No slip. vs Sliding with infinite friction

Size: px
Start display at page:

Download "No slip. vs Sliding with infinite friction"

Transcription

1 No slip NSF vs Sliding with infinite friction Comments on Special for Banff 2014 Pulling by Pushing, Slip With Infinite Friction, and Perfectly Rough Surfaces Kevin Lynch, Matt Mason Int J of Robotics Research, 1995 and Wobbling, toppling, and forces of contact Tad McGeer Am. J. of Physics, 1989 Matt Kelly, Mechanical Eng, Cornell U Andy Ruina, Gregg Stiesberg, Physics,

2 Motivation/inspiration: 1) Mechanics (apparent) paradoxes are interesting a) friction and b) dynamics 2) Make a good robot good simulation c) deal with these things, or d) do something worse Conclusions: 3) Slip with is possible e) In natural situations f ) Is a useful model 4) No-slip BCs violates (or something, sometimes) g) In natural problems h) So slip is better

3 Value system (in this talk): 1) Don t violate, symmetries of space, etc. 2) Approximate constitutive laws are OK (like etc). 3) The model should have a high-precision meaning. 4) No concern for computation speed. 5) 2D for simpler pictures etc.

4 Coulomb/DaVinci/Amonton friction equation: A A F N N F B B The friction force B BN Relative slip velocity. on A from B on A from B The magnitude of the friction force BM B A B A B An upper bound on the friction force during slip during stationary contact

5 If you don t like divide by zero etc: A A F N N F B B µn N Filename:tfigure2-friction-angle φ tan sin sin if if

6 sin Constitutive 0. relation for friction Coulomb friction A surface in the space of force angle sliding velocity sin force magnitude hapter 0. sin if if if if sin Single constitutive tan parameter: sin the friction angle (PD control) (Side force) (Nothing special about if (horizontal acceleration of base) ) if 1

7 Recall Conclusions: 3) Slip with is possible e) In natural situations: 3 examples & demo f ) Is a useful model 4) No-slip BCs violates (sometimes) g) In natural problems h) So slip is better

8 Dragging stick (similar to Lynch/Mason 1995)

9 Constitutive relation for friction Coulomb friction A surface in the space of sliding velocity v sliding force normal force F N Single constitutive parameter: the friction angle Nothing special about. Surface becomes two quarter planes ( ) and one half plane ( ).

10 Dragging stick (cont d) Force per weight θ = 15 deg θ = 45 deg Drag Force Force per weight Coefficient of Friction Normal Force θ = 15 deg θ = 45 deg Coefficient of Friction F= 0.5 W N = 0 Nothing special happens when.

11 Dragging stick (cont d) Chapter 0. Athoughtexperiment ASimpleProblem-TheFallingPencil Contact Models - Two Old, One New Summary Athoughtexperiment Infinite non-slip friction ASimpleProblem-TheFallingPencil model Coulomb friction model Contact Models - Two Old, One New Infinite sliding friction model Summary A micro-mechanism that implements. Athoughtexperiment Infinite non-slip friction model Coulomb friction model Infinite sliding friction model pencil pencil pencil pencil The tip slides up the groove wall sin then slides over the top of the groovethen wall free-falls and collides with the next groov Frictionless G. Stiesberg Simulating Intermittent Contact G. Stiesberg Simulating Intermittent Contact Chapter 0. No vertical force, G. Stiesberg Simulating Intermittent Conta vertical some horizontal force, gear teeth if (Demo) if

12 Infinite friction example 2: A wheel e shows too-large a bearing hole. ĵ î F N θ C r R Filename:tfigure-primitivewheel To figure out the forces involved we draw points. F x F y gure-primitivewheelfbd G µ =0 µ = A wheel d φ r θ r is not α R α R just a lever. Filename:tfigure-primitivewheelFBD2 α α

13 Infinite friction example 3: A pulley For all force at D is vertical D R r C fixed axle For Pulley g ĵ M î F A small axle makes an efficient pulley Filename:pfigure-s01-p2-3 for arbitrarily large

14 For a dragging stick and for journal bearings (wheel and pulley), infinite friction slip seems a reasonable worst case (biggest friction) model.

15 Recall Conclusions: 3) Slip with is possible e) In natural situations: 3 examples & demo f ) Is a useful model 4) No-slip BCs violates (sometimes) g) In natural problems h) So slip is better

16 Simulation of a falling pencil (McGeer 1989) Start nearly vertical at rest Tip is in non-slip infinite frictional contact with surface, equivalent to a pin joint constraint θ l y x (Usherwood video)

17 Simulation of a falling pencil (cont d) Integrate the constrained EOM until the normal force vanishes f n f t θ Release constraint when normal force gets to zero.

