Chemical Engineering 693R

Size: px
Start display at page:

Download "Chemical Engineering 693R"

Transcription

1 Chemical Engineering 693R Reactor Design and Analysis Lecture 9 Neutron Kinetics

2 Siritual hought 2

3 General ransient Problem Mono-energetic neutrons DD 2 φφ Σ aa φφ + SS vv For a reactor, SS ννσ ff φφ DD 2 φφ Σ aa φφ + ννσ ff φφ vv 2 φφ BB 2 φφ DDvv

4 hree ime Scales (short) Short ime Constant (load change) An abrut change in steam demand/load. A load change is seen as: Reactor ressure change in the BWR Reactor temerature change in a PWR. Higher loads lead to higher ressures/temeratures. Assumtions Shae of the flux rofile is assumed constant Power changes Magnitude of the neutron flux scales everywhere in the reactor. Assumes a uniform multilicative change everywhere Satial variations in time in the reactor are not considered his method is called oint kinetics.

5 hree ime Scales (intermediate) Intermediate ime Constant (core comosition change) Changing fission roduct concentrations Generation rates and destruction/decay rates. Many fission roducts have measurable thermal neutron cross sections Change the value of k (and k ). ff ΣΣ FF aa + ΣΣ NNFF aa VV NNNN /VV FF Point kinetics can be used if satial variations in concentrations are negligible. Otherwise, detailed satial and temoral equations must be used! ΣΣ aa FF φφ NNNN /φφ FF

6 hree ime Scales (long) Long ime Constant (Fuel Deletion) reated as a series of steady-state roblems wo things are adjusted to maintain λ (i.e. λ /k) Material buckling Reactor dimensions If λ, the equation is not valid Why? DD 2 φφ Σ aa φφ λλλλσ ff φφ In oerating reactor, cannot change dimensions (much) k is adjusted slowly in time by changing chemical shim conc. Chemical shim is an isotoe that absorbs neutrons in the reactor k is also adjusted via the control rods. Managing fuel consumtion is a classical examle of this tye of transient

7 Promt Neutrons Lifetime, ll, is time between emission and absortion. Neutrons in thermal reactors: Send more time (most of ll ) in the thermal regime ravel further as fast neutrons Average lifetime of a thermal neutron in a an infinite reactor is the mean diffusion time, tt dd, and is aroximately the same as ll in an infinite reactor. Assuming /vv behavior (cross section) tt EE λλ aa EE vv(ee) Σ AA EE vv EE Σ AA EE 0 vv 0 ππ tt dd tt EE 2 Σ aa vv ll tt dd

8 In fast reactors, romt neutron lifetimes are much shorter, on the order of 0-7 seconds Promt Neutrons For mixtures of fuel and moderator in thermal reactors tt dd tt(ee) ππ 2 Σ aaaa + Σ aaaa vv ππ 2 Σ aaaa vv ππ 2 Σ aaaa νν Σ aaaa Σ aaaa + Σ aaaa ff Σ aaaa Σ aaaa + Σ aaaa moderator diffusion time tt dd tt dddd ff fffuel utilization factor

9 Simle Kinetics Model dddd tt Δnn tt l dddd dddd tt dddd kk eeeeee l kk eeeeee nn tt nn(tt) nn tt nn 0 ex kk eeeeee l For 235 U l 2.x0-4 s kk eeeeee 0.00 and tt ss, n/n 0 7 (22,027 if l 0-4 as in text) Far too raid to control!!! tt

10 Delayed Neutrons For -grou model, 2 for 235 U is about 8.87 s and ττ is about 2.8 s.

11 Delayed Neutron Fractions

12 Reactivity and Worth ρρ kk eeeeee kk eeeeee δδδδ kk eeeeee reactivity ρρ and δδδδ kk($) ρρ ββ ββ is delayed neutron fraction worth can be measured in units of kk($) or kk cents? Percent Mil?

13 Power Changes 3 ββββ δδδδ ββββ kkkkkkkk ρρ ττ kkkkkkkk kk($) ~ ττ kk($) Reactor Period (units of time) ime required to increase reactor ower (or neutron flux) by 2.72 tt llll PP(tt) PP(0)

14 Examle 4 Following a reactor scram in which all the control rods are inserted into a ower reactor, how long is it before the reactor ower decreases to of the steady-state ower rior to shutdown? (Assume a reactor eriod of -80 s)

15 Reactors with delayed neutrons l ββ l + ββ l + ττ l + ββββ ττ is lifetime of delayed neutrons /2 ln 2 For δδδδ ββ nn tt ex kk eeeeee ex tt nn 0 l For 235 U, 83 s, k eff , n/n 0.02 his can be controlled! 2.8 ss l kk dddddd ββββ δδδδ

