AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence

Size: px
Start display at page:

Download "AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence"

Transcription

1 Vol. 25, No Oct 2017 OPTICS EXPRESS AlxIn1-x As ysb1-y photodiodes with low avalanche breakdown temperature dependence ANDREW H. JONES,1 YUAN YUAN,1 MIN REN,1 SCOTT J. MADDOX,2 SETH R. BANK,2 AND JOE C. CAMPBELL1 1 Electrical and Computer Engineering Department, University of Virginia, 351 McCormick Rd. Charlottesville, VA 22904, USA 2 Electrical and Computer Engineering Department, University of Texas at Austin, 1616 Guadalupe St. Austin, TX 78758, USA Abstract: We report AlxIn1-xAsySb1-y PIN and Separate Absorption, Charge and Multiplication (SACM) avalanche photodiodes (APDs) with high temperature stability. This work is based on measurements of avalanche breakdown voltage of these devices for temperatures between 223 K and 363 K. Breakdown voltage temperature coefficients are shown to be lower than those of APDs fabricated with other materials with comparable multiplication layer thicknesses Optical Society of America OCIS codes: ( ) Avalanche photodiodes (APDs); ( ) Photodetectors; ( ) Fiber optics links and subsystems; ( ) Thermal effects. References and links J. C. Campbell, Recent Advances in Avalanche Photodiodes, J. Lightwave Technol. 34(2), (2016). L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, Temperature Dependence of Avalanche Breakdown in InP and InAlAs, IEEE J. Quantum Electron. 46(8), (2010). D. J. Massey, J. P. R. David, and G. J. Rees, Temperature Dependence of Impact Ionization in Submicrometer Silicon Devices, IEEE Trans. Electron Dev. 53(9), (2006). N. Susa, H. Nakagome, O. Mikami, H. Ando, and H. Kanbe, New InGaAs/InP avalanche photodiode structure for the µm wavelength region, IEEE J. Quantum Electron. 16(8), (1980). X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown, R. Soc. Open Sci. 4(5), (2017). M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, Low-noise AlInAsSb Avalanche Photodiode, Appl. Phys. Lett. 108(8), (2016). M. Ren, S. J. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. R. Bank, AlInAsSb/GaSb Staircase Avalanche Photodiode, Appl. Phys. Lett. 108(8), (2016). M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, AlInAsSb Separate Absorption, Charge, and Multiplication Avalanche Photodiodes, Appl. Phys. Lett. 108(19), (2016). M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, Characteristics of AlxIn1 xasysb1-y (x: ) Avalanche Photodiodes, J. Lightwave Technol. 35(12), (2017). S. J. Maddox, S. D. March, and S. R. Bank, Broadly Tunable AlInAsSb Digital Alloys Grown on GaSb, Cryst. Growth Des. 16(7), (2016). H. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. C. Campbell, Y. Kang, and M. Morse, Avalanche Photodiode Punch-through Gain Determination Through Excess Noise Analysis, J. Appl. Phys. 106(6), (2009). K. Hyun and C. Park, Breakdown Characteristics in InP/InGaAs Avalanche Photodiode with p-i-n Multiplication Layer Structure, J. Appl. Phys. 81(2), (1997). R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, Jr., C.-F. Hsu, and M. A. Itzler, 2.4 μm Cutoff Wavelength Avalanche Photodiode on InP Substrate, Electron. Lett. 42(3), (2006). A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, High Gain Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes, IEEE Photonics Technol. Lett. 20(6), (2008). Y. L. Goh, D. S. Ong, S. Zhang, J. S. Ng, C. H. Tan, and J. P. R. David, InAlAs Avalanche Photodiode with Type-II Absorber for Detections beyond 2 μm, Proc. SPIE 7398, (2009). # Journal Received 14 Aug 2017; revised 14 Sep 2017; accepted 16 Sep 2017; published 25 Sep 2017

