Cycle-Consistent Adversarial Learning as Approximate Bayesian Inference

Size: px
Start display at page:

Download "Cycle-Consistent Adversarial Learning as Approximate Bayesian Inference"

Transcription

1 Cycle-Consistent Adversarial Learning as Approximate Bayesian Inference Louis C. Tiao 1 Edwin V. Bonilla 2 Fabio Ramos 1 July 22, University of Sydney, 2 University of New South Wales

2 Motivation: Unpaired Image-to-Image Translation Monet Photos Zebras Horses Summer Monet photo zebra horse summer photo Monet horse zebra winter Photograph Monet Van Gogh Paired n xi n o summer Ukiyo-e Unpaired X Y, o winter ( )( ) n,,, yi o Cezanne Winter Figure 1: From Zhu et al. (2017) 1

3 Cycle-Consistent Adversarial Learning (CycleGAN) Introduced by Kim et al. (2017); Zhu et al. (2017) Forward and reverse mappings m ϕ : x z and µ θ : z x Discriminators D α and D β Distribution matching (gan objectives) Yield realistic outputs in the other domain. l reverse gan (α; ϕ) = E p (z)[log D α (z)] + E q (x)[log(1 D α (m ϕ (x)))], lgan forward (β; θ) = E p (x)[log D β (x)] + E p (z)[log(1 D β (µ θ (z)))]. Cycle-consistency losses Encourage tighter correspondences must be able to reconstruct output from input and vice versa. May alleviate mode-collapse l reverse const (θ, ϕ) = E q (x)[ x µ θ (m ϕ (x)) ρ ρ], l forward const (θ, ϕ) = E p (z)[ z m ϕ (µ θ (z)) ρ ρ]. 2

4 Contributions We cast the problem of learning inter-domain correspondences without paired data as approximate Bayesian inference in a latent variable model (lvm). 1. We introduce implicit latent variable models (ilvms), prior over latent variables specified flexibly as implicit distribution. 2. We develop a new variational inference (vi) algorithm based on minimizing the symmetric Kullback-Leibler (kl) divergence between a variational and exact joint distribution. 3. We demonstrate that cyclegan (Kim et al., 2017; Zhu et al., 2017) can be instantiated as a special case of our framework. 3

5 Implicit Latent Variable Models Join Distribution p θ (x, z) = p θ (x z) p (z) }{{}}{{} likelihood prior z n x n N θ Prescribed Likelihood Likelihood p θ (x n z n ) is prescribed (as usual) Implicit Prior Prior p (z) over latent variables specified as implicit distribution Given only by a finite collection Z = {z m} M m=1 of its samples, z m p (z) Offers utmost degree of flexibility in treatment of prior information. 4

6 Implicit Latent Variable Models: Example Unpaired Image-to-Image Translation Prior distribution p (z) specified by images Z = {z m} M m=1 from one domain. Empirical data distribution q (x) specified by images X = {x n } N n=1 from another domain. (a) samples from p (z) (b) a sample from q (x) 5

7 Inference in Implicit Latent Variable Models Having specified the generative model, our aims are Optimize θ by maximizing marginal likelihood p θ (x) Infer hidden representations z by computing posterior p θ (z x) Both require intractable p θ (x) must resort to approximate inference Classical Variational Inference Approximate exact posterior p θ (z x) with variational posterior q ϕ (z x) Reduces inference problem to optimization problem min kl [q ϕ(z x) p θ (z x)] ϕ 6

8 Symmetric Joint-Matching Variational Inference

9 Joint-Matching Variational Inference Variational Joint Consider instead directly approximating the exact joint with variational joint q ϕ (x, z) = q ϕ (z x)q (x) variational posterior q ϕ (z x) also prescribed ϕ z n θ x n N 7

10 Symmetric Joint-Matching Variational Inference Minimize symmetric kl divergence between joints kl symm [p θ (x, z) q ϕ (x, z)] where kl symm [p q] = kl [p q] + kl [q p] }{{}}{{} forward kl reverse kl Why? 1. Because we can: kl symm [p θ (x, z) q ϕ (x, z)] tractable kl symm [p θ (z x) q ϕ (z x)] intractable 2. Helps avoid under/over-dispersed approximations (see paper for details) 8

