Structural Optimization of Silicon Carbide PIN Avalanche Photodiodes for UV Detection

Size: px
Start display at page:

Download "Structural Optimization of Silicon Carbide PIN Avalanche Photodiodes for UV Detection"

Transcription

1 Journal of the Korean Physical Society, Vol. 56, No. 2, February 2010, pp Structural Optimization of Silicon Carbide PIN Avalanche Photodiodes for UV Detection Ho-Young Cha School of Electronic and Electrical Engineering, Hongik University, Seoul (Received 7 December 2009, in final form 23 December 2009) The locally-enhanced electric field occurring at the etched junction surface of mesa-etched PIN avalanche photodiodes (APDs) causes early edge breakdown, resulting in a relatively lower multiplication and gain. The electric field distribution as a function of the intrinsic layer thickness and the bevel angle was investigated, and its influence on the characteristics of 4H-SiC PIN APDs, such as the breakdown voltage, the quantum efficiency, and the gain, was studied. In addition, a new structure with a field plate is proposed to diminish the edge breakdown phenomenon in mesa-etched PIN APDs. PACS numbers: Dw, Bt, Hd Keywords: Avalanche photodiode, Edge breakdown, Field plate, Silicon carbide DOI: /jkps I. INTRODUCTION Solid-state UV detectors have received great attention over photomultiplier tubes because of the benefit of their being cheap and portable devices. Currently, UV-enhanced Si photodetectors are commercially available for UV detection [1,2]. However, their low signalto-noise ratio in the deep-uv region, device aging, and sensitivity to visible photons are inherent limitations in practical applications [3]. In this point of view, silicon carbide (SiC) is a suitable candidate for the detection of UV radiation because it has high optical absorption in the UV range and exhibits a very low level of dark current due to its wide energy bandgap [3 5]. In addition, SiC devices can be utilized for high-temperature applications whereas other photodetectors require an extra cooling unit. Potential applications of UV photodetectors include jet engine/missile plume detectors, biological agent detection, etc [6]. PIN avalanche photodiodes (APDs) are a popular type of solid-state detector due to the enhanced signal-tonoise ratio. In order to achieve PIN APDs with high multiplication and gain, a uniform distribution of high electric field in the intrinsic region at the operating reverse bias is needed. When the active region in a photodiode is defined by a mesa etching process, a locally-enhanced electric field occurs at the etched junction surface, causing an early edge breakdown that depends on the bevel profile. It becomes a severe problem if the lateral extension of the highly-doped region is smaller than that of hcha@hongik.ac.kr; Fax: a lowly-doped region at the junction [7,8]. One way to suppress the locally-enhanced electric field at the junction surface is to implement a positive bevel angle in the etched surface. However, that is not a solution for typical PIN structures because the upper junction between the doped and the intrinsic layers has a negative bevel profile whereas the lower junction has a positive one. As a result, the locally-enhanced electric field at the upper junction cannot be suppressed completely. If the electric field at the junction surface is higher than that in the active intrinsic region, an avalanche process will be initiated at the surface region; thus, the multiplication process in the active region will be limited by the lower electric field strength, resulting in a poor signal-to-noise ratio. In this study, we not only investigated the electric field distribution in 4H-SiC PIN APDs as a function of the intrinsic layer thickness and the bevel angle, but also proposed a new structure to suppress the high electric field at the surface. II. STRUCTURAL ANALYSIS AND OPTIMIZATION The structure of SiC PIN APD consisted of a P + anode layer, an N intrinsic layer, an N cathode layer, and an N + contact layer, as shown in Fig. 1. The doping concentration and the thickness of each layer are summarized in Table 1, where the intrinsic layer thickness t is the dimensional variable of interest. The doping concentration of each layer was determined, considering the feasibility of material growth. Using N-type materials for -672-