2 Vol. 25, No Oct 2017 OPTICS EXPRESS Introduction Avalanche photodiodes have been widely used in telecommunication, military, and research applications requiring receivers with high optical sensitivity [1]. APDs typically exhibit a proportional relationship between ambient temperature and bias required to maintain a constant gain, M. This is due to a change in impact ionization efficiency with temperature. Phonon scattering increases with temperature, necessitating a higher electric field and hence a higher reverse bias to realize a given avalanche gain. This gain-temperature relationship can be extended to the variation of breakdown voltage with temperature and is characterized by the breakdown voltage temperature coefficient ΔVbd/ΔT [2]. APDs operated in Geiger mode, which is used for single photon detection, are even more susceptible to slight variations in temperature. As a result of this dependence, complex cooling circuits are required to maintain a constant gain. APDs requiring only simple bias feedback circuits due to minimal values of ΔVbd/ΔT are desirable for such highly sensitive applications. Another factor contributing to ΔVbd/ΔT is the APD multiplication layer thickness. It has been shown that as the thickness of this layer increases, ΔVbd/ΔT increases linearly for temperatures between 200~400 K, while at lower temperatures, ΔVbd/ΔT is minimized [2,3]. InP and AlInAs APDs are widely used due to their low dark current and compatibility with near-infrared fiber optic telecommunications links [4]. Si APDs are also widely used for their low noise characteristics and compatibility with high-speed integrated circuitry. Extensive studies have categorized the temperature dependence of APDs designed in these material systems [2,3]. Recently, thin Al 1-x Ga x As y Sb 1-y APDs, which are lattice matched to InP, were reported with exceptionally low ΔVbd/ΔT values [5]. Previously reported Al x In 1-x As y Sb 1-y PIN and SACM APDs, which are lattice matched to GaSb, have demonstrated low excess noise, k = 0.01~0.05, and high absorption efficiency covering a wide optical spectrum [6 9]. In this paper we report temperature-dependent studies of these Al x In 1-x As y Sb 1-y APDs. In order to further test the robustness of these APDs, temporal stability was also measured. 2. Experimental details 2.1 Device growth and fabrication Al x In 1-x As y Sb 1-y epitaxial layers, with Al concentration from x = , were grown on n- type Te-doped GaSb (001) substrates by solid-source molecular beam epitaxy (MBE) as digital alloys of the binary semiconductors [10]. Two Al x In 1-x As y Sb 1-y PIN APDs with x = 0.6 and 0.7, and an Al x In 1-x As y Sb 1-y SACM APD were studied. The PIN and SACM APDs had multiplication layer thicknesses of 890nm and 1μm, respectively. The structural cross sections of the devices are shown in Fig. 1. Refs [6 9]. describe the APD structures in greater detail. Circular mesas were defined by standard photolithography techniques and N 2 /Cl 2 inductively coupled plasma dry etching. A bromine-methanol treatment was used to remove surface damage, and the mesa sidewalls were passivated with SU-8 to reduce surface leakage current. Ti/Pt/Au ohmic contacts were deposited using electron-beam evaporation. 2.2 Device growth and fabrication The APDs under test were placed in a nitrogen-cooled cryogenic chamber in order to precisely control ambient temperature. A 543 nm He-Ne CW laser was coupled into the chamber via a 9 μm-core lensed fiber in order to achieve single-carrier electron injection into the high-field multiplication regions of the APDs. Current-voltage characteristics of the APDs under test were measured with an HP 4148 semiconductor parameter analyzer. The gain, M, of the PIN APDs was extracted directly from the measured photocurrent, whereas M of the SACM APDs was determined by fitting photocurrent and excess noise [11]. The breakdown voltage of the APDs was determined by extrapolating the inverse gain 1/M to zero. ΔV bd /ΔT

3 Vol. 25, No Oct 2017 OPTICS EXPRESS was determined by measuring the variation of the breakdown voltage from 223 to 363 K and applying a linear fit. The temporal stability of the gain was measured by illuminating the devices with a 543 nm He-Ne CW laser. At room temperature (300 K), a gain of M = 10 was set for both x = 0.6 and x = 0.7 PIN APDs, while a gain of M = 13 was set for the SACM APDs. The photocurrent of each device was continuously measured for two hours. Fig. 1. Structural cross section of Al x In 1-x As y Sb 1-y PIN APDs (left) and SACM APD (right). 3. Results Figure 2 shows the breakdown voltages of the APDs as a function of ambient temperature. The slope of the linear curve fit represents ΔVbd/ΔT. The values for the Al x In 1-x As y Sb 1-y x = 0.6 and 0.7 PIN APDs and the SACM APD are 2.5, 3.8, and 15.8 mv/k, respectively. Ref [9]. contains gain curves indicating that tunneling effects are not a factor when these devices are operated at high bias. Fig. 2. Breakdown voltages of Al x In 1-x As y Sb 1-y APDs as a function of temperature.

4 Vol. 25, No Oct 2017 OPTICS EXPRESS Figure 3 shows the relation of ΔV bd /ΔT to multiplication layer thickness for both PIN and SAM APDs. Included in the comparison with Al x In 1-x As y Sb 1-y are InP, AlInAs, Si, and Al 1- xga x As y Sb 1-y [2,3,5]. Ref [2]. reports a linear relation between ΔV bd /ΔT and multiplication layer thickness, which can be represented by simple linear equations for InP and AlInAs devices. Furthermore, these equations can be scaled for SAM APDs by accounting for the depletion width [2]. These linear curves are included in Fig. 3, where the depletion width is assumed to be 1 μm larger than the multiplication layer thickness, similar to the data found in [2]. Fig. 3. ΔV bd /ΔT as a function of multiplication layer thickness for PIN APDs (a) and SAM APDs (b). Values of ΔVbd/ΔT for the Al x In 1-x As y Sb 1-y PIN and SACM APDs are shown in Table 1 and compared with InP, AlInAs, Si, and Al 1-x Ga x As y Sb 1-y APDs of various multiplication

