Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space.

Size: px
Start display at page:

Download "Problem 3.1 (Verdeyen 5.13) First, I calculate the ABCD matrix for beam traveling through the lens and space."

Transcription

1 Problem 3. (Verdeyen 5.3) First, I calculate the ABCD matrix for beam traveling through the lens and space. T = dd 0 0 dd 2 ff 0 = dd 2 dd ff 2 + dd ( dd 2 ff ) dd ff ff Aording to ABCD law, we can have the following relation for beam waist. qq 2 = AAqq + BB CCqq + DD qq 2 (zz) = zz + jj qq (zz) = zz + jj Since it requires mode-matching, the two minimum beam waists should satisfy the ABCD law. So we have qq 2 (0) = AAqq (0) + BB CCqq (0) + DD = AA jj + BB CC jj + DD = jj AA jj + BB = DD jj CC B = CC A = DD BB CC = AA DD = Substitute the above ABCD into the equations. = ffdd 2 + dd (ff dd 2 ) zz dd 2 02 ff ff dd 2 = dd = ff dd ff (ff dd ) + ff = dd 2 = ff ff (ff dd ) + dd ff ff (ff dd ) = ff ff ff + ff dd + dd (ff dd ) ff ff ff + 2ff dd zz zz 2 02 dd 0 zz = 0 dd 2 2ff dd + ff ff ff = 0

2 2ff zz ± 4(ff 0 zz ) zz ( ff ff ff 0 zz ) 0 dd = 2 = ff ± ff 2 ( ff ff ff ) = ff ± ff 2 (( ) 2 ff 2 ( )) = ff ± ff 2 ( ) 2 + ff 2 ( ) = ff ± ff 2 ( ) 2 dd 2 = ff (ff dd ) = ff ff ff ± ff 2 ( ) 2 = ff ff 2 ( ) 2 = ff ± ff 2 ( ) 2

3 Problem 3.2 (Verdeyen 6.) (a) dd = 3 4 RR 2 Γ 2 = 0.99 Γ 2 2 = 0.97 From (6.5.3), we have the resonant frequency. νν mm,pp,qq = 2nndd Now we re considering TEM0,0. (b) () FSR FFFFRR = νν mm,pp,qq = + mm + pp [qq + ( dd ) /2 ] ππ RR 2 2nndd νν 0,0,qq = + mm + pp [qq + ] 3 2nndd [qq + 3 ] RR 2 = 2mm dd = 3 2 mm λλ = 5000A = 500nnmm 2nndd = 3 08 mm/ 2 3 = 0 8 = 00MMMMzz 2 mm (2) Cavity Q From (6.3.5), we have (3) Photon lifetime From (6.4.2b), we have (4) Finess ττ pp = LLLLLLhtt ffffffqqffffnnff = λλ = 6 04 MMzz FFFFRR LLLLLLhtt ffffffqqffffnnff = λλ λλ = λλ = 5000A = A QQ = 4ππnndd λλ = RR RR 2 2nndd/ RR RR 2 = = 25.89nnff

4 From (6.3.8), we have FF = 2ππ RR RR 2 =

5 Problem 3.3 (Verdeyen ) 6.5 νν 0 = MMzz λλ 0 = = 600nnmm νν FFFFRR = 25MMMMzz = dd =.2mm 2nndd FF = FFFFRR νν /2 = 25MMMMzz 2.5MMMMzz = From (6.4.4), we have photon lifetime. 6.0 ττ pp = QQ = νν 0 = 5 04 MMzz = νν /2 2.5MMMMzz QQ = 2ππνν 0 2ππ MMzz = nnff From p.54, the requirement of a laser to oscillate is its lifetime is negative, meaning photons are growing in the cavity. From (6.3.8), we can calculate the RR RR 2. 2ππ FF = RR RR 2 RR RR 2 = 2ππ FF RR RR 2 = 2ππ FF = ττ pp = 2nndd/ GGRR GGRR 2 < 0 GGRR GGRR 2 < 0 GG > RR RR 2 =.06947