11 Reverse kl Variational Objective Minimizing reverse kl divergence between joints equivalent to maximizing usual evidence lower bound (elbo), kl [q ϕ (x, z) p θ (x, z)] = E qϕ (x,z) [log q ϕ (x, z) log p θ (x, z)] Recall (negative) elbo, = E qϕ (x,z) [log q ϕ (z x) log p θ (x, z)] H[q (x)] }{{}}{{} L nelbo(θ,ϕ) constant L nelbo (θ, ϕ) = E q (x)q ϕ (z x)[ log p θ (x z)] + E q (x)kl [q ϕ (z x) p (z)] }{{}}{{} L nell(θ,ϕ) intractable kl term is intractable as prior p (z) is unavailable can only sample! 9

12 Forward kl Variational Objective Minimizing forward kl divergence between joints kl [p θ (x, z) q ϕ (x, z)] = E pθ (x,z) [log p θ (x, z) log q ϕ (x, z)] = E pθ (x,z) [log p θ (x z) log q ϕ (x, z)] H[p (z)] }{{}}{{} L naplbo(θ,ϕ) constant New variational objective, aggregate posterior lower bound (aplbo) L naplbo (θ, ϕ) = E p (z)p θ (x z)[ log q ϕ (z x)] + E p (z)kl [p θ (x z) q (x)] }{{}}{{} L nelp(θ,ϕ) intractable kl term is intractable as empirical data distribution q (x) is unavailable can only sample! 10

13 Density Ratio Estimation and f-divergence Approximation General f-divergence lower bound (Nguyen et al., 2010) For convex lower-semicontinuous function f : R + R, where E q (x)d f [p (z) q ϕ (z x)] }{{} intractable max α Llatent f (α; ϕ), }{{} tractable L latent f (α; ϕ) = E q (x)q ϕ (z x)[f (r α (z; x))] E q (x)p (z)[f (f (r α (z; x)))] Turns divergence estimation into an optimization problem Estimate divergence using a l.b. that just requires samples! r α is a neural net with parameters α, with equality at r α(z; x) = q ϕ(z x) p (z) 11

14 kl divergence lower bound Example: kl divergence lower bound For f(u) = u log u, we instantiate the kl lower bound where E q (x)kl [q ϕ (z x) p (z)] }{{} intractable max α Llatent kl (α; ϕ) } {{ } tractable L latent kl (α; ϕ) = E q (x)q ϕ (z x)[log r α (z; x)] E q (x)p (z)[r α (z; x) 1] Yields estimate of the elbo where all terms are tractable, L nelbo (θ, ϕ) = L nell (θ, ϕ) + E }{{} q (x)kl [q ϕ (z x) p (z)] }{{} tractable intractable max L nell(θ, ϕ) + L latent kl (α; ϕ) α }{{}}{{} tractable tractable 12

15 CycleGAN as a Special Case

16 Cycle-consistency as Conditional Probability Maximization For Gaussian likelihood and variational posterior p θ (x z) = N (x µ θ (z), τ 2 I), q ϕ (z x) = N (z m ϕ (x), t 2 I) Can instantiate l reverse const (θ, ϕ) from L nell (θ, ϕ) as posterior q ϕ (z x) degenerates (as t 0) Can instantiate l forward const (θ, ϕ) from L nelp (θ, ϕ) as likelihood p θ (x z) degenerates (as τ 0) Cycle-consistency corresponds to maximizing conditional probabilities: ell. forces q ϕ (z x) to place mass on hidden representations that recover the data elp. forces p θ (x z) to generate observations that recover the prior 13