5 Vol. 25, No Oct 2017 OPTICS EXPRESS layer thicknesses. When compared to devices with similar multiplication layer thicknesses, ΔVbd/ΔT of Al x In 1-x As y Sb 1-y PIN APDs is less than a quarter that of AlInAs devices and almost an order of magnitude lower than ΔVbd/ΔT for InP and Si devices. ΔVbd/ΔT for Al x In 1- xas y Sb 1-y SACM APDs is less than half that of AlInAs SAM structures and less than a quarter of ΔVbd/ΔT for InP SAM structures with similar multiplication layer thicknesses. Al x In 1- xas y Sb 1-y PIN APDs only show values of ΔVbd/ΔT approximately three times higher than Al 1- xga x As y Sb 1-y devices ([5]), which have multiplication layer thicknesses almost eight times thinner. Table 1. Summary of experimental breakdown voltage temperature coefficient for APDs of various materials and multiplication layer thicknesses. Material & Structure Mult. Layer Thickness (μm) ΔV bd /ΔT (mv/k) Al 0.6 In As y Sb 1-y PIN Al 0.7 In As y Sb 1-y PIN InP PIN [2] AlInAs PIN [2] Si PIN [3] Al 1-x Ga x As y Sb 1-y PIN [5] Al x In 1-x As y Sb 1-y SACM InP SAM [13] InP SAM [12] InP SAM [2] AlInAs SAM [15] 1 40 AlInAs SAM [14] AlInAs SAM [2] Figure 4 shows the stability of Al x In 1-x As y Sb 1-y APD gain as a function of time. Within a two-hour period, the PIN APDs demonstrated maximum gain errors of 1.7% and 5.1% for x = 0.6 and x = 0.7 devices respectively. In the same test, the SACM APDs demonstrated a maximum gain error of 7.4%. Fig. 4. Multiplication gain of Al x In 1-x As y Sb 1-y APDs as a function of time at 300 K. PIN APDs were operated with a bias corresponding to a gain of 10 and SACM APDs were operated with a bias corresponding to a gain of 13.

6 Vol. 25, No Oct 2017 OPTICS EXPRESS Conclusion Studies with Al x In 1-x As y Sb 1-y APDs over a wide range of ambient temperatures show superior ΔVbd/ΔT compared to APDs of conventional materials. Both PIN and SACM APD structures have demonstrated robust performance amid temperature fluctuations. Temporal measurements also indicate high stability. Combined with the previously reported low noise, low k, and high absorption efficiency characteristics of these devices, Al x In 1-x As y Sb 1-y APDs offer the possibility of high-performance over a wide range of operating temperatures. Funding Defense Advanced Research Projects Agency (DARPA); Army Research Office (ARO).

Investigation of temperature and temporal stability of AlGaAsSb avalanche photodiodes

Investigation of temperature and temporal stability of AlGaAsSb avalanche photodiodes Vol. 25, No. 26 25 Dec 2017 OPTICS EXPRESS 33610 Investigation of temperature and temporal stability of AlGaAsSb avalanche photodiodes SALMAN ABDULLAH,1 CHEE HING TAN,1,* XINXIN ZHOU,1,2 SHIYONG ZHANG,1,3

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is a copy of the final published version of a paper published via gold open

More information

In recent years there has been a considerable interest and a widespread research effort in the development ofavalanche photodiodes (APDs) with thin mu

In recent years there has been a considerable interest and a widespread research effort in the development ofavalanche photodiodes (APDs) with thin mu Breakdown Voltage in Thin III V Avalanche Photodiodes Mohammad A. Saleh Electro-Optics Program, University of Dayton, Dayton, OH 45469 0245 USA Majeed M. Hayat a), Oh-Hyun Kwon Department of Electrical

More information

Structural Optimization of Silicon Carbide PIN Avalanche Photodiodes for UV Detection

Structural Optimization of Silicon Carbide PIN Avalanche Photodiodes for UV Detection Journal of the Korean Physical Society, Vol. 56, No. 2, February 2010, pp. 672 676 Structural Optimization of Silicon Carbide PIN Avalanche Photodiodes for UV Detection Ho-Young Cha School of Electronic

More information

AVALANCHE photodiodes (APDs) can improve receiver

AVALANCHE photodiodes (APDs) can improve receiver 154 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 49, NO. 2, FEBRUARY 2013 High-Gain InAs Avalanche Photodiodes Wenlu Sun, Zhiwen Lu, Xiaoguang Zheng, Joe C. Campbell, Member, IEEE, Scott J. Maddox, Hari P.