6 Problem 3.4 (Verdeyen 6.9) (a) It s a stable cavity. 0.5 TT = = AA + DD = 3 4 (b) νν mm,pp,qq = 2nndd νν mm,pp,qq = For TEM0,0,q, its frequency is For TEM,0,q, its frequency is (c) + mm + pp [qq + ( dd ) /2 ] ππ RR 2 dd = 0.75 RR mm + pp [qq ] 2nndd ππ νν 0,0,qq = νν,0,qq = νν,0,qq νν 0,0,qq = From (6.6.2a), the TEM0,0,q transmission is 2nndd [qq + ππ ] 2nndd [qq + 2 ππ ] 2nndd = 33.3MMMMzz ππ TT = ff 2(aa ωω )2 Less than 0.% loss, which means TT = 99.9% = TT = ff 2 aa ωω 2 = aa ωω = The beam waist is largest at the spherical mirror. From (5.3.9), we have the beam waist. ππωω 2 λλ = ddrr dd RR

7 (d) ωω = 0.498mmmm aa = mmmm DDLLaammffttffff = 2aa =.85mmmm From (8..2), we have the condition to overcome the loss and induce oscillation in the cavity. γγ 0 (νν) 2ll gg ln ( RR RR 2 ) 2ll gg ln RR RR 2 = 0.5 ln 0.95 = mm = mm

8 Problem 3.5 (Verdeyen 6.25) (a) From (3.5.), we know the phase shift of a mode inside the cavity. kkdd ( + mm + pp)ttaann dd zz 0 = qqππ But this equation is for one flat mirror and a curved mirror cavity. Here we have two flat mirrors and a lens in between. We need to modify the equation for phase matching. (b) kkdd ( + mm + pp)ttaann dd + kkdd 2 ( + mm + pp)ttaann dd 2 = qqππ νν = kk = 2ππ λλ/nn = 2ππnn /νν = 2ππννnn 2(dd + dd 2 ) qq + ( + mm + pp)(ttaann dd + ttaann dd 2 ) From (6.4.2b), we have photon lifetime. (c) ττ pp = 2nn(dd + dd 2 )/ TTRR TTRR 2 = 28.8nsec λλ 0 = 545A From (6.3.5), we have the quality factor. (d) QQ = 4ππnn(dd + dd 2 ) λλ 0 From (6.4.5), linewidth can be obtained. = TTRR TTRR 2 ττ pp = 2nn(dd + dd 2 )/ GGTTRR GGTTRR 2 = 99.4nsec νν /2 = 2ππττ pp = 5.648MMMMzz

9 Problem 3.6 (Verdeyen 7.4) (a) (7.3.4) LL = LL 2 n = At equilibrium, the time rate of change should be zero. NN 2 BB 2 ρρ(νν) = NN AA 2 + BB 2 ρρ(νν) = ff hνν/kkkk Neglect the stimulated emission process, which means BB 2 = 0. BB 2 ρρ(νν) AA 2 = ff hνν/kkkk ρρ(νν) = AA 2 BB 2 ff hνν/kkkk Aording to Einstein s theory, we can get the coefficient. AA 2 = AA 2 = 8ππnn2 nn gg hνν 3 BB 2 BB 2 3 ρρ(νν) = 8ππnn2 nn gg hνν 3 3 ff hνν/kkkk This is the low temperature approximation for the original blackbody radiation. when ff hνν kkkk, it means T is small. ff hνν kkkk ~ff hνν/kkkk (b) Similar to the argument in the previous problem. If hνν, then it automatically satisfies that ff hνν kkkk. And it leads to ff hνν kkkk We have the energy density in the previous problem. In order to match the results, we require with n = and nn gg ~nn. ~ff hνν/kkkk ρρ(νν) = AA 2 BB 2 ff hνν/kkkk kkkk AA 2 = 8ππnn2 nn gg hνν 3 BB 2 3 = 8ππhνν3 3