16 ransient thermal neutron equation ( ) ( ) concentration recursor C rob escae resonance recursor of const decay C k s C s k s dt d l dt d t s nv s dt d v dt dn nv dt dn s a delayed a romt d a a a + Σ Σ Σ Σ Σ ,, λ λ φ β λ φ β φ φ φ π φ φ π π φ φ

17 ransient thermal neutron equation ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) λ λβ β φ λ β λ β φ λ φ β φ φ φ λ φ β a a decay recursor roduction recursor a d a l k k t A l t C t A k A k C t C C t A t unknown yet as with Assume C k dt dc dt d l dt d t C k + + Σ + + Σ Σ Σ + ex ex ex ex ex ) ( λ β ρ l l l k k k k ρ Reactivity definition (does not assume infinite reactor)

18 Reactivity and Δk ρ k ( $ ) keff k eff ρ β k( $ ) worth δk k eff ρ reactivity δk delta k β delayed neutron kk oo fraction ll ββ + ii GG aa ii λ ii + Inhour equation

19 φ φ ρ A + l Reactivity Equation Solutions dominant term as t ex ex l t ( t ) + A ex( t ) + + l 2 2 aroaches 0 radily 6 i βi + λ i General solution for single grou of delayed neutrons Definition of reactor or stable eriod General solution for single grou of delayed neutrons Reactivity equation for six grou model grahical solution on next age

20 Six-grou solution Period decreases with increasing reactivity. Rate of decrease increases with increasing reactivity and with decreasing romt neutron lifetime, eventually decreasing at nearly infinite rate for short romt neutron lifetimes. As reactivity aroaches delayed neutron fraction (worth aroaches $), eriod becomes very short. Fast reactor behavior corresonds to romt neutron lifetime of near zero (0-7 s) Reactor worth reresents fractional aroach to this line, i.e., $ at the line.

21 -level Model Parameters ββ ττ dd (ss) 2,dd(ss) N/A h U U U Pu Pu Am Am Cm Source: Laboratoire de Physique Subatomique et de Cosmologie

22 Reactivity Equation Solutions ll kk eeeeee ll δδδδ ββββ δδδδ Reactor eriod - he time required for a neutron oulation to change by a factor of e kk eeeeee + δδδδ + ββββ ττ Lifetime of delayed neutrons ~2.8s (U235) ββββ δδδδ ββββ kk eeeeee ββββ kk eeeeee ρρ ττ kk eeeeee ρρ($) ττ ρρ $ ϕ(tt) eeeeee tt Remember, Flux is roortional to ower. CC PP(tt) eeeeee tt eeeeee PP(tt) CC PP(0) CC eeeeee PP(tt) PP(0)

23 Exloration 23 What if we add -$0. to AP000 core? 3. 4 P.i ( i s) GW 3 P( j s) GW 2 P.f ( k s) GW i, j, k t.e

24 Exloration 2 24 What if we add $0. to AP000 core? P.i ( i s) GW P( j s) GW 0 P.f ( k s) GW i, j, k t.e

25 Exloration 3 25 What if we add $0. to AP000 core, then after 0 seconds we add -$0.? P.i ( i s) GW 3 P( j s) GW 2 P.f ( k s) GW i, j, k t.e

26 Reality 26

27 Kinetics 27 his is how reactor ower is controlled Control rods add/subtract worth he circumstances we ve seen so far are not a ideal, however. Why? herefore a moderating influence is desired Feedback Mechanisms!

28 Isotoic Feedbacks (slow) Fuel Burnu (slow) Decrease in reactivity Fuel breeding (slow) Increase in reactivity Fission roduct oisons (moderate hours) 35 Xe and 49 Sm Decrease reactivity until decay away Burnable Poisons (slow) Decrease reactivity until transmuted away

29 emerature Feedbacks (fast) Atomic concentration changes Moderator coolant density Void coefficient fuel exansion Neutron energy distribution changes harden sectrum with increased RIGA reactor is extreme examle Resonance interaction changes Doler dominant feedback Burnable Poisons Geometry changes

30 Feedback Effects 30 What if we add $0. to AP000 core with void feedbacks included? P.i ( i) GW P( j) GW 3 P.f ( k) GW i, j, k t.f

31 Exotic Reactors Promt critical (suercritical) behavior refers to reactors that are critical based on romt neutrons only and hence have very short eriods. Reactors can be designed with inherent shutdown characteristics when they become suercritical. General Atomics RIGA reactor is an examle. Such reactors can roduce short but intense ulses of neutrons (see chart at left).