2 Structural Optimization of Silicon Carbide PIN Avalanche Photodiodes for UV Detection Ho-Young Cha Fig. 1. Schematic cross-sectional view of a 4H-SiC PIN APD (t: intrinsic layer thickness and θ: bevel angle). Table 1. Doping concentration and thickness of each layer in the 4H-SiC PIN APD. Doping concentration (/cm 3 ) Thickness (nm) N + contact layer N cathode layer N intrinsic layer < t < 3000 P + anode layer the upper layers is beneficial as the diffusion length of minority holes in N-type 4H-SiC has been reported to be longer than that of minority electrons in P-type 4H-SiC [9,10], which means that more carriers can diffuse into the intrinsic region, giving rise to higher photocurrents, particularly at high photon energies where the photon penetration depth is very shallow [11]. The influence of the intrinsic layer thickness t and the bevel angle θ on the device characteristics was investigated using a comprehensive two-dimensional device simulator provided by SILVACO. Detailed information on the physical models and the material parameters used for simulation can be found elsewhere [6]. Increasing the intrinsic layer thickness in a PIN structure generally leads to a lower dark current and a higher breakdown voltage. In addition, because the intrinsic region is where the high electric field is applied under high reverse bias conditions, more photons can participate in the multiplication process with a thicker intrinsic layer, which, in turn, results in a high gain and signal-to-noise ratio. However, such enhancement will be limited, depending on the bevel angle, which will be discussed below. The intrinsic layer thickness and the bevel angle were varied from 600 nm to 3000 nm and from 10 to 80, respectively. The behaviors of the breakdown voltage as functions of the bevel angle for various intrinsic layer thicknesses are shown in Fig. 2(a). The breakdown voltage of the SiC PIN APD with a 600-nm intrinsic layer is independent of the bevel angle whereas that with thicker intrinsic layers exhibits a noticeable dependency on the bevel angle. The breakdown voltage decreases as the bevel angle approaches and is more significant Fig. 2. (a) Breakdown voltage vs the bevel angle for various intrinsic layer thicknesses. (b) Maximum electric field in the active intrinsic region vs the intrinsic layer thickness for various bevel angles. The reverse biases were set to the corresponding breakdown voltages shown in (a). with increasing intrinsic layer thickness, for example, a 20% reduction for a 3000-nm-thick intrinsic layer. The maximum electric field in the active intrinsic region was examined with the reverse bias set to the breakdown voltages obtained in Fig. 2(a). It is obvious that the maximum electric field decreases as the intrinsic layer thickness increases. Therefore, we suggest that the impact ionization is initiated not in the active region, but elsewhere. According to the electric field distribution simulated with the given structures, the highest electric field was, indeed, found at the upper junction on the etched surface, which is responsible for the early edge breakdown phenomenon. Consequently, incident photons in a SiC PIN APD with a thick intrinsic layer do not experience strong avalanche multiplication prior to the breakdown, which, in turn, will result in a poor gain. The quantum efficiency was also investigated as a function of the intrinsic layer thickness. Because the quan-

3 -674- Journal of the Korean Physical Society, Vol. 56, No. 2, February 2010 Fig. 4. Schematic cross-sectional view of a 4H-SiC PIN APD with a field plate. Fig. 3. Quantum efficiency vs wavelength for various intrinsic layer thicknesses. The reverse bias was set to 50 V, which is far below the breakdown region. tum efficiency was calculated at a low reverse bias (i.e. 50 V) far below the breakdown voltage, it is not affected by the early edge breakdown and is, thus, independent of the bevel angle. The quantum efficiency versus wavelength for various intrinsic layer thicknesses is shown in Fig. 3. A maximum quantum efficiency of 80% was obtained at wavelengths of nm, which is much superior to what was achieved using a SiC separate absorption and multiplication APD (SAM-APD) [6]. A detailed discussion of SiC SAM-APDs can be found elsewhere [11]. In Fig. 3, the quantum efficiency is relatively independent of the intrinsic layer thickness in the short wavelength region, which is associated with a significant increase in the surface reflection and a decrease in the penetration depth due to the high photon energy. On the other hand, the quantum efficiency at wavelengths >250 nm increases with increasing intrinsic layer thickness, which is due to more photons being available in the intrinsic region. There are potential applications utilizing wavelengths in the range of nm, such as non-line-of-sight covert communication and specific bioagent detection [12,13]. In order to achieve a high quantum efficiency in this wavelength region, it is necessary to employ a thick intrinsic layer. However, such a thick PIN structure cannot be used in an avalanche mode due to the significant reduction in multiplication caused by the limited electric field strength in the active intrinsic region, as discussed above. In order to solve this inherent problem, the maximum electric field in the active intrinsic region must be increased without an early edge breakdown. A field plate structure was incorporated into the mesa- Fig. 5. Dark current, photocurrent, and gain vs reverse bias voltage: (a) mesa-etched 4H-SiC PIN APD without a field plate, and (b) mesa-etched 4H-SiC APD with a field plate. Both have an intrinsic layer thickness of 2700 nm and a bevel angle of 10. etched SiC PIN APD to suppress the locally-enhanced electric field at the junction on the etched surface. A schematic cross-sectional view of the field plate PIN APD is shown in Fig. 4. The field plate was placed on the upper edge of the mesa, was separated by a 1-µm-thick oxide, and was extended laterally over the upper junction region. The target wavelength of interest was 280 nm,

