad the Electro 3.2 Determiatio of Electro Charge 3.3 Lie Spectra 3.4 Quatizatio 3.5 Blackbody Radiatio

More information

Lecture 36 (Atomic Spectra) Physics Spring 2018 Douglas Fields

Lecture 36 (Atomic Spectra) Physics Spring 2018 Douglas Fields Lecture 36 (Atomic Spectra) Physics 6-1 Sprig 18 Douglas Fields Frauhofer Lies I the late 17s ad early 18s, oe of the premier skills was that of glassmaker. Joseph Frauhofer became oe of the most skilled

More information

sessions lectures 3-4

sessions lectures 3-4 Chemistry 1B Fall 016 quatizatio of eergy Chemistry 1B Fall 016 sessios lectures 3-4 E photo = h absorptio ad emissio spectra of hydroge atom 18 Z E. 17810 J Z=1 for H atom, =1,, 3,... 18 1. 17810 J 1

More information

Andrei Tokmakoff, MIT Department of Chemistry, 5/19/

Andrei Tokmakoff, MIT Department of Chemistry, 5/19/ drei Tokmakoff, MT Departmet of Chemistry, 5/9/5 4-9 Rate of bsorptio ad Stimulated Emissio The rate of absorptio iduced by the field is E k " (" (" $% ˆ µ # (" &" k k (4. The rate is clearly depedet o

More information

SPEC/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS PAPER 1 SPECIMEN PAPER. 45 minutes INSTRUCTIONS TO CANDIDATES

SPEC/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS PAPER 1 SPECIMEN PAPER. 45 minutes INSTRUCTIONS TO CANDIDATES SPEC/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1 SPECIMEN PAPER 45 miutes INSTRUCTIONS TO CANDIDATES Do ot ope this examiatio paper util istructed to do so. Aswer all the questios. For each questio,

More information

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium Lecture 6 Semicoductor physics IV The Semicoductor i Equilibrium Equilibrium, or thermal equilibrium No exteral forces such as voltages, electric fields. Magetic fields, or temperature gradiets are actig

More information

PHYS-3301 Lecture 9. CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I. 5.3: Electron Scattering. Bohr s Quantization Condition

PHYS-3301 Lecture 9. CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I. 5.3: Electron Scattering. Bohr s Quantization Condition CHAPTER 5 Wave Properties of Matter ad Quatum Mecaics I PHYS-3301 Lecture 9 Sep. 5, 018 5.1 X-Ray Scatterig 5. De Broglie Waves 5.3 Electro Scatterig 5.4 Wave Motio 5.5 Waves or Particles? 5.6 Ucertaity

More information

Physics 201 Final Exam December

Physics 201 Final Exam December Physics 01 Fial Exam December 14 017 Name (please prit): This test is admiistered uder the rules ad regulatios of the hoor system of the College of William & Mary. Sigature: Fial score: Problem 1 (5 poits)

More information

Office: JILA A709; Phone ;

Office: JILA A709; Phone ; Office: JILA A709; Phoe 303-49-7841; email: weberjm@jila.colorado.edu Problem Set 5 To be retured before the ed of class o Wedesday, September 3, 015 (give to me i perso or slide uder office door). 1.

More information

Review Sheet for Final Exam

Review Sheet for Final Exam Sheet for ial To study for the exam, we suggest you look through the past review sheets, exams ad homework assigmets, ad idetify the topics that you most eed to work o. To help with this, the table give

More information

Mihai V. Putz: Undergraduate Structural Physical Chemistry Course, Lecture 6 1

Mihai V. Putz: Undergraduate Structural Physical Chemistry Course, Lecture 6 1 Mihai V. Putz: Udergraduate Structural Physical Chemistry Course, Lecture 6 Lecture 6: Quatum-Classical Correspodece I. Bohr s Correspodece Priciple Turig back to Bohr atomic descriptio it provides the

More information

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. Key

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. Key Chem 101 017 Discussio #13 Chapter 10. Correlatio diagrams for diatomic molecules. Key 1. Below is a plot of the first 10 ioizatio eergies for a sigle atom i 3 rd row of the periodic table. The x- axis