32 Ramifications For ositive reactivity (increases in ower), which necessarily must be small, romt neutron jum is negligible, (flux essentially unchanged in the short term) For negative reactivity (decreases in ower) can be arbitrarily large romt neutron jum can be very large U to 96% in the case of a scram over about 80 seconds. Fission roduct decay accounts for u to 6% of total ower (for an equilibrium reactor) not affected by the reactivity change cannot reduce by more than about 93% the ower outut

33 Small Reactivities i i i i i i i i i i i i i i i t t l t l l l l l β ρ β ρ β λ β ρ λ β ρ 6 Reactivity equation For small reactivities, first root is small, ignorable in denominators. Period of reactor simle exression, as tabulated below

34 Control Rods Follow load Rod worth magnitude of reactivity change required to give a secified eriod Comensate for fuel decay Rod worth magnitude in multilication factor change for which the rod can comensate hough these definitions sound different, they are very similar

35 Cluster Control Rods

36 Cruciform Control Rods

37 Cruciform Rods

38 α d ρ d d d emerature Deendence k k k dk d 2 k dk d α temerature reactivity feedback coefficient If α > 0, Unstable increases and decreases in temerature run away to meltdown or shutdown without oerator resonse. If α < 0, Stable Increases and decreases in temerature self regulate and the reactor stabilizes. reit-wigner describes absortion rofile at 0 but Doler effect broadens eaks, with Different α s for fuel/moderator ittle change in area, at higher temeratures. Different timescales 2 λ Γ Γ Fuel is most raid r g n γ σ γ ( E) 2 α 4π romt 2 Γ ( E Er ) + NRC requires negative α 4 romt values for licenses

39 Xenon (Iodine, ellurium) Xenon-35 has a high absortion cross section (2.65x0 6 b in thermal region) and is the most significant absorbing oison. 35 e β sec Fission d X dt 35 I 6.7 hr Fission λ I I λ I I β d I dt Iodine decay + γ + γ X ( ) / 2 35 Σ f Xe 9.2 sec Fission γ Σ φ I f fission yield X f fission yield Cs λ I I λ X X C ( t ) φ ( t ) ( λ + σ φ ) X, eff Σ φ β λ X 35 natural natural decay X σ φ ax 2.3x0 decay β ax ( t ) 6 yr 35 σ axφ X X Ba ( stable) absortion decay

40 Reactor Dead time Load change shutdown

41 Fuel Loading Patterns

42 Burnable (absorbing) oisons Burnable oison forms roducts with lower adsortion cross sections, comensating for accumulation of other oisons. Boron and gadolinium oxides (gadolina) are examles.

43 yical Control Worths

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 18 Nuclear Reactor Theory IV Reactivity Insertions 1 Spiritual Thought 2 Mosiah 2:33 33 For behold, there is a wo pronounced upon him who

More information

Chemical Engineering 693R

Chemical Engineering 693R Chemical Engineering 693 eactor Design and Analysis Lecture 8 Neutron ransport Spiritual hought Moroni 7:48 Wherefore, my beloved brethren, pray unto the Father with all the energy of heart, that ye may

More information

Chapter 7 & 8 Control Rods Fission Product Poisons. Ryan Schow

Chapter 7 & 8 Control Rods Fission Product Poisons. Ryan Schow Chapter 7 & 8 Control Rods Fission Product Poisons Ryan Schow Ch. 7 OBJECTIVES 1. Define rod shadow and describe its causes and effects. 2. Sketch typical differential and integral rod worth curves and

More information

Introduction to Reactivity and Reactor Control

Introduction to Reactivity and Reactor Control Introduction to Reactivity and Reactor Control Larry Foulke Adjunct Professor Director of Nuclear Education Outreach University of Pittsburgh IAEA Workshop on Desktop Simulation October 2011 Learning Objectives

More information

Lecture 27 Reactor Kinetics-III

Lecture 27 Reactor Kinetics-III Objectives In this lecture you will learn the following In this lecture we will understand some general concepts on control. We will learn about reactivity coefficients and their general nature. Finally,

More information

Lecture 28 Reactor Kinetics-IV

Lecture 28 Reactor Kinetics-IV Objectives In this lecture you will learn the following In this lecture we will understand the transient build up of Xenon. This can lead to dead time in reactors. Xenon also induces power oscillations

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Final Exam Review Spiritual Thought 2 Exam 3 Performance 3 Part a Part b Part c Part d Total Average 30.7 19.2 24.4 16.5 90.8 High 35.0 20.0 25.0