10 (c) From the above derivation, we have the Wein s distribution. ρρ WWWWWWWW (νν) = 8ππhνν3 3 From (7.2.5), we have Rayleigh-Jeans distribution. ff hνν/kkkk ρρ Rayleigh Jeans (νν) = 8ππνν2 3 kktt And Planck s distribution is the following. ρρ Planck (νν) = 8ππhνν3 3 ff hνν kkkk By observations, the Wein and Rayleigh-Jeans are both approximations under extreme conditions. For Wein s distribution, we have shown that it is an extreme case when hνν kkkk. For Rayleigh-Jeans distribution, it is the other condition hνν kkkk. Note that lim xx 0 WW xx lim ρρ hνν Planck (νν) = 8ππνν2 kktt. kkkk 3 xx ρρ Planck (νν) = 8ππνν2 kktt 3 hνν/kktt ff hνν kkkk =. Then we have the Rayleigh-Jeans distribution

11 Problem 3.7 (Verdeyen 7.4) (a) First we need to write down the energy (here we re using frequency because frequency is proportional to energy) distribution function of each group of atoms. As described in the problem, we should use Lorentzian function. The lineshape function can be written down in the following equation. νν h LL(νν) = pp(ff)ddff 2ππ[(ff νν) 2 + ( νν h /2) 2 ] I ignore the Planck constants here because we only concern about the shape, not the exact number. From the figure of p(f), we can modify the above lineshape function. Let xx = ff νν LL(νν) = νν 0 + νν ss /2 νν 0 νν ss /2 νν h ddff νν ss 2ππ[(ff νν) 2 + ( νν h /2) 2 ] = νν νν 0 + νν ss /2 h ddff 2ππ νν ss [(ff νν) 2 + ( νν h /2) 2 ] νν 0 νν ss /2 Note: LL(νν) = νν h 2ππ νν ss νν 0 + νν ss 2 +νν νν 0 νν ss 2 +νν ddxx [xx 2 + ( νν h /2) 2 ] xx 2 + aa 2 ddxx = aa ttaann xx + CC aa LL(νν) = (b) νν h 2 [ttaann 2 νν 2ππ νν ss νν h νν 0 + νν + νν ss h 2 ttaann ( 2 (νν νν 0 + νν νν ss h 2 ))] Without loss of generality, I am going to assume the following parameters for the plot. g.0 νν ss = aanndd νν 0 = h s h s h s

12 Problem 3.8 (Verdeyen 7.0) (a) (b) ddnn 2 ddtt = PP 2 NN 2 ττ 2 ddnn ddtt = NN 2 ττ 2 NN ττ Solve the differential equation by Mathematica. (c) NN 2 (tt) = PP 2 ττ 2 ( ff tt ττ 2 ) ddnn ddtt = PP 2 ff tt ττ 2 NN NN (tt) = PP 2 ττ ( ττ ff tt ττ + ττ 2 ff ττ ττ 2 ττ ττ 2 We have the lifetime of each state and the pumping strength. Carrier concentration cm ττ = 2μμ ττ 2 = μμ PP 2 = 0 20 mm 3 ττ tt ττ 2 ) t s N t N2 t Inversion happens when N2 state has more carriers, which means NN 2 > NN. I used Mathematica to get a numerical solution. (d) Steady state means t. δt = 2.972µs lim NN (tt) = PP 2 ττ = mm 3 tt lim NN 2(tt) = PP 2 ττ 2 = 0 4 mm 3 tt

Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following.

Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following. Problem 4.1 (Verdeyen Problem #8.7) (a) From (7.4.7), simulated emission cross section is defined as following. σσ(νν) = AA 21 λλ 2 8ππnn 2 gg(νν) AA 21 = 6 10 6 ssssss 1 From the figure, the emission

More information

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition Work, Energy, and Power Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 With the knowledge we got so far, we can handle the situation on the left but not the one on the right.