4 Structural Optimization of Silicon Carbide PIN Avalanche Photodiodes for UV Detection Ho-Young Cha Fig. 6. Electric field distribution of a 4H-SiC PIN APD without a field plate: (a) two-dimensional view and (b) threedimensional view. The reverse bias was set to 515 V (breakdown voltage). Fig. 7. Electric field distribution of a 4H-SiC PIN APD with a field plate: (a) two-dimensional view and (b) threedimensional view. The reverse bias was set to 585 V (breakdown voltage). and a 2700-nm-thick intrinsic layer was chosen to achieve a high photoresponsivity. Two structures with the same bevel angel (10 ) were compared: one without a field plate (conventional structure) and the other one with a field plate (field plate structure). The current-voltage characteristics of the two structures with and without UV illumination are compared in Fig. 5 where the device s active area is 100 µm 2. The breakdown voltage of the conventional structure is much lower than that of the field plate structure due to the early edge breakdown. A light source with a wavelength of 280 nm was used to illuminate the top of the active region. The incident photons in the conventional structure experience little multiplication even at a reverse bias near the breakdown voltage because of the relatively low electric field strength in the active intrinsic region. On the other hand, a much higher electric field is applied to the active region for the field plate structure; thus, the incident photons participate in a strong avalanche process. As a result, high gain can be achieved in the field plate structure, which is clearly seen in the electric field distribution simulated under a reverse bias near the breakdown voltage. Twodimensional and three-dimensional views of the electric field distribution for both structures are shown in Figs. 6 and 7. The electric field in the active intrinsic region of the field plate structure ranges from 1.9 MV/cm to 2.4 MV/cm whereas that of the conventional structure ranges from 1.6 MV/cm to 2.1 MV/cm. The enhanced electric field strength in the field plate structure resulted in superior detection characteristics. III. CONCLUSION The locally-enhanced electric field on the etched mesa surface causes an early edge breakdown in 4H-SiC PIN structures with a thick intrinsic layer and, thus, limits the maximum electric field in the active intrinsic region. This limited electric field strength results in poor multiplication and gain. Such degradation becomes an important issue as the intrinsic layer thickness increases. A field plate was incorporated into a conventional 4H-SiC PIN APD to suppress the high electric field at the etched surface. As a result, the maximum electric field in the active intrinsic region was noticeably enhanced, leading to a high multiplication and gain. We suggest that this simple approach can be adopted to implement very high sensitivity SiC APDs.

5 -676- Journal of the Korean Physical Society, Vol. 56, No. 2, February 2010 ACKNOWLEDGMENTS This work was supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF D00297). The author thanks S. Soloviev, A. Vertiatchikh, and P. M. Sandvik at GE Global Research for useful discussion. REFERENCES [1] Y. A. Goldberg, Semicond. Sci. Technol. 14, R41 (1999). [2] M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996). [3] E. Monroy, F. Omnes and F. Calle, Semicond. Sci. Technol. 18, R33 (2003). [4] K.-S. Park, T. Kimoto and H. Matsunami, J. Korean Phys. Soc. 30, 123 (1997). [5] K.-S. Park, K.-S. Nahm, T. Kimoto and H. Matsunami, J. Korean Phys. Soc. 33, 86 (1998). [6] H.-Y. Cha and P. M. Sandvik, Japan. J. Appl. Phys. Part 1 47, 5423 (2008). [7] J. Cornu, Electron. Lett. 8, 169 (1972). [8] J. Cornu, IEEE Trans. Electron Dev. 20, 347 (1973). [9] available at Semicond/SiC/recombination.html. [10] K. Vassilevski, Int. J. High Speed Electron. Syst. 15, 899 (2005). [11] H.-Y. Cha, S. Soloviev, S. Zelakiewicz, P. Waldrab and P. M. Sandvik, IEEE Sensors J. 8, 233 (2008). [12] G. A. Shaw, A. M. Siegel and J. Model, Proc. of SPIE, 6231, 62310C.1 (2006). [13] A. A. Allerman, M. H. Crawfor, A. J. Fischer, K. H. A. Bogart, S. R. Lee, D. M. Follstaedt, P. P. Provencio and D. D. Koleske, J. Cryst. Growth 272, 227 (2004).

Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout. ECE 162C Lecture #13 Prof. John Bowers

Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout. ECE 162C Lecture #13 Prof. John Bowers Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout ECE 162C Lecture #13 Prof. John Bowers Definitions Quantum efficiency η: Ratio of the number of electrons collected to the number of

More information

LEC E T C U T R U E R E 17 -Photodetectors

LEC E T C U T R U E R E 17 -Photodetectors LECTURE 17 -Photodetectors Topics to be covered Photodetectors PIN photodiode Avalanche Photodiode Photodetectors Principle of the p-n junction Photodiode A generic photodiode. Photodetectors Principle

More information

Lecture 12. Semiconductor Detectors - Photodetectors

Lecture 12. Semiconductor Detectors - Photodetectors Lecture 12 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

Photosynthesis & Solar Power Harvesting

Photosynthesis & Solar Power Harvesting Lecture 23 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

Chapter 4. Photodetectors

Chapter 4. Photodetectors Chapter 4 Photodetectors Types of photodetectors: Photoconductos Photovoltaic Photodiodes Avalanche photodiodes (APDs) Resonant-cavity photodiodes MSM detectors In telecom we mainly use PINs and APDs.