17 Distribution Matching as Regularization For appropriate setting of f, and simplifying the mappings and discriminators, Can instantiate l reverse gan (α; ϕ) from L latent f (α; ϕ) Can instantiate l forward gan (β; θ) from L observed f (β; θ) Approximately minimizes intractable divergences: D f [p (z) q ϕ (z x)] forces q ϕ (z x) to match prior p (z) D f [q (x) p θ (x z)] forces p θ (x z) to match data q (x) Summary L nelbo (θ, ϕ) max L nell(θ, ϕ) α }{{} l reverse const (θ,ϕ) l forward const (θ,ϕ) latent + Lkl (α; ϕ) }{{} l reverse gan (α;ϕ) L naplbo (θ, ϕ) max L nelp(θ, ϕ) + L observed kl (β; θ) β }{{}}{{} l forward gan (β;θ) 14

18 Conclusion Formulated implicit latent variable models, which introduces implicit prior over latent variables Offers utmost degree of flexibility in incorporating prior knowledge Developed new paradigm for variational inference directly approximates exact joint distribution minimizes the symmetric kl divergence Provided theoretical treatment of the links between CycleGAN methods and Variational Bayes Poster Session To find out more, come visit us at our poster! Poster #14, Session 4 (17:10-18:00 Saturday, 14 July) 15

19 Questions? 15

20 References i References Kim, T., Cha, M., Kim, H., Lee, J. K., and Kim, J. (2017). Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning (ICML), volume 70, pages Nguyen, X., Wainwright, M. J., and Jordan, M. I. (2010). Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization. IEEE Trans. Information Theory, 56(11): Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In IEEE International Conference on Computer Vision (ICCV). 16

21 Symmetric Joint-Matching kl Minimization i kl divergence is asymmetric kl [p q] kl [q p] kl [q ϕ (z x) p θ (z x)] (reverse) underestimates support kl [p θ (z x) q ϕ (z x)] (forward) overestimates support Consider symmetric kl: kl symm [p q] = kl [p q] + kl [q p] Forward kl involves expectation under intractable posterior p θ (z x) what we re trying to approximate in the first place [ kl [p θ (z x) q ϕ (z x)] = E pθ (z x) log p ] θ(z x) q ϕ (z x)

22 Symmetric Joint-Matching kl Minimization ii Can show arg min ϕ arg min ϕ Already showed kl [q ϕ (z x) p θ (z x)] = arg min kl [q ϕ (x, z) p θ (x, z)] ϕ kl [p θ (z x) q ϕ (z x)] = arg min kl [p θ (x, z) q ϕ (x, z)] ϕ arg max ϕ L elbo (θ, ϕ) = arg min kl [q ϕ (x, z) p θ (x, z)] ϕ Can we find something similar for kl [p θ (x, z) q ϕ (x, z)]?

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

B PROOF OF LEMMA 1. Published as a conference paper at ICLR 2018

B PROOF OF LEMMA 1. Published as a conference paper at ICLR 2018 A ADVERSARIAL DOMAIN ADAPTATION (ADA ADA aims to transfer prediction nowledge learned from a source domain with labeled data to a target domain without labels, by learning domain-invariant features. Let

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks Stefano Ermon, Aditya Grover Stanford University Lecture 10 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 10 1 / 17 Selected GANs https://github.com/hindupuravinash/the-gan-zoo

More information

Posterior Regularization

Posterior Regularization Posterior Regularization 1 Introduction One of the key challenges in probabilistic structured learning, is the intractability of the posterior distribution, for fast inference. There are numerous methods

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

arxiv: v3 [stat.ml] 24 Aug 2018

arxiv: v3 [stat.ml] 24 Aug 2018 Cycle-Consistent Adversarial Learning as Approximate Bayesian Inference Louis C. Tiao 1 Edwin V. Bonilla 2 Fabio Ramos 1 arxiv:1806.01771v3 [stat.ml] 24 Aug 2018 Abstract We formalize the problem of learning

More information

G8325: Variational Bayes

G8325: Variational Bayes G8325: Variational Bayes Vincent Dorie Columbia University Wednesday, November 2nd, 2011 bridge Variational University Bayes Press 2003. On-screen viewing permitted. Printing not permitted. http://www.c