More information

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Quantum Mechanics An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 3 Experimental Basis of

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity Fall 2018 Prof. Sergio B. Mendes 1 Topics 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 Inertial Frames of Reference Conceptual and Experimental

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

OBE solutions in the rotating frame

OBE solutions in the rotating frame OBE solutions in the rotating frame The light interaction with the 2-level system is VV iiiiii = μμ EE, where μμ is the dipole moment μμ 11 = 0 and μμ 22 = 0 because of parity. Therefore, light does not

More information

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 1. (a) Suppose you want to use a lens focus a Gaussian laser beam of wavelength λ in order to obtain a beam waist radius w

More information

Photon Interactions in Matter

Photon Interactions in Matter Radiation Dosimetry Attix 7 Photon Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry,

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 1 Review for Exam3 12. 11. 2013 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 2 Chapter

More information

Elastic light scattering

Elastic light scattering Elastic light scattering 1. Introduction Elastic light scattering in quantum mechanics Elastic scattering is described in quantum mechanics by the Kramers Heisenberg formula for the differential cross

More information

9. Switched Capacitor Filters. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

9. Switched Capacitor Filters. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory 9. Switched Capacitor Filters Electronic Circuits Prof. Dr. Qiuting Huang Integrated Systems Laboratory Motivation Transmission of voice signals requires an active RC low-pass filter with very low ff cutoff

More information

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition

Wave Motion. Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition Wave Motion Chapter 14 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Waves: propagation of energy, not particles 2 Longitudinal Waves: disturbance is along the direction of wave propagation

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam3 12. 9. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

Physics 371 Spring 2017 Prof. Anlage Review

Physics 371 Spring 2017 Prof. Anlage Review Physics 71 Spring 2017 Prof. Anlage Review Special Relativity Inertial vs. non-inertial reference frames Galilean relativity: Galilean transformation for relative motion along the xx xx direction: xx =

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam2 11. 13. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

Acceleration to higher energies

Acceleration to higher energies Acceleration to higher energies While terminal voltages of 20 MV provide sufficient beam energy for nuclear structure research, most applications nowadays require beam energies > 1 GeV How do we attain

More information

Photons in the universe. Indian Institute of Technology Ropar

Photons in the universe. Indian Institute of Technology Ropar Photons in the universe Photons in the universe Element production on the sun Spectral lines of hydrogen absorption spectrum absorption hydrogen gas Hydrogen emission spectrum Element production on the

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely Atomic fluorescence 1. Introduction Transitions in multi-electron atoms Energy levels of the single-electron hydrogen atom are well-described by EE nn = RR nn2, where RR = 13.6 eeee is the Rydberg constant.

More information

Lecture 3 Transport in Semiconductors

Lecture 3 Transport in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 3 Transport in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES COMPUTERS AND STRUCTURES, INC., FEBRUARY 2016 TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES Introduction This technical note

More information

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet Secondary H Unit Lesson Worksheet Simplify: mm + 2 mm 2 4 mm+6 mm + 2 mm 2 mm 20 mm+4 5 2 9+20 2 0+25 4 +2 2 + 2 8 2 6 5. 2 yy 2 + yy 6. +2 + 5 2 2 2 0 Lesson 6 Worksheet List all asymptotes, holes and

More information

7.3 The Jacobi and Gauss-Seidel Iterative Methods

7.3 The Jacobi and Gauss-Seidel Iterative Methods 7.3 The Jacobi and Gauss-Seidel Iterative Methods 1 The Jacobi Method Two assumptions made on Jacobi Method: 1.The system given by aa 11 xx 1 + aa 12 xx 2 + aa 1nn xx nn = bb 1 aa 21 xx 1 + aa 22 xx 2

More information

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition Gravitation Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 What you are about to learn: Newton's law of universal gravitation About motion in circular and other orbits How to

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 3. Solar energy conversion with band-gap materials ChE-600 Kevin Sivula, Spring 2014 The Müser Engine with a concentrator T s Q 1 = σσ CffT ss 4 + 1 Cff T pp

More information

The Bose Einstein quantum statistics

The Bose Einstein quantum statistics Page 1 The Bose Einstein quantum statistics 1. Introduction Quantized lattice vibrations Thermal lattice vibrations in a solid are sorted in classical mechanics in normal modes, special oscillation patterns

More information

Varying accelerating fields

Varying accelerating fields Varying accelerating fields Two approaches for accelerating with time-varying fields Linear Accelerators Circular Accelerators Use many accelerating cavities through which the particle beam passes once.