More information

Chapter 5 Vibrational Motion

Chapter 5 Vibrational Motion Fall 4 Chapter 5 Vibratioal Motio... 65 Potetial Eergy Surfaces, Rotatios ad Vibratios... 65 Harmoic Oscillator... 67 Geeral Solutio for H.O.: Operator Techique... 68 Vibratioal Selectio Rules... 7 Polyatomic

More information

EE 485 Introduction to Photonics Photon Optics and Photon Statistics

EE 485 Introduction to Photonics Photon Optics and Photon Statistics Itroductio to Photoics Photo Optics ad Photo Statistics Historical Origi Photo-electric Effect (Eistei, 905) Clea metal V stop Differet metals, same slope Light I Slope h/q ν c/λ Curret flows for λ < λ

More information

Atomic Physics 4. Name: Date: 1. The de Broglie wavelength associated with a car moving with a speed of 20 m s 1 is of the order of. A m.

Atomic Physics 4. Name: Date: 1. The de Broglie wavelength associated with a car moving with a speed of 20 m s 1 is of the order of. A m. Name: Date: Atomic Pysics 4 1. Te de Broglie wavelegt associated wit a car movig wit a speed of 0 m s 1 is of te order of A. 10 38 m. B. 10 4 m. C. 10 4 m. D. 10 38 m.. Te diagram below sows tree eergy

More information

Vibrational Spectroscopy 1

Vibrational Spectroscopy 1 Applied Spectroscopy Vibratioal Spectroscopy Recommeded Readig: Bawell ad McCash Chapter 3 Atkis Physical Chemistry Chapter 6 Itroductio What is it? Vibratioal spectroscopy detects trasitios betwee the

More information

Lecture 3-7 Semiconductor Lasers.

Lecture 3-7 Semiconductor Lasers. Laser LED Stimulated emissio Spotaeous emissio Laser I th I Typical output optical power vs. diode curret (I) characteristics ad the correspodig output spectrum of a laser diode.?1999 S.O. Kasap, Optoelectroics

More information

True Nature of Potential Energy of a Hydrogen Atom

True Nature of Potential Energy of a Hydrogen Atom True Nature of Potetial Eergy of a Hydroge Atom Koshu Suto Key words: Bohr Radius, Potetial Eergy, Rest Mass Eergy, Classical Electro Radius PACS codes: 365Sq, 365-w, 33+p Abstract I cosiderig the potetial

More information

Zumdahl (pp [atomic properties] ), [ionic radii] )

Zumdahl (pp [atomic properties] ), [ionic radii] ) Chemistry 1B-AL Fall 2016 advetures lectures 7-8 Zumdahl (pp. 571-582 [atomic properties] ), 606-609 [ioic radii] ) 1 Chemistry 1B AL Electroic Structure ad Periodic Properties of Atoms 2 Zumdahl (pp.

More information

ELECTRICAL PROPEORTIES OF SOLIDS

ELECTRICAL PROPEORTIES OF SOLIDS DO PHYSICS ONLINE ELECTRICAL PROPEORTIES OF SOLIDS ATOMIC STRUCTURE ucleus: rotos () & electros electros (-): electro cloud h h DE BROGLIE wave model of articles mv ELECTRONS IN ATOMS eergy levels i atoms

More information

CHM 424 EXAM 2 - COVER PAGE FALL

CHM 424 EXAM 2 - COVER PAGE FALL CHM 44 EXAM - COVER PAGE FALL 007 There are six umbered pages with five questios. Aswer the questios o the exam. Exams doe i ik are eligible for regrade, those doe i pecil will ot be regraded. coulomb

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

ATOMIC STRUCTURE. electron

ATOMIC STRUCTURE. electron J-Physics VRIOUS MODL S FOR STRUCTUR OF TOM TOMIC STRUCTUR Dalto' s Theory very material is composed of miute particles kow as atom. tom is idivisible i.e. it caot be subdivided. It ca either be created

More information

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19

ECEN Microelectronics. Semiconductor Physics and P/N junctions 2/05/19 ECEN 3250 Microelectroics Semicoductor Physics ad P/N juctios 2/05/19 Professor J. Gopiath Professor J. Gopiath Uiversity of Colorado at Boulder Microelectroics Sprig 2014 Overview Eergy bads Atomic eergy

More information

Chapter 7 : Atomic Structure and Periodicity

Chapter 7 : Atomic Structure and Periodicity Chapter 7 : Atomic Structure ad Periodicity Newto's famous apple tree (actually, a descedet of it) located outside his quarters at Triity. E. Rutherford J. Dalto Newto! Are you correct? Electromagetic

More information

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka) 7 Phoos ad coductio electros i solids Hiroshi Matsuoa I this chapter we will discuss a miimal microscopic model for phoos i a solid ad a miimal microscopic model for coductio electros i a simple metal.