More information

Understanding Covariance Estimates in Expectation Propagation

Understanding Covariance Estimates in Expectation Propagation Understanding Covariance Estimates in Expectation Propagation William Stephenson Department of EECS Massachusetts Institute of Technology Cambridge, MA 019 wtstephe@csail.mit.edu Tamara Broderick Department

More information

Deep Generative Models. (Unsupervised Learning)

Deep Generative Models. (Unsupervised Learning) Deep Generative Models (Unsupervised Learning) CEng 783 Deep Learning Fall 2017 Emre Akbaş Reminders Next week: project progress demos in class Describe your problem/goal What you have done so far What

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Variational Inference. Sargur Srihari

Variational Inference. Sargur Srihari Variational Inference Sargur srihari@cedar.buffalo.edu 1 Plan of discussion We first describe inference with PGMs and the intractability of exact inference Then give a taxonomy of inference algorithms

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Latent Variable Models and EM algorithm

Latent Variable Models and EM algorithm Latent Variable Models and EM algorithm SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic 3.1 Clustering and Mixture Modelling K-means and hierarchical clustering are non-probabilistic

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Discrete Latent Variable Models

Discrete Latent Variable Models Discrete Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 14 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 14 1 / 29 Summary Major themes in the course

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Diversity-Promoting Bayesian Learning of Latent Variable Models

Diversity-Promoting Bayesian Learning of Latent Variable Models Diversity-Promoting Bayesian Learning of Latent Variable Models Pengtao Xie 1, Jun Zhu 1,2 and Eric Xing 1 1 Machine Learning Department, Carnegie Mellon University 2 Department of Computer Science and

More information

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) September 26 & October 3, 2017 Section 1 Preliminaries Kullback-Leibler divergence KL divergence (continuous case) p(x) andq(x) are two density distributions. Then the KL-divergence is defined as Z KL(p

More information

Computer vision: models, learning and inference

Computer vision: models, learning and inference Computer vision: models, learning and inference Chapter 2 Introduction to probability Please send errata to s.prince@cs.ucl.ac.uk Random variables A random variable x denotes a quantity that is uncertain

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Machine Learning Summer 2018 Exercise Sheet 4

Machine Learning Summer 2018 Exercise Sheet 4 Ludwig-Maimilians-Universitaet Muenchen 17.05.2018 Institute for Informatics Prof. Dr. Volker Tresp Julian Busch Christian Frey Machine Learning Summer 2018 Eercise Sheet 4 Eercise 4-1 The Simpsons Characters

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS

REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Worshop trac - ICLR 207 REINTERPRETING IMPORTANCE-WEIGHTED AUTOENCODERS Chris Cremer, Quaid Morris & David Duvenaud Department of Computer Science University of Toronto {ccremer,duvenaud}@cs.toronto.edu

More information

Generative models for missing value completion

Generative models for missing value completion Generative models for missing value completion Kousuke Ariga Department of Computer Science and Engineering University of Washington Seattle, WA 98105 koar8470@cs.washington.edu Abstract Deep generative

More information

Latent Dirichlet Alloca/on

Latent Dirichlet Alloca/on Latent Dirichlet Alloca/on Blei, Ng and Jordan ( 2002 ) Presented by Deepak Santhanam What is Latent Dirichlet Alloca/on? Genera/ve Model for collec/ons of discrete data Data generated by parameters which

More information

Instructor: Dr. Volkan Cevher. 1. Background

Instructor: Dr. Volkan Cevher. 1. Background Instructor: Dr. Volkan Cevher Variational Bayes Approximation ice University STAT 631 / ELEC 639: Graphical Models Scribe: David Kahle eviewers: Konstantinos Tsianos and Tahira Saleem 1. Background These

More information

On Information Divergence Measures, Surrogate Loss Functions and Decentralized Hypothesis Testing

On Information Divergence Measures, Surrogate Loss Functions and Decentralized Hypothesis Testing On Information Divergence Measures, Surrogate Loss Functions and Decentralized Hypothesis Testing XuanLong Nguyen Martin J. Wainwright Michael I. Jordan Electrical Engineering & Computer Science Department