More information

Aeroacoustic optimisation by means of adjoint sensitivity maps

Aeroacoustic optimisation by means of adjoint sensitivity maps Aeroacoustic optimisation by means of adjoint sensitivity maps CHRISTOS KAPELLOS GOFUN 2018 21.02.2018 AGENDA Continuous adjoint method for external aerodynamics Physical mechanisms of sound propagation

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

Cold atoms in optical lattices

Cold atoms in optical lattices Cold atoms in optical lattices www.lens.unifi.it Tarruel, Nature Esslinger group Optical lattices the big picture We have a textbook model, which is basically exact, describing how a large collection of

More information

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems

SECTION 7: STEADY-STATE ERROR. ESE 499 Feedback Control Systems SECTION 7: STEADY-STATE ERROR ESE 499 Feedback Control Systems 2 Introduction Steady-State Error Introduction 3 Consider a simple unity-feedback system The error is the difference between the reference

More information

Thermodynamics of Radiation Pressure and Photon Momentum

Thermodynamics of Radiation Pressure and Photon Momentum Thermodynamics of Radiation Pressure and Photon Momentum Masud Mansuripur and Pin Han College of Optical Sciences, the University of Arizona, Tucson, Arizona, USA Graduate Institute of Precision Engineering,

More information

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems SECTION 7: FAULT ANALYSIS ESE 470 Energy Distribution Systems 2 Introduction Power System Faults 3 Faults in three-phase power systems are short circuits Line-to-ground Line-to-line Result in the flow

More information

EE485 Introduction to Photonics

EE485 Introduction to Photonics Pattern formed by fluorescence of quantum dots EE485 Introduction to Photonics Photon and Laser Basics 1. Photon properties 2. Laser basics 3. Characteristics of laser beams Reading: Pedrotti 3, Sec. 1.2,

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 7 Nuclear Decay Behaviors Spiritual Thought Sooner or later, I believe that all of us experience times when the very fabric of our world

More information

Charged-Particle Interactions in Matter

Charged-Particle Interactions in Matter Radiation Dosimetry Attix 8 Charged-Particle Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation

More information

Modeling of a non-physical fish barrier

Modeling of a non-physical fish barrier University of Massachusetts - Amherst ScholarWorks@UMass Amherst International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish

More information

Optical pumping and the Zeeman Effect

Optical pumping and the Zeeman Effect 1. Introduction Optical pumping and the Zeeman Effect The Hamiltonian of an atom with a single electron outside filled shells (as for rubidium) in a magnetic field is HH = HH 0 + ηηii JJ μμ JJ BB JJ μμ

More information

Last Name _Piatoles_ Given Name Americo ID Number

Last Name _Piatoles_ Given Name Americo ID Number Last Name _Piatoles_ Given Name Americo ID Number 20170908 Question n. 1 The "C-V curve" method can be used to test a MEMS in the electromechanical characterization phase. Describe how this procedure is

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

Supporting Information. for. Contactless photomagnetoelectric investigations of 2D

Supporting Information. for. Contactless photomagnetoelectric investigations of 2D Supporting Information for Contactless photomagnetoelectric investigations of 2D semiconductors Marian Nowak 1 *, Marcin Jesionek 1, Barbara Solecka 1, Piotr Szperlich 1, Piotr Duka 1 and Anna Starczewska

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

Interaction with matter

Interaction with matter Interaction with matter accelerated motion: ss = bb 2 tt2 tt = 2 ss bb vv = vv 0 bb tt = vv 0 2 ss bb EE = 1 2 mmvv2 dddd dddd = mm vv 0 2 ss bb 1 bb eeeeeeeeeeee llllllll bbbbbbbbbbbbbb dddddddddddddddd

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) December 4, 2017 IAS:

More information

Exam 2 Fall 2015

Exam 2 Fall 2015 1 95.144 Exam 2 Fall 2015 Section instructor Section number Last/First name Last 3 Digits of Student ID Number: Show all work. Show all formulas used for each problem prior to substitution of numbers.