18 Simulation of a falling pencil (cont d) Released constraint when normal force went to zero. Surprise! Tip of pencil immediately accelerates through the floor. Why?

19 Simulation of a falling pencil (cont d) Agraphicalproofthatthetipmustacceleratethroughthe floor: JUST BEFORE LIFTOFF JUST AFTER LIFTOFF mg Why did simulation fail? mg f t f t f t Relaxing the constraint is equivalent to adding atangential force at the tip that causes it to accelerate through the surface Conclusion: infinite non-slip friction is not a physically consistent contact model

20 Simulation of a falling pencil (cont d) Three choices: 1) Allow slip (with infinite friction or whatever). 2) Allow the ground to suck. f f n 3) Allow interpenetration. f t 0 t

21 The root of all evil: Contact mass matrix relates force and acceleration at contact point ACC FORCE ACC FORCE (mass matrix video)

22 Constitutive relation for friction Coulomb friction A surface in the space of sliding velocity v (a) sliding force normal force F N Single constitutive parameter: the friction angle Nothing special about. Surface becomes two quarter planes ( ) and one half plane ( ).

23 Motivation/inspiration: 1) Mechanics (apparent) paradoxes are interesting a) friction and b) dynamics 2) Make a good robot good simulation c) deal with these things, or d) do something worse Conclusions: 3) Slip with is possible e) In natural situations (e.g., our robot sims) f ) Is a useful model 4) No-slip BCs violates (or something else) g) In natural problems h) So slip is better

24

25

26

27

28

29

Steinkamp s toy can hop 100 times but can t stand up

Steinkamp s toy can hop 100 times but can t stand up Steinkamp s toy can hop 1 times but can t stand up (appendices only) Gregg Stiesberg 1, Tim van Oijen 2, Andy Ruina 3 1 grs26@cornell.edu, Physics, Cornell University, Ithaca, NY 2 T.P.vanOijen@tudelft.nl,

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ. Assignment 9 1. A heavy cylindrical container is being rolled up an incline as shown, by applying a force parallel to the incline. The static friction coefficient is µ s. The cylinder has radius R, mass

More information

Physics 211 Week 10. Statics: Walking the Plank (Solution)

Physics 211 Week 10. Statics: Walking the Plank (Solution) Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Physics 111: Mechanics Lecture 5

Physics 111: Mechanics Lecture 5 Physics 111: Mechanics Lecture 5 Bin Chen NJIT Physics Department Forces of Friction: f q When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion.

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

ME 274 Spring 2017 Examination No. 2 PROBLEM No. 2 (20 pts.) Given:

ME 274 Spring 2017 Examination No. 2 PROBLEM No. 2 (20 pts.) Given: PROBLEM No. 2 (20 pts.) Given: Blocks A and B (having masses of 2m and m, respectively) are connected by an inextensible cable, with the cable being pulled over a small pulley of negligible mass. Block

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

Physics 111. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. Response rate: 23 out of 33

Physics 111. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. Response rate: 23 out of 33 ics day, ember 30, 2004 Mid-term survey results Ch 5: Newton s 3rd Law Ch 6: Examples Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Response rate: 23 out of 33 Several

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

SKAA 1213 Engineering Mechanics

SKAA 1213 Engineering Mechanics SKAA 1213 Engineering Mechanics TOPIC 6 FRICTION Lecturers: Rosli Anang Dr. Mohd Yunus Ishak Dr. Tan Cher Siang Lesson 7 Outline Introduction Equilibrium on a horizontal plane Equilibrium i on an inclined

More information

CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION

CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION Today s Objective: Students will be able to: a) Understand the characteristics of dry friction. b) Draw a FBD including friction. c) Solve

More information

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5 AP Physics C Fall, 2016 Work-Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. (12 pts ) 1. Consider the vectors A = 2 î + 3

More information

Total 0/15. 0/1 points POE MC.17. [ ]

Total 0/15. 0/1 points POE MC.17. [ ] Sample Problems to KSEA (2383954) Current Score: 0/15 Question Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 Total 0/15 1. 0/1 points POE1 2000.MC.17.