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Stochastic Variational Inference

Stochastic Variational Inference Stochastic Variational Inference David M. Blei Princeton University (DRAFT: DO NOT CITE) December 8, 2011 We derive a stochastic optimization algorithm for mean field variational inference, which we call

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Chapter 20. Deep Generative Models

Chapter 20. Deep Generative Models Peng et al.: Deep Learning and Practice 1 Chapter 20 Deep Generative Models Peng et al.: Deep Learning and Practice 2 Generative Models Models that are able to Provide an estimate of the probability distribution

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

Generative Adversarial Networks, and Applications

Generative Adversarial Networks, and Applications Generative Adversarial Networks, and Applications Ali Mirzaei Nimish Srivastava Kwonjoon Lee Songting Xu CSE 252C 4/12/17 2/44 Outline: Generative Models vs Discriminative Models (Background) Generative

More information

Collapsed Variational Inference for Sum-Product Networks

Collapsed Variational Inference for Sum-Product Networks for Sum-Product Networks Han Zhao 1, Tameem Adel 2, Geoff Gordon 1, Brandon Amos 1 Presented by: Han Zhao Carnegie Mellon University 1, University of Amsterdam 2 June. 20th, 2016 1 / 26 Outline Background

More information

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Shunsuke Horii Waseda University s.horii@aoni.waseda.jp Abstract In this paper, we present a hierarchical model which

More information

Efficient Information Planning in Graphical Models

Efficient Information Planning in Graphical Models Efficient Information Planning in Graphical Models computational complexity considerations John Fisher & Giorgos Papachristoudis, MIT VITALITE Annual Review 2013 September 9, 2013 J. Fisher (VITALITE Annual

More information

Statistical Machine Learning Lectures 4: Variational Bayes

Statistical Machine Learning Lectures 4: Variational Bayes 1 / 29 Statistical Machine Learning Lectures 4: Variational Bayes Melih Kandemir Özyeğin University, İstanbul, Turkey 2 / 29 Synonyms Variational Bayes Variational Inference Variational Bayesian Inference

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Nishant Gurnani. GAN Reading Group. April 14th, / 107

Nishant Gurnani. GAN Reading Group. April 14th, / 107 Nishant Gurnani GAN Reading Group April 14th, 2017 1 / 107 Why are these Papers Important? 2 / 107 Why are these Papers Important? Recently a large number of GAN frameworks have been proposed - BGAN, LSGAN,

More information

Probabilistic Graphical Models for Image Analysis - Lecture 1

Probabilistic Graphical Models for Image Analysis - Lecture 1 Probabilistic Graphical Models for Image Analysis - Lecture 1 Alexey Gronskiy, Stefan Bauer 21 September 2018 Max Planck ETH Center for Learning Systems Overview 1. Motivation - Why Graphical Models 2.

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Series 7, May 22, 2018 (EM Convergence)

Series 7, May 22, 2018 (EM Convergence) Exercises Introduction to Machine Learning SS 2018 Series 7, May 22, 2018 (EM Convergence) Institute for Machine Learning Dept. of Computer Science, ETH Zürich Prof. Dr. Andreas Krause Web: https://las.inf.ethz.ch/teaching/introml-s18

More information

Quantitative Biology II Lecture 4: Variational Methods

Quantitative Biology II Lecture 4: Variational Methods 10 th March 2015 Quantitative Biology II Lecture 4: Variational Methods Gurinder Singh Mickey Atwal Center for Quantitative Biology Cold Spring Harbor Laboratory Image credit: Mike West Summary Approximate

More information

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M PD M = PD θ, MPθ Mdθ Lecture 14 : Variational Bayes where θ are the parameters of the model and Pθ M is

More information

Introduction to Bayesian inference

Introduction to Bayesian inference Introduction to Bayesian inference Thomas Alexander Brouwer University of Cambridge tab43@cam.ac.uk 17 November 2015 Probabilistic models Describe how data was generated using probability distributions

More information

Recurrent Latent Variable Networks for Session-Based Recommendation

Recurrent Latent Variable Networks for Session-Based Recommendation Recurrent Latent Variable Networks for Session-Based Recommendation Panayiotis Christodoulou Cyprus University of Technology paa.christodoulou@edu.cut.ac.cy 27/8/2017 Panayiotis Christodoulou (C.U.T.)