More information

566 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 45, NO. 5, MAY 2009

566 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 45, NO. 5, MAY 2009 566 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 45, NO. 5, MAY 2009 A Theoretical Comparison of the Breakdown Behavior of In 0:52Al 0:48As and InP Near-Infrared Single-Photon Avalanche Photodiodes Souye

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

Lecture 12. Semiconductor Detectors - Photodetectors

Lecture 12. Semiconductor Detectors - Photodetectors Lecture 12 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

LEC E T C U T R U E R E 17 -Photodetectors

LEC E T C U T R U E R E 17 -Photodetectors LECTURE 17 -Photodetectors Topics to be covered Photodetectors PIN photodiode Avalanche Photodiode Photodetectors Principle of the p-n junction Photodiode A generic photodiode. Photodetectors Principle

More information

Investigation of manufacturing variations of planar InP/InGaAs avalanche photodiodes for optical receivers

Investigation of manufacturing variations of planar InP/InGaAs avalanche photodiodes for optical receivers Microelectronics Journal 35 (2004) 635 640 www.elsevier.com/locate/mejo Investigation of manufacturing variations of planar InP/InGaAs avalanche photodiodes for optical receivers Bongyong Lee a, Hongil

More information

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector

Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector Volume 9, Number 2, April 2017 Open Access Yue Hu, Student Member, IEEE Curtis R. Menyuk, Fellow, IEEE

More information

Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout. ECE 162C Lecture #13 Prof. John Bowers

Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout. ECE 162C Lecture #13 Prof. John Bowers Photodetectors Read: Kasip, Chapter 5 Yariv, Chapter 11 Class Handout ECE 162C Lecture #13 Prof. John Bowers Definitions Quantum efficiency η: Ratio of the number of electrons collected to the number of

More information

A simple empirical model for calculating gain and excess noise in GaAs/Al ξ Ga 1 ξ As APDs (0.3 ξ 0.6)

A simple empirical model for calculating gain and excess noise in GaAs/Al ξ Ga 1 ξ As APDs (0.3 ξ 0.6) A simple empirical model for calculating gain and excess noise in GaAs/Al ξ Ga 1 ξ As APDs (0.3 ξ 0.6) Mohammad Soroosh 1, Mohammad Kazem Moravvej-Farshi 1a), and Kamyar Saghafi 2 1 Advanced Device Simulation

More information

Chapter 4. Photodetectors

Chapter 4. Photodetectors Chapter 4 Photodetectors Types of photodetectors: Photoconductos Photovoltaic Photodiodes Avalanche photodiodes (APDs) Resonant-cavity photodiodes MSM detectors In telecom we mainly use PINs and APDs.

More information

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche

More information

A Novel Nano-Injector Based Single Photon Infrared Detector

A Novel Nano-Injector Based Single Photon Infrared Detector A Novel Nano-Injector Based Single Photon Infrared Detector H. Mohseni, O.G. Memis, S.C. Kong, and A. Katsnelson Department of Electrical Engineering and Computer Science Northwestern University Evanston,

More information

Lect. 10: Photodetectors

Lect. 10: Photodetectors Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche

More information

AVALANCHE photodiodes (APDs), which have signal

AVALANCHE photodiodes (APDs), which have signal 2296 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 7, JULY 2013 Dual-Carrier High-Gain Low-Noise Superlattice Avalanche Photodiodes Jun Huang, Koushik Banerjee, Siddhartha Ghosh, Senior Member, IEEE,

More information

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance Best Student Paper Award A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance Wei Wu a, Alireza Bonakdar, Ryan Gelfand, and Hooman Mohseni Bio-inspired Sensors and

More information

Optimization of InGaAs/InAlAs Avalanche Photodiodes

Optimization of InGaAs/InAlAs Avalanche Photodiodes Chen et al. Nanoscale Research Letters (2017) 12:33 DOI 10.1186/s11671-016-1815-9 NANO EXPRESS Optimization of InGaAs/InAlAs Avalanche Photodiodes Jun Chen 1*, Zhengyu Zhang 1, Min Zhu 1, Jintong Xu 2

More information

Photosynthesis & Solar Power Harvesting

Photosynthesis & Solar Power Harvesting Lecture 23 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

SiPM cryogenic operation down to 77 K

SiPM cryogenic operation down to 77 K SiPM cryogenic operation down to 77 K D. Prêle 1, D. Franco 1, D. Ginhac 2, K. Jradi 2,F.Lebrun 1, S. Perasso 1, D. Pellion 2, A. Tonazzo 1, F. Voisin 1, 1 APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu,

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes Avalanche Photo-Diodes (APD) 2 Impact ionization in semiconductors Linear amplification

More information

Nonlinear Saturation Behaviors of High-Speed p-i-n Photodetectors

Nonlinear Saturation Behaviors of High-Speed p-i-n Photodetectors JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 2, FEBRUARY 2000 203 Nonlinear Saturation Behaviors of High-Speed p-i-n Photodetectors Yong-Liang Huang and Chi-Kuang Sun, Member, IEEE, Member, OSA Abstract

More information

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA. Abstract: By electrically segmenting, and series-connecting

More information

!!! #!!! %! &! & () +,,. /0., ( , 4, % 5666 & 7 8 6! 9/ (/+ : 0: 5;;< / 0 / :. / // &76 ) 9 1 1

!!! #!!! %! &! & () +,,. /0., ( , 4, % 5666 & 7 8 6! 9/ (/+ : 0: 5;;< / 0 / :. / // &76 ) 9 1 1 !!! #!!! %! &! & () +,,. /0., ( 1 2. 2 3+0, 4, % 5666 & 7 8 6! 9/ (/+ : 0: 5;;< / 0 / :. / // &76 ) 9 1 1! # = 70 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 1, JANUARY 2005 Avalanche Noise Characteristics