More information

1. Collision Theory 2. Activation Energy 3. Potential Energy Diagrams

1. Collision Theory 2. Activation Energy 3. Potential Energy Diagrams Chemistry 12 Reactio Kietics II Name: Date: Block: 1. Collisio Theory 2. Activatio Eergy 3. Potetial Eergy Diagrams Collisio Theory (Kietic Molecular Theory) I order for two molecules to react, they must

More information

Nuclear Physics Worksheet

Nuclear Physics Worksheet Nuclear Physics Worksheet The ucleus [lural: uclei] is the core of the atom ad is comosed of articles called ucleos, of which there are two tyes: rotos (ositively charged); the umber of rotos i a ucleus

More information

Hilbert Space Methods Used in a First Course in Quantum Mechanics

Hilbert Space Methods Used in a First Course in Quantum Mechanics Hilbert Space Methods Used i a First Course i Quatum Mechaics Victor Poliger Physics/Mathematics Bellevue College 03/07/3-04//3 Outlie The Ifiite Square Well: A Follow-Up Timelie of basic evets Statistical

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Hydrogen (atoms, molecules) in external fields. Static electric and magnetic fields Oscyllating electromagnetic fields

Hydrogen (atoms, molecules) in external fields. Static electric and magnetic fields Oscyllating electromagnetic fields Hydroge (atoms, molecules) i exteral fields Static electric ad magetic fields Oscyllatig electromagetic fields Everythig said up to ow has to be modified more or less strogly if we cosider atoms (ad ios)

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Lenard s experiment The photon model Light as photons Einstein s explanation of the photoelectric effect Photon energy Electron volts Electron energy 1 Lenard s experiment Philipp

More information

Modern Physics. Overview

Modern Physics. Overview Modern Physics Overview History ~1850s Classical (Newtonian) mechanics could not explain the new area of investigation atomic physics Macro vs Micro New field of Quantum Mechanics, focused on explaining

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Itegrated Circuit Devices Professor Ali Javey 9/04/2007 Semicoductor Fudametals Lecture 3 Readig: fiish chapter 2 ad begi chapter 3 Aoucemets HW 1 is due ext Tuesday, at the begiig of the class.

More information

1. Szabo & Ostlund: 2.1, 2.2, 2.4, 2.5, 2.7. These problems are fairly straightforward and I will not discuss them here.

1. Szabo & Ostlund: 2.1, 2.2, 2.4, 2.5, 2.7. These problems are fairly straightforward and I will not discuss them here. Solutio set III.. Szabo & Ostlud:.,.,.,.5,.7. These problems are fairly straightforward ad I will ot discuss them here.. N! N! i= k= N! N! N! N! p p i j pi+ pj i j i j i= j= i= j= AA ˆˆ= ( ) Pˆ ( ) Pˆ

More information

Physics 2D Lecture Slides Lecture 22: Feb 22nd 2005

Physics 2D Lecture Slides Lecture 22: Feb 22nd 2005 Physics D Lecture Slides Lecture : Feb d 005 Vivek Sharma UCSD Physics Itroducig the Schrodiger Equatio! (, t) (, t) #! " + U ( ) "(, t) = i!!" m!! t U() = characteristic Potetial of the system Differet

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic ad uclear physics X-ray physics X-ray eergy spectroscopy LD Physics Leaflets P6.3.5.4 Ivestigatio of the characteristic spectra as a fuctio of the elemet's atomic umber: K-lies Objects of the experimet

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

It s a wave. It s a particle It s an electron It s a photon. It s light!