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Algorithms for Variational Learning of Mixture of Gaussians

Algorithms for Variational Learning of Mixture of Gaussians Algorithms for Variational Learning of Mixture of Gaussians Instructors: Tapani Raiko and Antti Honkela Bayes Group Adaptive Informatics Research Center 28.08.2008 Variational Bayesian Inference Mixture

More information

Nonparametric Inference for Auto-Encoding Variational Bayes

Nonparametric Inference for Auto-Encoding Variational Bayes Nonparametric Inference for Auto-Encoding Variational Bayes Erik Bodin * Iman Malik * Carl Henrik Ek * Neill D. F. Campbell * University of Bristol University of Bath Variational approximations are an

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Robustness and duality of maximum entropy and exponential family distributions

Robustness and duality of maximum entropy and exponential family distributions Chapter 7 Robustness and duality of maximum entropy and exponential family distributions In this lecture, we continue our study of exponential families, but now we investigate their properties in somewhat

More information

Lecture 21: Spectral Learning for Graphical Models

Lecture 21: Spectral Learning for Graphical Models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 Lecture 21: Spectral Learning for Graphical Models Lecturer: Eric P. Xing Scribes: Maruan Al-Shedivat, Wei-Cheng Chang, Frederick Liu 1 Motivation

More information

Lecture 4: Probabilistic Learning

Lecture 4: Probabilistic Learning DD2431 Autumn, 2015 1 Maximum Likelihood Methods Maximum A Posteriori Methods Bayesian methods 2 Classification vs Clustering Heuristic Example: K-means Expectation Maximization 3 Maximum Likelihood Methods

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM Pattern Recognition and Machine Learning Chapter 9: Mixture Models and EM Thomas Mensink Jakob Verbeek October 11, 27 Le Menu 9.1 K-means clustering Getting the idea with a simple example 9.2 Mixtures

More information

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA) D. Blei, A. Ng, and M. Jordan. Journal of Machine Learning Research, 3:993-1022, January 2003. Following slides borrowed ant then heavily modified from: Jonathan Huang

More information

topics about f-divergence

topics about f-divergence topics about f-divergence Presented by Liqun Chen Mar 16th, 2018 1 Outline 1 f-gan: Training Generative Neural Samplers using Variational Experiments 2 f-gans in an Information Geometric Nutshell Experiments

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks SIBGRAPI 2017 Tutorial Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask Presentation content inspired by Ian Goodfellow s tutorial

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Unsupervised Learning with Permuted Data

Unsupervised Learning with Permuted Data Unsupervised Learning with Permuted Data Sergey Kirshner skirshne@ics.uci.edu Sridevi Parise sparise@ics.uci.edu Padhraic Smyth smyth@ics.uci.edu School of Information and Computer Science, University

More information

Are You a Bayesian or a Frequentist?

Are You a Bayesian or a Frequentist? Are You a Bayesian or a Frequentist? Michael I. Jordan Department of EECS Department of Statistics University of California, Berkeley http://www.cs.berkeley.edu/ jordan 1 Statistical Inference Bayesian

More information

Improved Bayesian Compression

Improved Bayesian Compression Improved Bayesian Compression Marco Federici University of Amsterdam marco.federici@student.uva.nl Karen Ullrich University of Amsterdam karen.ullrich@uva.nl Max Welling University of Amsterdam Canadian

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Bayesian Semi-supervised Learning with Deep Generative Models

Bayesian Semi-supervised Learning with Deep Generative Models Bayesian Semi-supervised Learning with Deep Generative Models Jonathan Gordon Department of Engineering Cambridge University jg801@cam.ac.uk José Miguel Hernández-Lobato Department of Engineering Cambridge

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Parameter learning in CRF s

Parameter learning in CRF s Parameter learning in CRF s June 01, 2009 Structured output learning We ish to learn a discriminant (or compatability) function: F : X Y R (1) here X is the space of inputs and Y is the space of outputs.