More information

Operational Reactor Safety

Operational Reactor Safety Operational Reactor Safety 22.091/22.903 Professor Andrew C. Kadak Professor of the Practice Lecture 3 Reactor Kinetics and Control Page 1 Topics to Be Covered Time Dependent Diffusion Equation Prompt

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems Lectures on Nuclear Power Safety Lecture No 4 Title: Control Rods and Sub-critical Systems Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Control Rods Selection of Control

More information

XV. Fission Product Poisoning

XV. Fission Product Poisoning XV. Fission Product Poisoning XV.1. Xe 135 Buil-Up As we already know, temperature changes bring short-term effects. That is to say, once a power change is produced it is rapidly manifested as a change

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 5. Title: Reactor Kinetics and Reactor Operation Lectures on Nuclear Power Safety Lecture No 5 Title: Reactor Kinetics and Reactor Operation Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture (1) Reactor Kinetics Reactor

More information

CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing

CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing CANDU Safety #3 - Nuclear Safety Characteristics Dr. V.G. Snell Director Safety & Licensing 24/05/01 CANDU Safety - #3 - Nuclear Safety Characteristics.ppt Rev. 0 vgs 1 What Makes A Safe Nuclear Design?

More information

but mostly as the result of the beta decay of its precursor 135 I (which has a half-life of hours).

but mostly as the result of the beta decay of its precursor 135 I (which has a half-life of hours). 8. Effects of 135Xe The xenon isotope 135 Xe plays an important role in any power reactor. It has a very large absorption cross section for thermal neutrons and represents therefore a considerable load

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

20.1 Xenon Production Xe-135 is produced directly in only 0.3% of all U-235 fissions. The following example is typical:

20.1 Xenon Production Xe-135 is produced directly in only 0.3% of all U-235 fissions. The following example is typical: 20 Xenon: A Fission Product Poison Many fission products absorb neutrons. Most absorption cross-sections are small and are not important in short-term operation. Xenon- has a cross-section of approximately

More information

Reactor Operation with Feedback Effects

Reactor Operation with Feedback Effects 22.05 Reactor Physics - Part Twenty-Nine Reactor Operation with Feedback Effects 1. Reference Material: See pp. 368 372 in Light Water Reactor Control Systems, in Wiley Encyclopedia of Electrical and Electronics

More information

PHYSICS AND KINETICS OF TRIGA REACTOR. H. Böck and M. Villa AIAU 27307

PHYSICS AND KINETICS OF TRIGA REACTOR. H. Böck and M. Villa AIAU 27307 PHYSICS AND KINETICS OF TRIGA REACTOR H. Böck and M. Villa AIAU 27307 *prepared for NTEC Overview This training module is written as an introduction to reactor physics for reactor operators. It assumes

More information

Reactor Operation Without Feedback Effects

Reactor Operation Without Feedback Effects 22.05 Reactor Physics - Part Twenty-Six Reactor Operation Without Feedback Effects 1. Reference Material: See pp. 363-368 of the article, Light Water Reactor Control Systems, in Wiley Encyclopedia of Electrical

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21 Trimester 1 Pretest (Otional) Use as an additional acing tool to guide instruction. August 21 Beyond the Basic Facts In Trimester 1, Grade 8 focus on multilication. Daily Unit 1: Rational vs. Irrational

More information

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η

Neutron reproduction. factor ε. k eff = Neutron Life Cycle. x η Neutron reproduction factor k eff = 1.000 What is: Migration length? Critical size? How does the geometry affect the reproduction factor? x 0.9 Thermal utilization factor f x 0.9 Resonance escape probability

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

Xenon Effects. B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

Xenon Effects. B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. enon Effects B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents We study the importance of e-135 in the operation of

More information

Fundamentals of Nuclear Reactor Physics

Fundamentals of Nuclear Reactor Physics Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Reactor Kinetics and Operation

Reactor Kinetics and Operation Reactor Kinetics and Operation Course No: N03-002 Credit: 3 PDH Gilbert Gedeon, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 0980 P: (877) 322-5800 F: (877) 322-4774

More information

Power Changes in a Critical Reactor. The Critical Reactor

Power Changes in a Critical Reactor. The Critical Reactor Chapter 8 Power Changes in a Critical Reactor n For very small reactivity increases n For small reactivity increases n For large reactivity increases/decreases The Critical Reactor < k = hfpel f L t =

More information

Reactivity Coefficients

Reactivity Coefficients Revision 1 December 2014 Reactivity Coefficients Student Guide GENERAL DISTRIBUTION GENERAL DISTRIBUTION: Copyright 2014 by the National Academy for Nuclear Training. Not for sale or for commercial use.