More information

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers

10.4 Controller synthesis using discrete-time model Example: comparison of various controllers 10. Digital 10.1 Basic principle of digital control 10.2 Digital PID controllers 10.2.1 A 2DOF continuous-time PID controller 10.2.2 Discretisation of PID controllers 10.2.3 Implementation and tuning 10.3

More information

Gradient expansion formalism for generic spin torques

Gradient expansion formalism for generic spin torques Gradient expansion formalism for generic spin torques Atsuo Shitade RIKEN Center for Emergent Matter Science Atsuo Shitade, arxiv:1708.03424. Outline 1. Spintronics a. Magnetoresistance and spin torques

More information

General Strong Polarization

General Strong Polarization General Strong Polarization Madhu Sudan Harvard University Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Gurswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo) May 1, 018 G.Tech:

More information

Radiation. Lecture40: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Radiation. Lecture40: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Radiation Zone Approximation We had seen that the expression for the vector potential for a localized cuent distribution is given by AA (xx, tt) = μμ 4ππ ee iiiiii dd xx eeiiii xx xx xx xx JJ (xx ) In

More information

2.4 Error Analysis for Iterative Methods

2.4 Error Analysis for Iterative Methods 2.4 Error Analysis for Iterative Methods 1 Definition 2.7. Order of Convergence Suppose {pp nn } nn=0 is a sequence that converges to pp with pp nn pp for all nn. If positive constants λλ and αα exist

More information

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method Lecture No. 5 LL(uu) pp(xx) = 0 in ΩΩ SS EE (uu) = gg EE on ΓΓ EE SS NN (uu) = gg NN on ΓΓ NN For all weighted residual methods NN uu aaaaaa = uu BB + αα ii φφ ii For all (Bubnov) Galerkin methods ii=1

More information

BHASVIC MαTHS. Skills 1

BHASVIC MαTHS. Skills 1 PART A: Integrate the following functions with respect to x: (a) cos 2 2xx (b) tan 2 xx (c) (d) 2 PART B: Find: (a) (b) (c) xx 1 2 cosec 2 2xx 2 cot 2xx (d) 2cccccccccc2 2xx 2 ccccccccc 5 dddd Skills 1

More information

Chapter 13. Phys 322 Lecture 34. Modern optics

Chapter 13. Phys 322 Lecture 34. Modern optics Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Four-level System Threshold Some lasers Pump Fast decay Laser Fast decay

More information

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2-level system Consider a collection of identical two-level atoms in thermal equilibrium.

More information

CHAPTER 4 Structure of the Atom

CHAPTER 4 Structure of the Atom CHAPTER 4 Structure of the Atom Fall 2018 Prof. Sergio B. Mendes 1 Topics 4.1 The Atomic Models of Thomson and Rutherford 4.2 Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the

More information

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr Time Domain Analysis of Linear Systems Ch2 University of Central Oklahoma Dr. Mohamed Bingabr Outline Zero-input Response Impulse Response h(t) Convolution Zero-State Response System Stability System Response

More information

Phy207 Final Exam (Form1) Professor Zuo Fall Signature: Name:

Phy207 Final Exam (Form1) Professor Zuo Fall Signature: Name: #1-25 #26 Phy207 Final Exam (Form1) Professor Zuo Fall 2018 On my honor, I have neither received nor given aid on this examination #27 Total Signature: Name: ID number: Enter your name and Form 1 (FM1)

More information

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films Hans T. Nembach, Justin M. Shaw, Mathias Weiler*, Emilie Jué and Thomas J. Silva Electromagnetics

More information

TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points)

TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points) IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS TSOKOS READING ACTIVITY Section 7-2: The Greenhouse Effect and Global Warming (8 points) 1. IB Assessment Statements for Topic 8.5.