More information

EM & Variational Bayes

EM & Variational Bayes EM & Variational Bayes Hanxiao Liu September 9, 2014 1 / 19 Outline 1. EM Algorithm 1.1 Introduction 1.2 Example: Mixture of vmfs 2. Variational Bayes 2.1 Introduction 2.2 Example: Bayesian Mixture of

More information

Two Useful Bounds for Variational Inference

Two Useful Bounds for Variational Inference Two Useful Bounds for Variational Inference John Paisley Department of Computer Science Princeton University, Princeton, NJ jpaisley@princeton.edu Abstract We review and derive two lower bounds on the

More information

Stanford Statistics 311/Electrical Engineering 377

Stanford Statistics 311/Electrical Engineering 377 I. Bayes risk in classification problems a. Recall definition (1.2.3) of f-divergence between two distributions P and Q as ( ) p(x) D f (P Q) : q(x)f dx, q(x) where f : R + R is a convex function satisfying

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Clustering, K-Means, EM Tutorial

Clustering, K-Means, EM Tutorial Clustering, K-Means, EM Tutorial Kamyar Ghasemipour Parts taken from Shikhar Sharma, Wenjie Luo, and Boris Ivanovic s tutorial slides, as well as lecture notes Organization: Clustering Motivation K-Means

More information

Lecture 8: Graphical models for Text

Lecture 8: Graphical models for Text Lecture 8: Graphical models for Text 4F13: Machine Learning Joaquin Quiñonero-Candela and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart 1 Motivation and Problem In Lecture 1 we briefly saw how histograms

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Bayesian Analysis for Natural Language Processing Lecture 2

Bayesian Analysis for Natural Language Processing Lecture 2 Bayesian Analysis for Natural Language Processing Lecture 2 Shay Cohen February 4, 2013 Administrativia The class has a mailing list: coms-e6998-11@cs.columbia.edu Need two volunteers for leading a discussion

More information

An Introduction to Bayesian Machine Learning

An Introduction to Bayesian Machine Learning 1 An Introduction to Bayesian Machine Learning José Miguel Hernández-Lobato Department of Engineering, Cambridge University April 8, 2013 2 What is Machine Learning? The design of computational systems

More information

LDA with Amortized Inference

LDA with Amortized Inference LDA with Amortied Inference Nanbo Sun Abstract This report describes how to frame Latent Dirichlet Allocation LDA as a Variational Auto- Encoder VAE and use the Amortied Variational Inference AVI to optimie

More information

Bayesian Deep Generative Models for Semi-Supervised and Active Learning

Bayesian Deep Generative Models for Semi-Supervised and Active Learning Bayesian Deep Generative Models for Semi-Supervised and Active Learning Jonathan Gordon Supervisor: Dr José Miguel Hernández-Lobato Department of Engineering University of Cambridge This dissertation is

More information

A Brief Review of Probability, Bayesian Statistics, and Information Theory

A Brief Review of Probability, Bayesian Statistics, and Information Theory A Brief Review of Probability, Bayesian Statistics, and Information Theory Brendan Frey Electrical and Computer Engineering University of Toronto frey@psi.toronto.edu http://www.psi.toronto.edu A system

More information

Energy Based Models. Stefano Ermon, Aditya Grover. Stanford University. Lecture 13

Energy Based Models. Stefano Ermon, Aditya Grover. Stanford University. Lecture 13 Energy Based Models Stefano Ermon, Aditya Grover Stanford University Lecture 13 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 1 / 21 Summary Story so far Representation: Latent

More information

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University Another Walkthrough of Variational Bayes Bevan Jones Machine Learning Reading Group Macquarie University 2 Variational Bayes? Bayes Bayes Theorem But the integral is intractable! Sampling Gibbs, Metropolis

More information