More information

I Poles & zeros. I First-order systems. I Second-order systems. I E ect of additional poles. I E ect of zeros. I E ect of nonlinearities

I Poles & zeros. I First-order systems. I Second-order systems. I E ect of additional poles. I E ect of zeros. I E ect of nonlinearities EE C28 / ME C34 Lecture Chater 4 Time Resonse Alexandre Bayen Deartment of Electrical Engineering & Comuter Science University of California Berkeley Lecture abstract Toics covered in this resentation

More information

Reactivity Coefficients

Reactivity Coefficients Reactivity Coefficients B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Reactivity Changes In studying kinetics, we have seen

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 12 Radiation/Matter Interactions II 1 Neutron Flux The collisions of neutrons of all energies is given by FF = ΣΣ ii 0 EE φφ EE dddd All

More information

Shutdown Margin. Xenon-Free Xenon removes neutrons from the life-cycle. So, xenonfree is the most reactive condition.

Shutdown Margin. Xenon-Free Xenon removes neutrons from the life-cycle. So, xenonfree is the most reactive condition. 22.05 Reactor Physics - Part Thirty-One Shutdown Margin 1. Shutdown Margin: Shutdown margin (abbreviated here as SDM) is defined as the amount of reactivity by which a reactor is subcritical from a given

More information

Chain Reactions. Table of Contents. List of Figures

Chain Reactions. Table of Contents. List of Figures Chain Reactions 1 Chain Reactions prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada More about this document Summary: In the chapter

More information

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable)

3. State each of the four types of inelastic collisions, giving an example of each (zaa type example is acceptable) Nuclear Theory - Course 227 OBJECTIVES to: At the conclusion of this course the trainee will be able 227.00-1 Nuclear Structure 1. Explain and use the ZXA notation. 2. Explain the concept of binding energy.

More information

Reactivity Power and Temperature Coefficients Determination of the TRR

Reactivity Power and Temperature Coefficients Determination of the TRR Reactivity and Temperature Coefficients Determination of the TRR ABSTRACT Ahmad Lashkari Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran Tehran 14399-51113,

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

Economics 101. Lecture 7 - Monopoly and Oligopoly

Economics 101. Lecture 7 - Monopoly and Oligopoly Economics 0 Lecture 7 - Monooly and Oligooly Production Equilibrium After having exlored Walrasian equilibria with roduction in the Robinson Crusoe economy, we will now ste in to a more general setting.

More information

Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods

Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods Zechuan Ding Illume Research, 405 Xintianshiji Business Center, 5 Shixia Road, Shenzhen, China Abstract. After a nuclear reactor

More information

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 5 Burnup calculation

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 5 Burnup calculation PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 5 Burnup calculation Jaakko Leppänen (Lecturer), Ville Valtavirta (Assistant) Department of Applied Physics Aalto University, School of Science Jaakko.Leppanen@aalto.fi

More information

Lecture 20 Reactor Theory-V

Lecture 20 Reactor Theory-V Objectives In this lecture you will learn the following We will discuss the criticality condition and then introduce the concept of k eff.. We then will introduce the four factor formula and two group

More information

rate~ If no additional source of holes were present, the excess

rate~ If no additional source of holes were present, the excess DIFFUSION OF CARRIERS Diffusion currents are resent in semiconductor devices which generate a satially non-uniform distribution of carriers. The most imortant examles are the -n junction and the biolar

More information

Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following.

Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following. Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following. σσ(νν) = AA 21 λλ 2 8ππnn 2 gg(νν) AA 21 = 6 10 6 ssssss 1 From the figure, the emission

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 7 Nuclear Decay Behaviors Spiritual Thought Sooner or later, I believe that all of us experience times when the very fabric of our world

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information

Acceleration to higher energies

Acceleration to higher energies Acceleration to higher energies While terminal voltages of 20 MV provide sufficient beam energy for nuclear structure research, most applications nowadays require beam energies > 1 GeV How do we attain

More information

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

NPP Simulators for Education Workshop - Passive PWR Models

NPP Simulators for Education Workshop - Passive PWR Models NPP Simulators for Education Workshop - Passive PWR Models Wilson Lam (wilson@cti-simulation.com) CTI Simulation International Corp. www.cti-simulation.com Sponsored by IAEA Learning Objectives Understand

More information

Last Name _Piatoles_ Given Name Americo ID Number

Last Name _Piatoles_ Given Name Americo ID Number Last Name _Piatoles_ Given Name Americo ID Number 20170908 Question n. 1 The "C-V curve" method can be used to test a MEMS in the electromechanical characterization phase. Describe how this procedure is

More information

"Control Rod Calibration"

Control Rod Calibration TECHNICAL UNIVERSITY DRESDEN Institute of Power Engineering Training Reactor Reactor Training Course Experiment "Control Rod Calibration" Instruction for Experiment Control Rod Calibration Content: 1...