More information

AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence

AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence Vol. 25, No. 20 2 Oct 2017 OPTICS EXPRESS 24340 AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence ANDREW H. JONES,1 YUAN YUAN,1 MIN REN,1 SCOTT J. MADDOX,2 SETH R. BANK,2

More information

Lect. 10: Photodetectors

Lect. 10: Photodetectors Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche

More information

Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths

Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths 04 (51)-AF:Modelo-AF 8/20/11 6:37 AM Page 107 Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths Michelly de Souza 1, Olivier

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

SILICON AVALANCHE PHOTODIODES ARRAY FOR PARTICLE DETECTOR: MODELLING AND FABRICATION

SILICON AVALANCHE PHOTODIODES ARRAY FOR PARTICLE DETECTOR: MODELLING AND FABRICATION SILICON AVALANCHE PHOTODIODES ARRAY FOR PARTICLE DETECTOR: ODELLING AND FABRICATION Alexandre Khodin, Dmitry Shvarkov, Valery Zalesski Institute of Electronics, National Academy of Sciences of Belarus

More information

Photodetector Basics

Photodetector Basics Photodetection: Absorption => Current Generation hυ Currents Materials for photodetection: t ti E g

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

ECEN 5645 Introduc0on to Optoelectronics Class Mee0ng 25. Non- PIN Solid State Detectors

ECEN 5645 Introduc0on to Optoelectronics Class Mee0ng 25. Non- PIN Solid State Detectors ECEN 5645 Introduc0on to Optoelectronics Class Mee0ng 25 Non- PIN Solid State Detectors Today s Topics Avalanche Photodiodes Problem 5.6 APD Numerics and Examples Heterojunc0on Detectors Problem 5.10 Quantum

More information

Modeling of the Substrate Current and Characterization of Traps in MOSFETs under Sub-Bandgap Photonic Excitation

Modeling of the Substrate Current and Characterization of Traps in MOSFETs under Sub-Bandgap Photonic Excitation Journal of the Korean Physical Society, Vol. 45, No. 5, November 2004, pp. 1283 1287 Modeling of the Substrate Current and Characterization of Traps in MOSFETs under Sub-Bandgap Photonic Excitation I.

More information

Investigation of manufacturing variations of planar InP/InGaAs avalanche photodiodes for optical receivers

Investigation of manufacturing variations of planar InP/InGaAs avalanche photodiodes for optical receivers Microelectronics Journal 35 (2004) 635 640 www.elsevier.com/locate/mejo Investigation of manufacturing variations of planar InP/InGaAs avalanche photodiodes for optical receivers Bongyong Lee a, Hongil

More information

Photonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University

Photonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University Photonic Communications Engineering Lecture Dr. Demetris Geddis Department of Engineering Norfolk State University Light Detectors How does this detector work? Image from visionweb.com Responds to range

More information

Key words: avalanche photodiode, soft X-ray detector, scintillation γ-ray detector, imaging device PACS: 07.85;95.55.A;85.60.D

Key words: avalanche photodiode, soft X-ray detector, scintillation γ-ray detector, imaging device PACS: 07.85;95.55.A;85.60.D We have studied the performance of large area avalanche photodiodes (APDs) recently developed by Hamamatsu Photonics K.K, in high-resolution X-rays and γ- rays detections. We show that reach-through APD

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche

More information

X-ray spectrometry with Peltier-cooled large area avalanche photodiodes

X-ray spectrometry with Peltier-cooled large area avalanche photodiodes Nuclear Instruments and Methods in Physics Research B 213 (24) 267 271 www.elsevier.com/locate/nimb X-ray spectrometry with Peltier-cooled large area avalanche photodiodes L.M.P. Fernandes, J.A.M. Lopes,

More information

Optimization of InGaAs/InAlAs Avalanche Photodiodes

Optimization of InGaAs/InAlAs Avalanche Photodiodes Chen et al. Nanoscale Research Letters (2017) 12:33 DOI 10.1186/s11671-016-1815-9 NANO EXPRESS Optimization of InGaAs/InAlAs Avalanche Photodiodes Jun Chen 1*, Zhengyu Zhang 1, Min Zhu 1, Jintong Xu 2

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information for Mid-infrared HgTe colloidal quantum dot photodetectors Sean Keuleyan, Emmanuel Lhuillier, Vuk Brajuskovic and Philippe Guyot-Sionnest* Optical absorption

More information

Radiation Detector 2016/17 (SPA6309)

Radiation Detector 2016/17 (SPA6309) Radiation Detector 2016/17 (SPA6309) Semiconductor detectors (Leo, Chapter 10) 2017 Teppei Katori Semiconductor detectors are used in many situations, mostly for some kind of high precision measurement.