More information

Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors

Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors Barrier Photodetectors for High Sensitivity and High Operating Temperature Infrared Sensors Philip Klipstein General Review of Barrier Detectors 1) Higher operating temperature, T OP 2) Higher signal to

More information

PIN versus PN Homojunctions in GaInAsSb Micron Mesa Photodiodes

PIN versus PN Homojunctions in GaInAsSb Micron Mesa Photodiodes PIN versus PN Homojunctions in GaInAsSb 2.0-2.5 Micron Mesa Photodiodes J. P. Prineas a,b, J.R. Yager a,b, J. T. Olesberg b,c, S. Seydmohamadi a,b, C. Cao a,b, M. Reddy b, C. Coretsopoulos b, J. L. Hicks

More information

ac ballistic transport in a two-dimensional electron gas measured in GaAs/ AlGaAs heterostructures

ac ballistic transport in a two-dimensional electron gas measured in GaAs/ AlGaAs heterostructures ac ballistic transport in a two-dimensional electron gas measured in GaAs/ AlGaAs heterostructures Sungmu Kang and Peter J. Burke Henry Samueli School of Engineering, Electrical Engineering and Computer

More information

Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles

Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles Transient Harman Measurement of the Cross-plane ZT of InGaAs/InGaAlAs Superlattices with Embedded ErAs Nanoparticles Rajeev Singh, Zhixi Bian, Gehong Zeng, Joshua Zide, James Christofferson, Hsu-Feng Chou,

More information

Towards Solid State Photomultiplier

Towards Solid State Photomultiplier Towards Solid State Photomultiplier High Speed Avalanche Photodiodes QD based Photodiodes Dr Chee Hing Tan ( 陳志興 ) Reader in Optoelectronic Sensors Contents Introduction Basics of avalanche photodiodes

More information

LINEAR-MODE avalanche photodiodes (APDs) are used

LINEAR-MODE avalanche photodiodes (APDs) are used 54 IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, VOL. 1, NO. 2, FEBRUARY 2013 Multi-Gain-Stage InGaAs Avalanche Photodiode with Enhanced Gain and Reduced Excess Noise George M. Williams, Madison Compton,

More information

InAs photodiode for low temperature sensing

InAs photodiode for low temperature sensing InAs photodiode for low temperature sensing X. Zhou*, J. S. Ng and C. H. Tan** Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, S1 3JD, U.K. ABSTRACT We report

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Purpose: To convert the received optical signal into an electrical lsignal.

Purpose: To convert the received optical signal into an electrical lsignal. OPTICAL DETECTORS Optical Detectors Purpose: To convert the received optical signal into an electrical lsignal. Requirements For Detector HIGH SENSITIVITY (at operating wave lengths) at normal op. temp

More information

Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors

Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors Characterization of the In 0.53 Ga 0.47 As n + nn + Photodetectors Fatima Zohra Mahi, Luca Varani Abstract We present an analytical model for the calculation of the sensitivity, the spectral current noise

More information

High Performance Phase and Amplitude Modulators Based on GaInAsP Stepped Quantum Wells

High Performance Phase and Amplitude Modulators Based on GaInAsP Stepped Quantum Wells High Performance Phase and Amplitude Modulators Based on GaInAsP Stepped Quantum Wells H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles Sarnoff Corporation, Princeton, NJ 853-53

More information

Photoluminescence characterization of quantum dot laser epitaxy

Photoluminescence characterization of quantum dot laser epitaxy Photoluminescence characterization of quantum dot laser epitaxy Y. Li *, Y. C. Xin, H. Su and L. F. Lester Center for High Technology Materials, University of New Mexico 1313 Goddard SE, Albuquerque, NM

More information

Modeling Internal Heating of Optoelectronic Devices Using COMSOL

Modeling Internal Heating of Optoelectronic Devices Using COMSOL Modeling Internal Heating of Optoelectronic Devices Using COMSOL Nathan Brunner 1,2 1 Voxtel, Inc. Beaverton, OR*; 2 Department of Physics, University of Oregon, Eugene, OR *nathanb@voxtel-inc.com, 15985

More information

Chapter 3 The InAs-Based nbn Photodetector and Dark Current

Chapter 3 The InAs-Based nbn Photodetector and Dark Current 68 Chapter 3 The InAs-Based nbn Photodetector and Dark Current The InAs-based nbn photodetector, which possesses a design that suppresses surface leakage current, is compared with both a commercially available

More information

Supporting Information. InGaAs Nanomembrane/Si van der Waals Heterojunction. Photodiodes with Broadband and High Photoresponsivity

Supporting Information. InGaAs Nanomembrane/Si van der Waals Heterojunction. Photodiodes with Broadband and High Photoresponsivity Supporting Information InGaAs Nanomembrane/Si van der Waals Heterojunction Photodiodes with Broadband and High Photoresponsivity Doo-Seung Um, Youngsu Lee, Seongdong Lim, Jonghwa Park, Wen-Chun Yen, Yu-Lun