It s a wave. It s a particle It s an electron It s a photon. It s light! It s a wave It s a particle It s an electron It s a photon It s light! What they expected Young s famous experiment using a beam of electrons instead of a light beam. And, what they saw Wave-Particle Duality

More information

Lecture 3. Electron and Hole Transport in Semiconductors

Lecture 3. Electron and Hole Transport in Semiconductors Lecture 3 lectro ad Hole Trasort i Semicoductors I this lecture you will lear: How electros ad holes move i semicoductors Thermal motio of electros ad holes lectric curret via lectric curret via usio Semicoductor

More information

Lecture #1 Nasser S. Alzayed.

Lecture #1 Nasser S. Alzayed. Lecture #1 Nasser S. Alzayed alzayed@ksu.edu.sa Chapter 6: Free Electro Fermi Gas Itroductio We ca uderstad may physical properties of metals, ad ot oly of the simple metals, i terms of the free electro

More information

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy Quantum Physics at a glance Quantum Physics deals with the study of light and particles at atomic and smaller levels. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

More information

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite

Basic Concepts of Electricity. n Force on positive charge is in direction of electric field, negative is opposite Basic Cocepts of Electricity oltage E Curret I Ohm s Law Resistace R E = I R 1 Electric Fields A electric field applies a force to a charge Force o positive charge is i directio of electric field, egative

More information

is completely general whenever you have waves from two sources interfering. 2

is completely general whenever you have waves from two sources interfering. 2 MAKNG SENSE OF THE EQUATON SHEET terferece & Diffrctio NTERFERENCE r1 r d si. Equtio for pth legth differece. r1 r is completely geerl. Use si oly whe the two sources re fr wy from the observtio poit.

More information

Wave Description. Transverse and Longitudinal Waves. Physics Department 2/13/2019. Phys1411 Goderya 1. PHYS 1403 Stars and Galaxies

Wave Description. Transverse and Longitudinal Waves. Physics Department 2/13/2019. Phys1411 Goderya 1. PHYS 1403 Stars and Galaxies PHYS 1403 Stars and Galaxies for Today s Class 1. How do we explain the motion of energy? 2. What is a wave and what are its properties 3. What is an electromagnetic spectrum? 4. What is a black body and

More information

1. Hydrogen Atom: 3p State

1. Hydrogen Atom: 3p State 7633A QUANTUM MECHANICS I - solutio set - autum. Hydroge Atom: 3p State Let us assume that a hydroge atom is i a 3p state. Show that the radial part of its wave fuctio is r u 3(r) = 4 8 6 e r 3 r(6 r).

More information

5.76 Lecture #33 5/08/91 Page 1 of 10 pages. Lecture #33: Vibronic Coupling

5.76 Lecture #33 5/08/91 Page 1 of 10 pages. Lecture #33: Vibronic Coupling 5.76 Lecture #33 5/8/9 Page of pages Lecture #33: Vibroic Couplig Last time: H CO A A X A Electroically forbidde if A -state is plaar vibroically allowed to alterate v if A -state is plaar iertial defect

More information

The Pendulum. Purpose

The Pendulum. Purpose The Pedulum Purpose To carry out a example illustratig how physics approaches ad solves problems. The example used here is to explore the differet factors that determie the period of motio of a pedulum.

More information

Miscellaneous Notes. Lecture 19, p 1

Miscellaneous Notes. Lecture 19, p 1 Miscellaeous Notes The ed is ear do t get behid. All Excuses must be take to 233 Loomis before oo, Thur, Apr. 25. The PHYS 213 fial exam times are * 8-10 AM, Moday, May 6 * 1:30-3:30 PM, Wed, May 8 The

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Eergy ad Thermal Velocity Average electro or hole kietic eergy 3 2 kt 1 2 2 mv th v th 3kT m eff 3 23 1.38 10 JK 0.26 9.1 10 1 31 300 kg

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Uiversity of Wasigto Departmet of Cemistry Cemistry 453 Witer Quarter 15 Lecture 14. /11/15 Recommeded Text Readig: Atkis DePaula: 9.1, 9., 9.3 A. Te Equipartitio Priciple & Eergy Quatizatio Te Equipartio

More information

Chapter 2 Motion and Recombination of Electrons and Holes

Chapter 2 Motion and Recombination of Electrons and Holes Chapter 2 Motio ad Recombiatio of Electros ad Holes 2.1 Thermal Motio 3 1 2 Average electro or hole kietic eergy kt mv th 2 2 v th 3kT m eff 23 3 1.38 10 JK 0.26 9.1 10 1 31 300 kg K 5 7 2.310 m/s 2.310