More information

Supporting Information. InGaAs Nanomembrane/Si van der Waals Heterojunction. Photodiodes with Broadband and High Photoresponsivity

Supporting Information. InGaAs Nanomembrane/Si van der Waals Heterojunction. Photodiodes with Broadband and High Photoresponsivity Supporting Information InGaAs Nanomembrane/Si van der Waals Heterojunction Photodiodes with Broadband and High Photoresponsivity Doo-Seung Um, Youngsu Lee, Seongdong Lim, Jonghwa Park, Wen-Chun Yen, Yu-Lun

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Photodetectors - Sipm, P. Jarron - F. Powolny 1 PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Pierre Jarron, Francois Powolny OUTLINE 2 Brief history and overview of photodetectors

More information

25 Instruments for Optical Spectrometry

25 Instruments for Optical Spectrometry 25 Instruments for Optical Spectrometry 25A INSTRUMENT COMPONENTS (1) source of radiant energy (2) wavelength selector (3) sample container (4) detector (5) signal processor and readout (a) (b) (c) Fig.

More information

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance Best Student Paper Award A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance Wei Wu a, Alireza Bonakdar, Ryan Gelfand, and Hooman Mohseni Bio-inspired Sensors and

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information

Computer modelling of Hg 1 x Cd x Te photodiode performance

Computer modelling of Hg 1 x Cd x Te photodiode performance Computer modelling of Hg 1 x Cd x Te photodiode performance Robert Ciupa * Abstract A numerical technique has been used to solve the carrier transport equations for Hg 1-x Cd x Te photodiodes. The model

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

High-temperature characteristics of SiC Schottky barrier diodes related to physical phenomena

High-temperature characteristics of SiC Schottky barrier diodes related to physical phenomena High-temperature characteristics of SiC Schottky barrier diodes related to physical phenomena Tsuyoshi Funaki 1a), Tsunenobu Kimoto 2, and Takashi Hikihara 1 1 Kyoto University, Dept. of Electrical Eng.

More information

Auxiliaire d enseignement Nicolas Ayotte

Auxiliaire d enseignement Nicolas Ayotte 2012-02-15 GEL 4203 / GEL 7041 OPTOÉLECTRONIQUE Auxiliaire d enseignement Nicolas Ayotte GEL 4203 / GEL 7041 Optoélectronique VI PN JUNCTION The density of charge sign Fixed charge density remaining 2

More information

Very long wavelength type-ii InAs/GaSb superlattice infrared detectors

Very long wavelength type-ii InAs/GaSb superlattice infrared detectors Very long wavelength type-ii InAs/GaSb superlattice infrared detectors L. Höglund 1, J. B. Rodriguez 2, S. Naureen 1, R. Ivanov 1, C. Asplund 1, R. Marcks von Würtemberg 1, R. Rossignol 2, P. Christol

More information

New solid state photomultiplier. Dmitry Shushakov and Vitaly Shubin

New solid state photomultiplier. Dmitry Shushakov and Vitaly Shubin New solid state photomultiplier Dmitry Shushakov and Vitaly Shubin P. N. Lebedev Physical Institute, Department of Solid State Physics, Moscow, Russia. ABSTRACT The physical principles of a new high-sensitive

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes Avalanche Photo-Diodes (APD) 2 Impact ionization in semiconductors Linear amplification

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Purpose: To convert the received optical signal into an electrical lsignal.

Purpose: To convert the received optical signal into an electrical lsignal. OPTICAL DETECTORS Optical Detectors Purpose: To convert the received optical signal into an electrical lsignal. Requirements For Detector HIGH SENSITIVITY (at operating wave lengths) at normal op. temp

More information

Photodiodes and other semiconductor devices

Photodiodes and other semiconductor devices Photodiodes and other semiconductor devices Chem 243 Winter 2017 What is a semiconductor? no e - Empty e levels Conduction Band a few e - Empty e levels Filled e levels Filled e levels lots of e - Empty

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

3.1 Absorption and Transparency

3.1 Absorption and Transparency 3.1 Absorption and Transparency 3.1.1 Optical Devices (definitions) 3.1.2 Photon and Semiconductor Interactions 3.1.3 Photon Intensity 3.1.4 Absorption 3.1 Absorption and Transparency Objective 1: Recall

More information

Solid-State Impact-Ionization Multiplier

Solid-State Impact-Ionization Multiplier Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2006-03-21 Solid-State Impact-Ionization Multiplier Hong-Wei Lee Brigham Young University - Provo Follow this and additional works

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

In this letter we report the UV detection characteristics of an epitaxial graphene (EG)/SiC based

In this letter we report the UV detection characteristics of an epitaxial graphene (EG)/SiC based Evidence of minority carrier injection efficiency >90% in an Epitaxial Graphene/SiC Schottky Emitter Bipolar Junction Phototransistor for Ultraviolet Detection Venkata S. N. Chava 1, Sabih U. Omar 2, Gabriel

More information

Schottky Diodes (M-S Contacts)

Schottky Diodes (M-S Contacts) Schottky Diodes (M-S Contacts) Three MITs of the Day Band diagrams for ohmic and rectifying Schottky contacts Similarity to and difference from bipolar junctions on electrostatic and IV characteristics.