More information

Ge/Si Photodiodes with Embedded Arrays of Ge Quantum Dots for the Near Infrared ( mm) Region

Ge/Si Photodiodes with Embedded Arrays of Ge Quantum Dots for the Near Infrared ( mm) Region Semiconductors, Vol. 37, No., 2003, pp. 345 349. Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No., 2003, pp. 383 388. Original Russian Text Copyright 2003 by Yakimov, Dvurechenskiœ, Nikiforov,

More information

Electron transfer in voltage tunable two-color infrared photodetectors

Electron transfer in voltage tunable two-color infrared photodetectors JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 7 1 APRIL 2002 Electron transfer in voltage tunable two-color infrared photodetectors Amlan Majumdar a) Department of Electrical Engineering, Princeton University,

More information

Analysis of Multiplication Noise in N + NP Avalanche Photodiode

Analysis of Multiplication Noise in N + NP Avalanche Photodiode Analysis of Multiplication Noise in N + NP Avalanche Photodiode Dr. Tarik aldawi and Dr. Ashraf Abuelhaija Department of Electrical Engineering, Applied Science Private University, Amman, Jordan. Orcid

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

Siletz APD Products. Model VFP1-xCAA, VFP1-xKAB Packaged APDs

Siletz APD Products. Model VFP1-xCAA, VFP1-xKAB Packaged APDs Siletz Packaged APD Features Hermetically packaged reduced-noise NIR InGaAs avalanche photodiode (R-APD) Siletz APD Products Single-Carrier Multiplication APDs (SCM-APD) in hermetic packages with optional

More information

SHORT-WAVE infrared (SWIR) and Mid-wave infrared

SHORT-WAVE infrared (SWIR) and Mid-wave infrared 1244 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 47, NO. 9, SEPTEMBER 2011 SWIR/MWIR InP-Based p-i-n Photodiodes with InGa/GaSb Type-II Quantum Wells Baile Chen, Weiyang Jiang, Jinrong Yuan, Archie L. Holmes,

More information

NEW METHOD FOR DETERMINING AVALANCHE BREAKDOWN VOLTAGE OF SILICON PHOTOMULTIPLIERS

NEW METHOD FOR DETERMINING AVALANCHE BREAKDOWN VOLTAGE OF SILICON PHOTOMULTIPLIERS D13-2017-28 I. Chirikov-Zorin NEW METHOD FOR DETERMINING AVALANCHE BREAKDOWN VOLTAGE OF SILICON PHOTOMULTIPLIERS Presented at the International Conference Instrumentation for Colliding Beam Physicsª (INSTR17),

More information

Shot Noise Suppression in Avalanche Photodiodes

Shot Noise Suppression in Avalanche Photodiodes Shot Noise Suppression in Avalanche Photodiodes Feng Ma, Shuling Wang, and Joe C. Campbell a) Microelectronics Research Center, Department of Electrical and Computer Engineering, the University of Texas

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths

Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths 04 (51)-AF:Modelo-AF 8/20/11 6:37 AM Page 107 Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths Michelly de Souza 1, Olivier

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research Page 1 of 6 M R S Internet Journal of Nitride Semiconductor Research Volume 9, Article 7 The Ambient Temperature Effect on Current-Voltage Characteristics of Surface-Passivated GaN-Based Field-Effect Transistors

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

Boundary Effects on Multiplication Noise in Thin Heterostructure Avalanche Photodiodes: Theory and Experiment

Boundary Effects on Multiplication Noise in Thin Heterostructure Avalanche Photodiodes: Theory and Experiment 2114 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 12, DECEMBER 2002 Boundary Effects on Multiplication Noise in Thin Heterostructure Avalanche Photodiodes: Theory and Experiment Majeed M. Hayat,

More information

Very long wavelength type-ii InAs/GaSb superlattice infrared detectors

Very long wavelength type-ii InAs/GaSb superlattice infrared detectors Very long wavelength type-ii InAs/GaSb superlattice infrared detectors L. Höglund 1, J. B. Rodriguez 2, S. Naureen 1, R. Ivanov 1, C. Asplund 1, R. Marcks von Würtemberg 1, R. Rossignol 2, P. Christol

More information

Photonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University

Photonic Communications Engineering Lecture. Dr. Demetris Geddis Department of Engineering Norfolk State University Photonic Communications Engineering Lecture Dr. Demetris Geddis Department of Engineering Norfolk State University Light Detectors How does this detector work? Image from visionweb.com Responds to range

More information

Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes

Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 6, JUNE 2001 1065 Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang Abstract

More information

Chapter 17. λ 2 = 1.24 = 6200 Å. λ 2 cutoff at too short a wavelength λ 1 cutoff at to long a wavelength (increases bandwidth for noise reduces S/N).