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN

29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN L 33 Modern Physics [1] 29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN Introduction- quantum physics Particles of light PHOTONS The photoelectric effect Photocells & intrusion detection devices

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

This exam is formed of four exercises in four pages numbered from 1 to 4 The use of non-programmable calculator is recommended

This exam is formed of four exercises in four pages numbered from 1 to 4 The use of non-programmable calculator is recommended وزارة التربية والتعلين العالي الوديرية العاهة للتربية دائرة االهتحانات اهتحانات الشهادة الثانىية العاهة الفرع : علىم عاهة مسابقة في مادة الفيزياء المدة ثالث ساعات االسن: الرقن: الدورة العادية للعام This

More information

A Brief Introduction to the Physical Basis for Electron Spin Resonance

A Brief Introduction to the Physical Basis for Electron Spin Resonance A Brief Itroductio to the Physical Basis for Electro Spi Resoace I ESR measuremets, the sample uder study is exposed to a large slowly varyig magetic field ad a microwave frequecy magetic field orieted

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( )

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( ) Quantum physics Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 (1885-1962) I can safely say that nobody understand quantum physics Richard Feynman

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Fizeau s Experiment with Moving Water. New Explanation. Gennady Sokolov, Vitali Sokolov

Fizeau s Experiment with Moving Water. New Explanation. Gennady Sokolov, Vitali Sokolov Fizeau s Experimet with Movig Water New Explaatio Geady Sokolov, itali Sokolov Email: sokolov@vitalipropertiescom The iterferece experimet with movig water carried out by Fizeau i 85 is oe of the mai cofirmatios

More information

Introduction to Semiconductor Devices and Circuit Model

Introduction to Semiconductor Devices and Circuit Model Itroductio to Semicoductor Devices ad Circuit Model Readig: Chater 2 of Howe ad Sodii Electrical Resistace I + V _ W homogeeous samle t L Resistace R V I L = ρ Wt (Uits: Ω) where ρ is the resistivity (Uits:

More information

Physics 1161: Lecture 22

Physics 1161: Lecture 22 Physics 1161: Lecture 22 Blackbody Radiation Photoelectric Effect Wave-Particle Duality sections 30-1 30-4 Everything comes unglued The predictions of classical physics (Newton s laws and Maxwell s equations)

More information

Physics 232 Gauge invariance of the magnetic susceptibilty

Physics 232 Gauge invariance of the magnetic susceptibilty Physics 232 Gauge ivariace of the magetic susceptibilty Peter Youg (Dated: Jauary 16, 2006) I. INTRODUCTION We have see i class that the followig additioal terms appear i the Hamiltoia o addig a magetic

More information

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy L 35 Modern Physics [1] Introduction- quantum physics Particles of light PHOTONS The photoelectric effect Photocells & intrusion detection devices The Bohr atom emission & absorption of radiation LASERS

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter - Key Supplemental Activities Module: Atomic Theory Section: Electromagnetic Radiation and Matter - Key Introduction to Electromagnetic Radiation Activity 1 1. What are the two components that make up electromagnetic

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Total number of nucleons: mass number 238 Number of protons: atomic number 92U

Total number of nucleons: mass number 238 Number of protons: atomic number 92U 9 The Nucleus Protos Neutros Nucleos Total umber of ucleos: mass umber 8 Number of protos: atomic umber 9U Isotopes: idetical atomic umbers differet mass umbers same chemical properties differet uclear

More information

PROBABILITY AMPLITUDE AND INTERFERENCE

PROBABILITY AMPLITUDE AND INTERFERENCE PROILITY MPLITUDE ND INTERFERENCE I. Probability amplitude Suppose that particle is placed i the ifiite square well potetial. Let the state of the particle be give by ϕ ad let the system s eergy eigestates

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Antenna Engineering Lecture 8: Antenna Arrays

Antenna Engineering Lecture 8: Antenna Arrays Atea Egieerig Lecture 8: Atea Arrays ELCN45 Sprig 211 Commuicatios ad Computer Egieerig Program Faculty of Egieerig Cairo Uiversity 2 Outlie 1 Array of Isotropic Radiators Array Cofiguratios The Space