More information

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo ICEPP, the University of Tokyo E-mail: sawada@icepp.s.u-tokyo.ac.jp The MEG experiment yielded the most stringent upper limit on the branching ratio of the flavorviolating muon decay µ + e + γ. A major

More information

Efficient Light Scattering in Mid-Infrared Detectors

Efficient Light Scattering in Mid-Infrared Detectors Efficient Light Scattering in Mid-Infrared Detectors Arvind P. Ravikumar, Deborah Sivco, and Claire Gmachl Department of Electrical Engineering, Princeton University, Princeton NJ 8544 MIRTHE Summer Symposium

More information

Siletz APD Products. Model VFP1-xCAA, VFP1-xKAB Packaged APDs

Siletz APD Products. Model VFP1-xCAA, VFP1-xKAB Packaged APDs Siletz Packaged APD Features Hermetically packaged reduced-noise NIR InGaAs avalanche photodiode (R-APD) Siletz APD Products Single-Carrier Multiplication APDs (SCM-APD) in hermetic packages with optional

More information

JUNCTION LEAKAGE OF A SiC-BASED NON-VOLATILE RANDOM ACCESS MEMORY (NVRAM) K. Y. Cheong ABSTRACT INTRODUCTION

JUNCTION LEAKAGE OF A SiC-BASED NON-VOLATILE RANDOM ACCESS MEMORY (NVRAM) K. Y. Cheong ABSTRACT INTRODUCTION JUNCTION LEAKAGE OF A SiC-BASED NON-VOLATILE RANDOM ACCESS MEMORY (NVRAM) K. Y. Cheong Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti

More information

Comparison of Ge, InGaAs p-n junction solar cell

Comparison of Ge, InGaAs p-n junction solar cell ournal of Physics: Conference Series PAPER OPEN ACCESS Comparison of Ge, InGaAs p-n junction solar cell To cite this article: M. Korun and T. S. Navruz 16. Phys.: Conf. Ser. 77 135 View the article online

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

A SIMULATION MODEL APPROACH TO ANALYSIS OF HIGH BREAKDOWN VOLTAGE IN NORMALLY-OFF 4H-SiC VERTICAL JUNCTION FIELD EFFECT TRANSISTOR

A SIMULATION MODEL APPROACH TO ANALYSIS OF HIGH BREAKDOWN VOLTAGE IN NORMALLY-OFF 4H-SiC VERTICAL JUNCTION FIELD EFFECT TRANSISTOR Journal of Ovonic Research Vol. 14, No. 6, November December 2018, p. 459-465 A SIMULATION MODEL APPROACH TO ANALYSIS OF HIGH BREAKDOWN VOLTAGE IN NORMALLY-OFF 4H-SiC VERTICAL JUNCTION FIELD EFFECT TRANSISTOR

More information

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Tuesday, September 23, 2014 Lecture 07 1 Introduction to Solar Cells Topics to be covered: Solar cells and sun light Review on semiconductor

More information

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET Device 3D 3D Device Simulator Device 3D is a physics based 3D device simulator for any device type and includes material properties for the commonly used semiconductor materials in use today. The physical

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Ge/Si Photodiodes with Embedded Arrays of Ge Quantum Dots for the Near Infrared ( mm) Region

Ge/Si Photodiodes with Embedded Arrays of Ge Quantum Dots for the Near Infrared ( mm) Region Semiconductors, Vol. 37, No., 2003, pp. 345 349. Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No., 2003, pp. 383 388. Original Russian Text Copyright 2003 by Yakimov, Dvurechenskiœ, Nikiforov,

More information

Optical interference and nonlinearities in quantum-well infrared photodetectors

Optical interference and nonlinearities in quantum-well infrared photodetectors Physica E 7 (2000) 115 119 www.elsevier.nl/locate/physe Optical interference and nonlinearities in quantum-well infrared photodetectors M. Ershov a;, H.C. Liu b, A.G.U. Perera a, S.G. Matsik a a Department

More information

NEW METHOD FOR DETERMINING AVALANCHE BREAKDOWN VOLTAGE OF SILICON PHOTOMULTIPLIERS

NEW METHOD FOR DETERMINING AVALANCHE BREAKDOWN VOLTAGE OF SILICON PHOTOMULTIPLIERS D13-2017-28 I. Chirikov-Zorin NEW METHOD FOR DETERMINING AVALANCHE BREAKDOWN VOLTAGE OF SILICON PHOTOMULTIPLIERS Presented at the International Conference Instrumentation for Colliding Beam Physicsª (INSTR17),

More information

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC FUNDAMENTAL PROPERTIES OF SOLAR CELLS February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

In recent years there has been a considerable interest and a widespread research effort in the development ofavalanche photodiodes (APDs) with thin mu