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 3. Solar energy conversion with band-gap materials ChE-600 Kevin Sivula, Spring 2014 The Müser Engine with a concentrator T s Q 1 = σσ CffT ss 4 + 1 Cff T pp

More information

Hotelling s Two- Sample T 2

Hotelling s Two- Sample T 2 Chater 600 Hotelling s Two- Samle T Introduction This module calculates ower for the Hotelling s two-grou, T-squared (T) test statistic. Hotelling s T is an extension of the univariate two-samle t-test

More information

Using the Application Builder for Neutron Transport in Discrete Ordinates

Using the Application Builder for Neutron Transport in Discrete Ordinates Using the Application Builder for Neutron Transport in Discrete Ordinates C.J. Hurt University of Tennessee Nuclear Engineering Department (This material is based upon work supported under a Department

More information

R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada

R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada REACTVTY CHANGES R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Reactivity Coefficient, Fuel Burnup, Xenon, Samarium, Temperature Contents 1. ntroduction

More information

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA)

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) Note: SFA will automatically be taken to mean Coulomb gauge (relativistic or non-diole) or VG (nonrelativistic, diole-aroximation). If LG is intended (rarely),

More information

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I SECTION 5: CAPACITANCE & INDUCTANCE ENGR 201 Electrical Fundamentals I 2 Fluid Capacitor Fluid Capacitor 3 Consider the following device: Two rigid hemispherical shells Separated by an impermeable elastic

More information

Chapter 5. Transient Conduction. Islamic Azad University

Chapter 5. Transient Conduction. Islamic Azad University Chater 5 Transient Conduction Islamic Azad University Karaj Branch 1 Transient Conduction Many heat transfer roblems are time deendent Changes in oerating conditions in a system cause temerature variation

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam2 11. 13. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

Math 171 Spring 2017 Final Exam. Problem Worth

Math 171 Spring 2017 Final Exam. Problem Worth Math 171 Spring 2017 Final Exam Problem 1 2 3 4 5 6 7 8 9 10 11 Worth 9 6 6 5 9 8 5 8 8 8 10 12 13 14 15 16 17 18 19 20 21 22 Total 8 5 5 6 6 8 6 6 6 6 6 150 Last Name: First Name: Student ID: Section:

More information

Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space.

Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space. Problem 3. (Verdeyen 5.3) First, I calculate the ABCD matrix for beam traveling through the lens and space. T = dd 0 0 dd 2 ff 0 = dd 2 dd ff 2 + dd ( dd 2 ff ) dd ff ff Aording to ABCD law, we can have

More information

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics Noise Analysis and Simulation White Noise Band-Limited

More information

N U C L : R E A C T O R O P E R A T I O N A N D R E G U L A T O R Y P O L I C Y, I

N U C L : R E A C T O R O P E R A T I O N A N D R E G U L A T O R Y P O L I C Y, I N U C L 6 0 6 0 : R E A C T O R O P E R A T I O N A N D R E G U L A T O R Y P O L I C Y, I FALL 2013 INSTRUCTORS: Gregory Moffitt & Ryan Schow LECTURES: MONDAY & WEDNESDAY 11:50 AM 1:10 PM MEB 1206 OFFICE

More information

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method Lecture No. 5 LL(uu) pp(xx) = 0 in ΩΩ SS EE (uu) = gg EE on ΓΓ EE SS NN (uu) = gg NN on ΓΓ NN For all weighted residual methods NN uu aaaaaa = uu BB + αα ii φφ ii For all (Bubnov) Galerkin methods ii=1

More information

The impact of hot charge carrier mobility on photocurrent losses

The impact of hot charge carrier mobility on photocurrent losses Supplementary Information for: The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells Bronson Philippa 1, Martin Stolterfoht 2, Paul L. Burn 2, Gytis Juška 3, Paul

More information

Nuclear Theory - Course 227 REACTIVITY EFFECTS DUE TO TEMPERATURE CHANGES

Nuclear Theory - Course 227 REACTIVITY EFFECTS DUE TO TEMPERATURE CHANGES Nuclear Theory - Course 227 REACTIVITY EFFECTS DUE TO TEMPERATURE CHANGES In the lesson on reactor kinetics we ignored any variations ln reactivity due to changes in power. As we saw in the previous lesson

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

Chemical Engineering 693R

Chemical Engineering 693R Chemical Engineering 693R Reactor Design and Analysis Lecture 4 Reactor Flow and Pump Sizing Spiritual Thought 2 Rod Analysis with non-constant q 3 Now q = qq zz = qqq mmmmmm sin ππzz Steady state Know