More information

Solids - types. correlates with bonding energy

Solids - types. correlates with bonding energy Solids - types MOLCULAR. Set of sigle atoms or molecules boud to adjacet due to weak electric force betwee eutral objects (va der Waals). Stregth depeds o electric dipole momet No free electros poor coductors

More information

Absorption in Solar Atmosphere

Absorption in Solar Atmosphere Absorpto Solar Atmosphere A black body spectrum emtted from solar surface causes exctato processes o atoms the solar atmosphere. Ths tur causes absorpto of characterstc wavelegths correspodg to those atoms

More information

Chemical Kinetics CHAPTER 14. Chemistry: The Molecular Nature of Matter, 6 th edition By Jesperson, Brady, & Hyslop. CHAPTER 14 Chemical Kinetics

Chemical Kinetics CHAPTER 14. Chemistry: The Molecular Nature of Matter, 6 th edition By Jesperson, Brady, & Hyslop. CHAPTER 14 Chemical Kinetics Chemical Kietics CHAPTER 14 Chemistry: The Molecular Nature of Matter, 6 th editio By Jesperso, Brady, & Hyslop CHAPTER 14 Chemical Kietics Learig Objectives: Factors Affectig Reactio Rate: o Cocetratio

More information

Helium Production in Big Bang 10 Nov. Objectives

Helium Production in Big Bang 10 Nov. Objectives Helium Productio i Big Bag 10 Nov Homework 8 is o agel. Due oo o Mo, 15 Nov. Homework 9 will be due Fri, 19 Nov at start of class. No late aers. Covered o Test 3 (22 Nov). Log assigmet. Start early. He

More information

Quantum theory and models of the atom

Quantum theory and models of the atom Guess now. It has been found experimentally that: (a) light behaves as a wave; (b) light behaves as a particle; (c) electrons behave as particles; (d) electrons behave as waves; (e) all of the above are

More information

Nonequilibrium Excess Carriers in Semiconductors

Nonequilibrium Excess Carriers in Semiconductors Lecture 8 Semicoductor Physics VI Noequilibrium Excess Carriers i Semicoductors Noequilibrium coditios. Excess electros i the coductio bad ad excess holes i the valece bad Ambiolar trasort : Excess electros

More information

Types of Waves Transverse Shear. Waves. The Wave Equation

Types of Waves Transverse Shear. Waves. The Wave Equation Waves Waves trasfer eergy from oe poit to aother. For mechaical waves the disturbace propagates without ay of the particles of the medium beig displaced permaetly. There is o associated mass trasport.

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Lecture 14. Review for Exam 1.

Lecture 14. Review for Exam 1. Lecture 4. Review for Exa. Eectroagetic radiatio exhibits the dua ature: wave properties ad particuate properties Wave ature of radiatio: Eectroagetic waves are characterized by waveegth or frequecy ~,or

More information

Harmonic Quantum Integer

Harmonic Quantum Integer Harmoic Quatum Iteger The hypothesis of this paper is that there is a quatum iteger umber system that is aalogous to the umbers associated with the elemets, the isotopes, or the differet eergy states of

More information

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Section7: The Bohr Atom Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths. Continuous Spectrum Everyone has seen the spectrum produced when white

More information

Ray Optics Theory and Mode Theory. Dr. Mohammad Faisal Dept. of EEE, BUET

Ray Optics Theory and Mode Theory. Dr. Mohammad Faisal Dept. of EEE, BUET Ray Optics Theory ad Mode Theory Dr. Mohammad Faisal Dept. of, BUT Optical Fiber WG For light to be trasmitted through fiber core, i.e., for total iteral reflectio i medium, > Ray Theory Trasmissio Ray

More information

Quantum Annealing for Heisenberg Spin Chains

Quantum Annealing for Heisenberg Spin Chains LA-UR # - Quatum Aealig for Heiseberg Spi Chais G.P. Berma, V.N. Gorshkov,, ad V.I.Tsifriovich Theoretical Divisio, Los Alamos Natioal Laboratory, Los Alamos, NM Istitute of Physics, Natioal Academy of

More information