In recent years there has been a considerable interest and a widespread research effort in the development ofavalanche photodiodes (APDs) with thin mu Breakdown Voltage in Thin III V Avalanche Photodiodes Mohammad A. Saleh Electro-Optics Program, University of Dayton, Dayton, OH 45469 0245 USA Majeed M. Hayat a), Oh-Hyun Kwon Department of Electrical

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research Page 1 of 6 M R S Internet Journal of Nitride Semiconductor Research Volume 9, Article 7 The Ambient Temperature Effect on Current-Voltage Characteristics of Surface-Passivated GaN-Based Field-Effect Transistors

More information

Dark Current Limiting Mechanisms in CMOS Image Sensors

Dark Current Limiting Mechanisms in CMOS Image Sensors Dark Current Limiting Mechanisms in CMOS Image Sensors Dan McGrath BAE Systems Information and Electronic Systems Integration Inc., Lexington, MA 02421, USA,

More information

Multiband GaN/AlGaN UV Photodetector

Multiband GaN/AlGaN UV Photodetector Vol. 110 (2006) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXV International School of Semiconducting Compounds, Jaszowiec 2006 Multiband GaN/AlGaN UV Photodetector K.P. Korona, A. Drabińska, K.

More information

Breakdown Voltage Characteristics of SiC Schottky Barrier Diode with Aluminum Deposition Edge Termination Structure

Breakdown Voltage Characteristics of SiC Schottky Barrier Diode with Aluminum Deposition Edge Termination Structure Journal of the Korean Physical Society, Vol. 49, December 2006, pp. S768 S773 Breakdown Voltage Characteristics of SiC Schottky Barrier Diode with Aluminum Deposition Edge Termination Structure Seong-Jin

More information

SiPM cryogenic operation down to 77 K

SiPM cryogenic operation down to 77 K SiPM cryogenic operation down to 77 K D. Prêle 1, D. Franco 1, D. Ginhac 2, K. Jradi 2,F.Lebrun 1, S. Perasso 1, D. Pellion 2, A. Tonazzo 1, F. Voisin 1, 1 APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu,

More information

Performance Analysis of an InGaAs Based p-i-n Photodetector

Performance Analysis of an InGaAs Based p-i-n Photodetector Performance Analysis of an InGaAs Based p-i-n Photodetector Diponkar Kundu 1, Dilip Kumar Sarker 2, Md. Galib Hasan 3, Pallab Kanti Podder 4, Md. Masudur Rahman 5 Abstract an InGaAs based p-i-n photodetector

More information

A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis

A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis M. Jagadesh Kumar and C. Linga Reddy, "A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis", IEEE Trans. on Electron Devices, Vol.50, pp.1690-1693,

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV EE495/695 Introduction to Semiconductors I Y. Baghzouz ECE Department UNLV Introduction Solar cells have always been aligned closely with other electronic devices. We will cover the basic aspects of semiconductor

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.46 Position dependent and millimetre-range photodetection in phototransistors with micrometre-scale graphene on SiC Biddut K.

More information

Analytic Model for Photo-Response of p-channel MODFET S

Analytic Model for Photo-Response of p-channel MODFET S Journal of the Korean Physical Society, Vol. 42, February 2003, pp. S642 S646 Analytic Model for Photo-Response of p-channel MODFET S Hwe-Jong Kim, Ilki Han, Won-Jun Choi, Young-Ju Park, Woon-Jo Cho and

More information

A Novel Nano-Injector Based Single Photon Infrared Detector

A Novel Nano-Injector Based Single Photon Infrared Detector A Novel Nano-Injector Based Single Photon Infrared Detector H. Mohseni, O.G. Memis, S.C. Kong, and A. Katsnelson Department of Electrical Engineering and Computer Science Northwestern University Evanston,

More information

Chapter 5 Lateral Diffusion Lengths of Minority Carriers

Chapter 5 Lateral Diffusion Lengths of Minority Carriers 111 Chapter 5 Lateral Diffusion Lengths of Minority Carriers The nbn photodetector is proposed as a tool for measuring the lateral diffusion length of minority carriers in an epitaxially grown crystal

More information

LAAPD Performance Measurements in Liquid Xenon

LAAPD Performance Measurements in Liquid Xenon LAAPD Performance Measurements in Liquid Xenon David Day Summer REU 2004 Nevis Laboratories, Columbia University Irvington, NY August 3, 2004 Abstract Performance measurements of a 16mm diameter large

More information

MINIMIZING REFLECTION AND FOCUSSING OF INCIDENT WAVE TO ENHANCE ENERGY DEPOSITION IN PHOTODETECTOR S ACTIVE REGION

MINIMIZING REFLECTION AND FOCUSSING OF INCIDENT WAVE TO ENHANCE ENERGY DEPOSITION IN PHOTODETECTOR S ACTIVE REGION Progress In Electromagnetics Research, PIER 65, 71 80, 2006 MINIMIZING REFLECTION AND FOCUSSING OF INCIDENT WAVE TO ENHANCE ENERGY DEPOSITION IN PHOTODETECTOR S ACTIVE REGION A. A. Pavel, P. Kirawanich,