Chapter 17. λ 2 = 1.24 = 6200 Å. λ 2 cutoff at too short a wavelength λ 1 cutoff at to long a wavelength (increases bandwidth for noise reduces S/N). 70 Chapter 17 17.1 We wish to use a photodiode as a detector for a signal of 9000 Å wavelength. Which would be the best choice of material for the photodiode, a semiconductor of bandgap = 0.5 ev, bandgap

More information

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Lecture - 1 Context and Scope of the Course (Refer Slide Time: 00:44) Welcome to this course

More information

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER

PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Photodetectors - Sipm, P. Jarron - F. Powolny 1 PHOTODETECTORS AND SILICON PHOTO MULTIPLIER ESE seminar Pierre Jarron, Francois Powolny OUTLINE 2 Brief history and overview of photodetectors

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Semiconductor Fundamentals. Professor Chee Hing Tan

Semiconductor Fundamentals. Professor Chee Hing Tan Semiconductor Fundamentals Professor Chee Hing Tan c.h.tan@sheffield.ac.uk Why use semiconductor? Microprocessor Transistors are used in logic circuits that are compact, low power consumption and affordable.

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information

University of California Postprints

University of California Postprints University of California Postprints Year 2007 Paper 2192 Cross-plane Seebeck coefficient of ErAs : InGaAs/InGaAlAs superlattices G H. Zeng, JMO Zide, W Kim, J E. Bowers, A C. Gossard, Z X. Bian, Y Zhang,

More information

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors M. Grydlik 1, P. Rauter 1, T. Fromherz 1, G. Bauer 1, L. Diehl 2, C. Falub 2, G. Dehlinger 2, H. Sigg 2, D. Grützmacher

More information

An Ensemble Monte Carlo Model to Calculate Photocurrent of MSM Photodetector

An Ensemble Monte Carlo Model to Calculate Photocurrent of MSM Photodetector www.ijcsi.org 319 An Ensemble Monte Carlo Model to Calculate Photocurrent of MSM Photodetector M. Soroosh 1 and Y. Amiri 2 1 Department of Electrical and Computer Engineering, Shahid Chamran University,

More information

Resonant cavity enhancement in heterojunction GaAsÕAlGaAs terahertz detectors

Resonant cavity enhancement in heterojunction GaAsÕAlGaAs terahertz detectors JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 4 15 FEBRUARY 2003 Resonant cavity enhancement in heterojunction GaAsÕAlGaAs terahertz detectors D. G. Esaev, S. G. Matsik, M. B. M. Rinzan, and A. G. U. Perera

More information

Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes

Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes Cao et al. Nanoscale Research Letters (2018) 13:158 https://doi.org/10.1186/s11671-018-2559-5 NANO EXPRESS Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes Siyu Cao 1,3, Yue Zhao 1,3, Sajid

More information

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY Naoya Miyashita 1, Nazmul Ahsan 1, and Yoshitaka Okada 1,2 1. Research Center

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Segmented Power Generator Modules of Bi 2 Te 3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles

Segmented Power Generator Modules of Bi 2 Te 3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles Mater. Res. Soc. Symp. Proc. Vol. 1044 2008 Materials Research Society 1044-U10-06 Segmented Power Generator Modules of Bi 2 Te 3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles Gehong Zeng 1, Je-Hyeong

More information

Chapter 5 Lateral Diffusion Lengths of Minority Carriers

Chapter 5 Lateral Diffusion Lengths of Minority Carriers 111 Chapter 5 Lateral Diffusion Lengths of Minority Carriers The nbn photodetector is proposed as a tool for measuring the lateral diffusion length of minority carriers in an epitaxially grown crystal

More information

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one

More information

A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis

A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis M. Jagadesh Kumar and C. Linga Reddy, "A New High Voltage 4H-SiC Lateral Dual Sidewall Schottky (LDSS) Rectifier: Theoretical Investigation and Analysis", IEEE Trans. on Electron Devices, Vol.50, pp.1690-1693,

More information

InAs avalanche photodiodes as X-ray detectors

InAs avalanche photodiodes as X-ray detectors Home Search Collections Journals About Contact us My IOPscience InAs avalanche photodiodes as X-ray detectors This content has been downloaded from IOPscience. Please scroll down to see the full text.

More information

This is a repository copy of Impact ionization in InAs electron avalanche photodiodes.

This is a repository copy of Impact ionization in InAs electron avalanche photodiodes. This is a repository copy of Impact ionization in InAs electron avalanche photodiodes. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/42655/ Article: Marshall, A.R.J., David,

More information

Photodiodes and other semiconductor devices

Photodiodes and other semiconductor devices Photodiodes and other semiconductor devices Chem 243 Winter 2017 What is a semiconductor? no e - Empty e levels Conduction Band a few e - Empty e levels Filled e levels Filled e levels lots of e - Empty

More information

ECEN 5645 Introduc0on to Optoelectronics Class Mee0ng 25. Non- PIN Solid State Detectors