More information

P.3 Division of Polynomials

P.3 Division of Polynomials 00 section P3 P.3 Division of Polynomials In this section we will discuss dividing polynomials. The result of division of polynomials is not always a polynomial. For example, xx + 1 divided by xx becomes

More information

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations Last Time Minimum Variance Unbiased Estimators Sufficient Statistics Proving t = T(x) is sufficient Neyman-Fischer Factorization

More information

Thermodynamics of Radiation Pressure and Photon Momentum (Part 2)

Thermodynamics of Radiation Pressure and Photon Momentum (Part 2) Thermodynamics of Radiation Pressure and Photon Momentum (Part ) Masud Mansuripur College of Optical Sciences, The University of Arizona, Tucson, Arizona, USA [Published in Complex Light and Optical Forces

More information

Figure 1 Relaxation processes within an excited state or the ground state.

Figure 1 Relaxation processes within an excited state or the ground state. Excited State Processes and Application to Lasers The technology of the laser (Light Amplified by Stimulated Emission of Radiation) was developed in the early 1960s. The technology is based on an understanding

More information

ABSTRACT OF THE DISSERTATION

ABSTRACT OF THE DISSERTATION A Study of an N Molecule-Quantized Radiation Field-Hamiltonian BY MICHAEL THOMAS TAVIS DOCTOR OF PHILOSOPHY, GRADUATE PROGRAM IN PHYSICS UNIVERSITY OF CALIFORNIA, RIVERSIDE, DECEMBER 1968 PROFESSOR FREDERICK

More information

Coulomb s Law and Coulomb s Constant

Coulomb s Law and Coulomb s Constant Pre-Lab Quiz / PHYS 224 Coulomb s Law and Coulomb s Constant Your Name: Lab Section: 1. What will you investigate in this lab? 2. Consider a capacitor created when two identical conducting plates are placed

More information

Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive

Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive Journal of Mechanics Engineering and Automation 8 (2018) 205-213 doi: 10.17265/2159-5275/2018.05.003 D DAVID PUBLISHING Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive Bukhar

More information

Review of Last Class 1

Review of Last Class 1 Review of Last Class 1 X-Ray diffraction of crystals: the Bragg formulation Condition of diffraction peak: 2dd sin θθ = nnλλ Review of Last Class 2 X-Ray diffraction of crystals: the Von Laue formulation

More information

Coarse-Graining via the Mori-Zwanzig Formalism

Coarse-Graining via the Mori-Zwanzig Formalism Coarse-Graining via the Mori-Zwanzig Formalism George Em Karniadakis & Zhen Li http://www.pnnl.gov/computing/cm4/ Supported by DOE ASCR Mori-Zwanzig can be used to: 1. Derive coarse-grained equations 2.

More information

Some examples of radical equations are. Unfortunately, the reverse implication does not hold for even numbers nn. We cannot

Some examples of radical equations are. Unfortunately, the reverse implication does not hold for even numbers nn. We cannot 40 RD.5 Radical Equations In this section, we discuss techniques for solving radical equations. These are equations containing at least one radical expression with a variable, such as xx 2 = xx, or a variable

More information

Diffusion modeling for Dip-pen Nanolithography Apoorv Kulkarni Graduate student, Michigan Technological University

Diffusion modeling for Dip-pen Nanolithography Apoorv Kulkarni Graduate student, Michigan Technological University Diffusion modeling for Dip-pen Nanolithography Apoorv Kulkarni Graduate student, Michigan Technological University Abstract The diffusion model for the dip pen nanolithography is similar to spreading an

More information

The impact of hot charge carrier mobility on photocurrent losses

The impact of hot charge carrier mobility on photocurrent losses Supplementary Information for: The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells Bronson Philippa 1, Martin Stolterfoht 2, Paul L. Burn 2, Gytis Juška 3, Paul

More information

PHY103A: Lecture # 4

PHY103A: Lecture # 4 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 4 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 10-Jan-2018 Notes The Solutions to HW # 1 have been

More information

Chemical Engineering 693R

Chemical Engineering 693R Chemical Engineering 693 eactor Design and Analysis Lecture 8 Neutron ransport Spiritual hought Moroni 7:48 Wherefore, my beloved brethren, pray unto the Father with all the energy of heart, that ye may