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

Effect of a Current Blocking Barrier on a 2 6 µm p-gaas/algaas. Heterojunction Infrared Detector

Effect of a Current Blocking Barrier on a 2 6 µm p-gaas/algaas. Heterojunction Infrared Detector Effect of a Current Blocking Barrier on a 2 6 µm p-gaas/algaas Heterojunction Infrared Detector D. Chauhan, 1 A. G.U. Perera, 1, a) L. H. Li, 2 L. Chen, 2 and E. H. Linfield 2 1 Center for Nano-Optics

More information

Chapter 3 The InAs-Based nbn Photodetector and Dark Current

Chapter 3 The InAs-Based nbn Photodetector and Dark Current 68 Chapter 3 The InAs-Based nbn Photodetector and Dark Current The InAs-based nbn photodetector, which possesses a design that suppresses surface leakage current, is compared with both a commercially available

More information

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Supplementary Information Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Tapan Barman, Amreen A. Hussain, Bikash Sharma, Arup R. Pal* Plasma Nanotech Lab, Physical Sciences Division,

More information

FYS3410 Condensed matter physics

FYS3410 Condensed matter physics FYS3410 Condensed matter physics Lecture 23 and 24: pn-junctions and electrooptics Randi Haakenaasen UniK/UiO Forsvarets forskningsinstitutt 11.05.2016 and 18.05.2016 Outline Why pn-junctions are important

More information

Band Gap Measurement *

Band Gap Measurement * OpenStax-CNX module: m43554 1 Band Gap Measurement * Yongji Gong Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Introduction In

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 17th February 2010 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Solar cells operation

Solar cells operation Solar cells operation photovoltaic effect light and dark V characteristics effect of intensity effect of temperature efficiency efficency losses reflection recombination carrier collection and quantum

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

NCORRECTED PROOF. High-temperature high-humidity and electrical static discharge stress effects on GaN p i n UV sensor

NCORRECTED PROOF. High-temperature high-humidity and electrical static discharge stress effects on GaN p i n UV sensor Materials Science and Engineering B xxx (2005) xxx xxx 3 4 5 6 7 8 High-temperature high-humidity and electrical static discharge stress effects on GaN p i n UV sensor Su-Sir Liu a,, Pei-Wen Li a, W.H.

More information

Limiting acceptance angle to maximize efficiency in solar cells

Limiting acceptance angle to maximize efficiency in solar cells Limiting acceptance angle to maximize efficiency in solar cells Emily D. Kosten a and Harry A. Atwater a,b a Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena,

More information

Diffractometer. Geometry Optics Detectors

Diffractometer. Geometry Optics Detectors Diffractometer Geometry Optics Detectors Diffractometers Debye Scherrer Camera V.K. Pecharsky and P.Y. Zavalij Fundamentals of Powder Diffraction and Structural Characterization of Materials. Diffractometers

More information

Factors Affecting Detector Performance Goals and Alternative Photo-detectors

Factors Affecting Detector Performance Goals and Alternative Photo-detectors XENON Experiment - SAGENAP Factors Affecting Detector Performance Goals and Alternative Photo-detectors Department of Physics Brown University Source at http://gaitskell.brown.edu Gaitskell Review WIMP

More information

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency R.J. Ellingson and M.J. Heben November 4, 2014 PHYS 4580, 6280, and 7280 Simple solar cell structure The Diode Equation Ideal

More information

Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors

Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors Fatima Zohra Mahi, Luca Varani Abstract We present an analytical model for the calculation of the sensitivity, the spectral current noise

More information

Fabrication and Characteristics Study Ni-nSiC Schottky Photodiode Detector

Fabrication and Characteristics Study Ni-nSiC Schottky Photodiode Detector Fabrication and Characteristics Study Ni-nSiC Schottky Photodiode Detector Muhanad A. Ahamed Department of Electrical, Institution of Technology, Baghdad-Iraq. Abstract In the present work, schottky photodiode

More information

Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure

Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure ARGYRIOS C. VARONIDES Physics and Electrical Engineering Department University of Scranton 800 Linden

More information

Self-Consistent Drift-Diffusion Analysis of Intermediate Band Solar Cell (IBSC): Effect of Energetic Position of IB on Conversion Efficiency

Self-Consistent Drift-Diffusion Analysis of Intermediate Band Solar Cell (IBSC): Effect of Energetic Position of IB on Conversion Efficiency Self-onsistent Drift-Diffusion Analysis of ntermediate Band Solar ell (BS): Effect of Energetic Position of B on onversion Efficiency Katsuhisa Yoshida 1,, Yoshitaka Okada 1,, and Nobuyuki Sano 3 1 raduate

More information