More information

(1) Introduction: a new basis set

(1) Introduction: a new basis set () Introduction: a new basis set In scattering, we are solving the S eq. for arbitrary VV in integral form We look for solutions to unbound states: certain boundary conditions (EE > 0, plane and spherical

More information

Cold Critical Pre-Experiment Simulations of KRUSTy

Cold Critical Pre-Experiment Simulations of KRUSTy Cold Critical Pre-Experiment Simulations of KRUSTy Kristin Smith * Rene Sanchez, Ph.D. * University of Florida, Nuclear Engineering Program Los Alamos National Lab, Advanced Nuclear Technology LA-UR-17-27250

More information

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet Secondary H Unit Lesson Worksheet Simplify: mm + 2 mm 2 4 mm+6 mm + 2 mm 2 mm 20 mm+4 5 2 9+20 2 0+25 4 +2 2 + 2 8 2 6 5. 2 yy 2 + yy 6. +2 + 5 2 2 2 0 Lesson 6 Worksheet List all asymptotes, holes and

More information

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 1 Review for Exam3 12. 11. 2013 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 2 Chapter

More information

AP1000 European 11. Radioactive Waste Management Design Control Document

AP1000 European 11. Radioactive Waste Management Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

The Second Law: The Machinery

The Second Law: The Machinery The Second Law: The Machinery Chater 5 of Atkins: The Second Law: The Concets Sections 3.7-3.9 8th Ed, 3.3 9th Ed; 3.4 10 Ed.; 3E 11th Ed. Combining First and Second Laws Proerties of the Internal Energy

More information

Reactivity Balance & Reactor Control System

Reactivity Balance & Reactor Control System Reactivity Balance & Reactor Control System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 6 Table of Contents 1 MULTIPLICATION

More information

OBE solutions in the rotating frame

OBE solutions in the rotating frame OBE solutions in the rotating frame The light interaction with the 2-level system is VV iiiiii = μμ EE, where μμ is the dipole moment μμ 11 = 0 and μμ 22 = 0 because of parity. Therefore, light does not

More information

Development of 3D Space Time Kinetics Model for Coupled Neutron Kinetics and Thermal hydraulics

Development of 3D Space Time Kinetics Model for Coupled Neutron Kinetics and Thermal hydraulics Development of 3D Space Time Kinetics Model for Coupled Neutron Kinetics and Thermal hydraulics WORKSHOP ON ADVANCED CODE SUITE FOR DESIGN, SAFETY ANALYSIS AND OPERATION OF HEAVY WATER REACTORS October

More information

Numerical simulation of non-steady state neutron kinetics of the TRIGA Mark II reactor Vienna

Numerical simulation of non-steady state neutron kinetics of the TRIGA Mark II reactor Vienna arxiv:137.767v1 [physics.ins-det] 29 Jul 213 Numerical simulation of non-steady state neutron kinetics of the TRIGA Mark II reactor Vienna Julia Riede, Helmuth Boeck TU Wien, Atominstitut, A-12 Wien, Stadionallee

More information

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58 Chater 0: Exercises:, 7,,, 8, 4 EOC: 40, 4, 46, 8 E: A gasoline engine takes in.80 0 4 and delivers 800 of work er cycle. The heat is obtained by burning gasoline with a heat of combustion of 4.60 0 4.

More information

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr Time Domain Analysis of Linear Systems Ch2 University of Central Oklahoma Dr. Mohamed Bingabr Outline Zero-input Response Impulse Response h(t) Convolution Zero-State Response System Stability System Response

More information

CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS CRITICAL AND SUBCRITICAL EXPERIMENTS USING THE TRAINING NUCLEAR REACTOR OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS É. M. Zsolnay Department of Nuclear Techniques, Budapest University of Technology

More information

(1) The time t required for N generations to elapse is merely:

(1) The time t required for N generations to elapse is merely: 19 Changes In Reactor Power With Time The two preceding modules discussed how reactivity changes increase or decrease neutron flux and hence, change the thermal power output from the fuel. We saw how the

More information

Flow Velocity Measurement Principles of Hot Film Anemometry

Flow Velocity Measurement Principles of Hot Film Anemometry Flow Velocity Measurement Princiles of Hot Film Anemometry The hot film anemometer (HFA) is made of a thin, structured, metallic resistive film ( heater ) which is deosited onto a substrate. In the oerating

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineeing 41 Intoductoy Nuclea Engineeing Lectue 16 Nuclea eacto Theoy III Neuton Tanspot 1 One-goup eacto Equation Mono-enegetic neutons (Neuton Balance) DD φφ aa φφ + ss 1 vv vv is neuton speed

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX

OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX Volkan Seker Thomas J. Downar OECD/NEA PBMR Workshop Paris, France June 16, 2005 Introduction Motivation of the benchmark Code-to-code comparisons.