ECEN 5645 Introduc0on to Optoelectronics Class Mee0ng 25. Non- PIN Solid State Detectors ECEN 5645 Introduc0on to Optoelectronics Class Mee0ng 25 Non- PIN Solid State Detectors Today s Topics Avalanche Photodiodes Problem 5.6 APD Numerics and Examples Heterojunc0on Detectors Problem 5.10 Quantum

More information

3.1 Absorption and Transparency

3.1 Absorption and Transparency 3.1 Absorption and Transparency 3.1.1 Optical Devices (definitions) 3.1.2 Photon and Semiconductor Interactions 3.1.3 Photon Intensity 3.1.4 Absorption 3.1 Absorption and Transparency Objective 1: Recall

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE)

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE) Mater. Res. Soc. Symp. Proc. Vol. 866 2005 Materials Research Society V3.5.1 Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Superconducting Single-photon Detectors

Superconducting Single-photon Detectors : Quantum Cryptography Superconducting Single-photon Detectors Hiroyuki Shibata Abstract This article describes the fabrication and properties of a single-photon detector made of a superconducting NbN

More information

3-1-2 GaSb Quantum Cascade Laser

3-1-2 GaSb Quantum Cascade Laser 3-1-2 GaSb Quantum Cascade Laser A terahertz quantum cascade laser (THz-QCL) using a resonant longitudinal optical (LO) phonon depopulation scheme was successfully demonstrated from a GaSb/AlSb material

More information

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes

InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes InAs/GaSb Mid-Wave Cascaded Superlattice Light Emitting Diodes John Prineas Department of Physics and Astronomy, University of Iowa May 3, 206 Collaborator: Thomas Boggess Grad Students: Yigit Aytak Cassandra

More information

Performance Analysis of an InGaAs Based p-i-n Photodetector

Performance Analysis of an InGaAs Based p-i-n Photodetector Performance Analysis of an InGaAs Based p-i-n Photodetector Diponkar Kundu 1, Dilip Kumar Sarker 2, Md. Galib Hasan 3, Pallab Kanti Podder 4, Md. Masudur Rahman 5 Abstract an InGaAs based p-i-n photodetector

More information

High performance THz quantum cascade lasers

High performance THz quantum cascade lasers High performance THz quantum cascade lasers Karl Unterrainer M. Kainz, S. Schönhuber, C. Deutsch, D. Bachmann, J. Darmo, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser THz QCL performance High output power

More information

Computer modelling of Hg 1 x Cd x Te photodiode performance

Computer modelling of Hg 1 x Cd x Te photodiode performance Computer modelling of Hg 1 x Cd x Te photodiode performance Robert Ciupa * Abstract A numerical technique has been used to solve the carrier transport equations for Hg 1-x Cd x Te photodiodes. The model

More information

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Center for High Performance Power Electronics Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Dr. Wu Lu (614-292-3462, lu.173@osu.edu) Dr. Siddharth Rajan

More information

This is a repository copy of On the analytical formulation of excess noise in avalanche photodiodes with dead space.

This is a repository copy of On the analytical formulation of excess noise in avalanche photodiodes with dead space. This is a repository copy of On the analytical formulation of excess noise in avalanche photodiodes with dead space. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/0757/

More information

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact J. Liu 1, R. Camacho 2, X. Sun 2, J. Bessette 2, Y. Cai 2, X. X. Wang 1, L. C. Kimerling 2 and J. Michel 2 1 Thayer School, Dartmouth College;

More information

Thermal conductivity of symmetrically strained Si/Ge superlattices

Thermal conductivity of symmetrically strained Si/Ge superlattices Superlattices and Microstructures, Vol. 28, No. 3, 2000 doi:10.1006/spmi.2000.0900 Available online at http://www.idealibrary.com on Thermal conductivity of symmetrically strained Si/Ge superlattices THEODORIAN

More information

SILICON AVALANCHE PHOTODIODES ARRAY FOR PARTICLE DETECTOR: MODELLING AND FABRICATION

SILICON AVALANCHE PHOTODIODES ARRAY FOR PARTICLE DETECTOR: MODELLING AND FABRICATION SILICON AVALANCHE PHOTODIODES ARRAY FOR PARTICLE DETECTOR: ODELLING AND FABRICATION Alexandre Khodin, Dmitry Shvarkov, Valery Zalesski Institute of Electronics, National Academy of Sciences of Belarus

More information

Photodetector Basics

Photodetector Basics Photodetection: Absorption => Current Generation hυ Currents Materials for photodetection: t ti E g

More information

Research Article The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector

Research Article The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector The Scientific World Journal Volume 2013, Article ID 213091, 5 pages http://dx.doi.org/10.1155/2013/213091 Research Article The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes

High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes Bull. Mater. Sci., Vol. 11, No. 4, December 1988, pp. 291 295. Printed in India. High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes Y K SU and T L CHEN Institute of

More information

Semiconductor Disk Laser on Microchannel Cooler

Semiconductor Disk Laser on Microchannel Cooler Semiconductor Disk Laser on Microchannel Cooler Eckart Gerster An optically pumped semiconductor disk laser with a double-band Bragg reflector mirror is presented. This mirror not only reflects the laser

More information