More information

10.1 Three Dimensional Space

10.1 Three Dimensional Space Math 172 Chapter 10A notes Page 1 of 12 10.1 Three Dimensional Space 2D space 0 xx.. xx-, 0 yy yy-, PP(xx, yy) [Fig. 1] Point PP represented by (xx, yy), an ordered pair of real nos. Set of all ordered

More information

Revision : Thermodynamics

Revision : Thermodynamics Revision : Thermodynamics Formula sheet Formula sheet Formula sheet Thermodynamics key facts (1/9) Heat is an energy [measured in JJ] which flows from high to low temperature When two bodies are in thermal

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Monday and Wednesday, 5:30-6:45 pm P&A Room 184. Textbook: Many good ones (see webpage) Lectures follow order

More information

Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics

Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics Sean R. Fischbach Mashall Space Flight Center / Qualis Corp. / Jacobs ESSSA Group *MSFC Huntsville sean.r.fischbach@nasa.gov Outline

More information

Unit WorkBook 4 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 4 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample 2018 UniCourse Ltd. A Rights Reserved. Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 8: Mechanical Principles Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Translational

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

Magnetic Force and Current Balance

Magnetic Force and Current Balance Pre-Lab Quiz / PHYS 224 Magnetic Force and Current Balance Name Lab Section 1. What do you investigate in this lab? 2. Consider two parallel straight wires carrying electric current in opposite directions

More information

Terms of Use. Copyright Embark on the Journey

Terms of Use. Copyright Embark on the Journey Terms of Use All rights reserved. No part of this packet may be reproduced, stored in a retrieval system, or transmitted in any form by any means - electronic, mechanical, photo-copies, recording, or otherwise

More information

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation

Big Bang Planck Era. This theory: cosmological model of the universe that is best supported by several aspects of scientific evidence and observation Big Bang Planck Era Source: http://www.crystalinks.com/bigbang.html Source: http://www.odec.ca/index.htm This theory: cosmological model of the universe that is best supported by several aspects of scientific

More information

A linear operator of a new class of multivalent harmonic functions

A linear operator of a new class of multivalent harmonic functions International Journal of Scientific Research Publications, Volume 7, Issue 8, August 2017 278 A linear operator of a new class of multivalent harmonic functions * WaggasGalibAtshan, ** Ali Hussein Battor,

More information

Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers

Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers Institute of Advanced Study, Tsinghua, April 19, 017 Discrete scale invariance and Efimov bound states in Weyl systems with coexistence of electron and hole carriers Haiwen Liu ( 刘海文 ) Beijing Normal University

More information

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous Research Journal of Mathematics and Statistics 6: -5, 24 ISSN: 242-224, e-issn: 24-755 Maxwell Scientific Organization, 24 Submied: September 8, 23 Accepted: November 23, 23 Published: February 25, 24

More information

Chapter 6. Heat capacity, enthalpy, & entropy

Chapter 6. Heat capacity, enthalpy, & entropy Chapter 6 Heat capacity, enthalpy, & entropy 1 6.1 Introduction In this lecture, we examine the heat capacity as a function of temperature, compute the enthalpy, entropy, and Gibbs free energy, as functions

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. 1 Q. 25 carry one mark each. Q.1 Given ff(zz) = gg(zz) + h(zz), where ff, gg, h are complex valued functions of a complex variable zz. Which one of the following statements is TUE? (A) If ff(zz) is

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

Thermodynamic Cycles

Thermodynamic Cycles Thermodynamic Cycles Content Thermodynamic Cycles Carnot Cycle Otto Cycle Rankine Cycle Refrigeration Cycle Thermodynamic Cycles Carnot Cycle Derivation of the Carnot Cycle Efficiency Otto Cycle Otto Cycle

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 12 Radiation/Matter Interactions II 1 Neutron Flux The collisions of neutrons of all energies is given by FF = ΣΣ ii 0 EE φφ EE dddd All

More information