More information

Velocity Changing and Dephasing collisions Effect on electromagnetically induced transparency in V-type Three level Atomic System.

Velocity Changing and Dephasing collisions Effect on electromagnetically induced transparency in V-type Three level Atomic System. Velocity Changing and Dehasing collisions Effect on electromagnetically induced transarency in V-tye Three level Atomic System. Anil Kumar M. and Suneel Singh University of Hyderabad, School of hysics,

More information

SUB-CHAPTER D.1. SUMMARY DESCRIPTION

SUB-CHAPTER D.1. SUMMARY DESCRIPTION PAGE : 1 / 12 CHAPTER D. REACTOR AND CORE SUB-CHAPTER D.1. SUMMARY DESCRIPTION Chapter D describes the nuclear, hydraulic and thermal characteristics of the reactor, the proposals made at the present stage

More information

FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE. By Yanlin GE, Lingen CHEN, and Fengrui SUN

FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE. By Yanlin GE, Lingen CHEN, and Fengrui SUN FINIE IME HERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE AKINSON CYCLE By Yanlin GE, Lingen CHEN, and Fengrui SUN Performance of an air-standard Atkinson cycle is analyzed by using finite-time

More information

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON

NUCLEAR SCIENCE ACAD BASIC CURRICULUM CHAPTER 5 NEUTRON LIFE CYCLE STUDENT TEXT REV 2. L th. L f U-235 FUEL MODERATOR START CYCLE HERE THERMAL NEUTRON ACAD BASIC CURRICULUM NUCLEAR SCIENCE CHAPTER 5 NEUTRON LIFE CYCLE 346 RESONANCE LOSSES p 038 THERMAL NEUTRON 2 THERMAL NEUTRON LEAKAGE 52 THERMAL ABSORBED BY NON-FUEL ATOMS L th 07 THERMAL f 965 THERMAL

More information

X. Assembling the Pieces

X. Assembling the Pieces X. Assembling the Pieces 179 Introduction Our goal all along has been to gain an understanding of nuclear reactors. As we ve noted many times, this requires knowledge of how neutrons are produced and lost.

More information

whether a process will be spontaneous, it is necessary to know the entropy change in both the

whether a process will be spontaneous, it is necessary to know the entropy change in both the 93 Lecture 16 he entroy is a lovely function because it is all we need to know in order to redict whether a rocess will be sontaneous. However, it is often inconvenient to use, because to redict whether

More information

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV Reactors and Fuels Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV July 19-21, 2011 This course is partially based on work supported by

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

PHYS 301 HOMEWORK #9-- SOLUTIONS

PHYS 301 HOMEWORK #9-- SOLUTIONS PHYS 0 HOMEWORK #9-- SOLUTIONS. We are asked to use Dirichlet' s theorem to determine the value of f (x) as defined below at x = 0, ± /, ± f(x) = 0, - < x

More information

Laplace Transform Problems

Laplace Transform Problems AP Calculus BC Name: Laplace Transformation Day 3 2 January 206 Laplace Transform Problems Example problems using the Laplace Transform.. Solve the differential equation y! y = e t, with the initial value

More information

Lecture 8, the outline

Lecture 8, the outline Lecture, the outline loose end: Debye theory of solids more remarks on the first order hase transition. Bose Einstein condensation as a first order hase transition 4He as Bose Einstein liquid Lecturer:

More information

Hybrid Low-Power Research Reactor with Separable Core Concept

Hybrid Low-Power Research Reactor with Separable Core Concept Hybrid Low-Power Research Reactor with Separable Core Concept S.T. Hong *, I.C.Lim, S.Y.Oh, S.B.Yum, D.H.Kim Korea Atomic Energy Research Institute (KAERI) 111, Daedeok-daero 989 beon-gil, Yuseong-gu,

More information

MODULE 2: DIFFUSION LECTURE NO. 2

MODULE 2: DIFFUSION LECTURE NO. 2 PTEL Chemical Mass Transfer Oeration MODULE : DIFFUSIO LECTURE O.. STEDY STTE MOLECULR DIFFUSIO I FLUIDS UDER STGT D LMIR FLOW CODITIOS.. Steady state diffusion through a constant area Steady state diffusion

More information

PHY103A: Lecture # 4

PHY103A: Lecture # 4 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018 Notes The Solutions to HW # 1 have been

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information