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Exercises on Newton s Laws of Motion

Exercises on Newton s Laws of Motion Exercises on Newton s Laws of Motion Problems created by: Raditya 1. A pendulum is hanging on a ceiling of a plane which is initially at rest. When the plane prepares to take off, it accelerates with a

More information

Physics 218 Exam III

Physics 218 Exam III Physics 218 Exam III Spring 2017 (all sections) April 17 th, 2017 Rules of the exam: Please fill out the information and read the instructions below, but do not open the exam until told to do so. 1. You

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13 ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER 2 2012/13 COURSE NAME: ENGINEERING MECHANICS - STATICS CODE: ENG 2008 GROUP: AD ENG II DATE: May 2013 TIME: DURATION: 2 HOURS INSTRUCTIONS: 1. This

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information

Forces on an inclined plane Section 2.2

Forces on an inclined plane Section 2.2 Forces on an inclined plane Section 2.2 Examples of inclined planes Previous Knowledge Since some of the incline problems lets review friction (both kinetic and static) and normal force. Friction Friction

More information

Physics 2210 Homework 18 Spring 2015

Physics 2210 Homework 18 Spring 2015 Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

Physics 170 Week 5, Lecture 2

Physics 170 Week 5, Lecture 2 Physics 170 Week 5, Lecture 2 http://www.phas.ubc.ca/ gordonws/170 Physics 170 Week 5 Lecture 2 1 Textbook Chapter 5:Section 5.5-5.7 Physics 170 Week 5 Lecture 2 2 Learning Goals: Review the condition

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF

More information

Random sample problems

Random sample problems UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Spring 2009 Random sample problems 1. The position of a particle in meters can be described by x = 10t 2.5t 2, where t is in seconds.

More information

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow Section 7.1 Based on Knight 3 rd edition Ch. 7, pgs. 167-184 When a hammer hits a nail, it exerts a forward force on the nail At

More information

Topic 2: Mechanics 2.2 Forces

Topic 2: Mechanics 2.2 Forces Representing forces as vectors A force is a push or a pull measured in Newtons. One force we are very familiar with is the force of gravity, AKA the weight. The very concepts of push and pull imply direction.

More information

Since the block has a tendency to slide down, the frictional force points up the inclined plane. As long as the block is in equilibrium

Since the block has a tendency to slide down, the frictional force points up the inclined plane. As long as the block is in equilibrium Friction Whatever we have studied so far, we have always taken the force applied by one surface on an object to be normal to the surface. In doing so, we have been making an approximation i.e., we have

More information

P 3. Figure 8.39 Constrained pulley system. , y 2. and y 3. . Introduce a coordinate function y P

P 3. Figure 8.39 Constrained pulley system. , y 2. and y 3. . Introduce a coordinate function y P Example 8.9 ulleys and Ropes Constraint Conditions Consider the arrangement of pulleys and blocks shown in Figure 8.9. The pulleys are assumed massless and frictionless and the connecting strings are massless

More information

P - f = m a x. Now, if the box is already moving, for the frictional force, we use

P - f = m a x. Now, if the box is already moving, for the frictional force, we use Chapter 5 Class Notes This week, we return to forces, and consider forces pointing in different directions. Previously, in Chapter 3, the forces were parallel, but in this chapter the forces can be pointing

More information

It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV

It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it

More information

Vector Applications. Don t think there is anything new here. Let s start easy and don t be too worried about real world complications just yet!

Vector Applications. Don t think there is anything new here. Let s start easy and don t be too worried about real world complications just yet! Vector Applications 3.. Displacement and velocity Don t think there is anything new here. Lets just have a go at the questions! 3.3. The triangle of forces Let s start easy and don t be too worried about

More information

Webreview practice test. Forces (again)

Webreview practice test. Forces (again) Please do not write on test. ID A Webreview 4.3 - practice test. Forces (again) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 5.0-kg mass is suspended

More information

Announcements 23 Sep 2014

Announcements 23 Sep 2014 Announcements 23 Sep 2014 1. After today, just one more lecture of new material before Exam 1!! a. Exam 1: Oct 2 Oct 7 (2 pm) in the Testing Center, late fee after Oct 6 2 pm b. Exam review sessions by

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 7 Lecture RANDALL D. KNIGHT Chapter 7 Newton s Third Law IN THIS CHAPTER, you will use Newton s third law to understand how objects

More information

LECTURE 11 FRICTION AND DRAG

LECTURE 11 FRICTION AND DRAG LECTURE 11 FRICTION AND DRAG 5.5 Friction Static friction Kinetic friction 5.6 Drag Terminal speed Penguins travel on ice for miles by sliding on ice, made possible by small frictional force between their

More information

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0 8 1. The mine car and its contents have a total mass of 6 Mg and a center of gravity at G. If the coefficient of static friction between the wheels and the tracks is m s = 0.4 when the wheels are locked,

More information

Newton s 3 rd Law. Book page 48-49

Newton s 3 rd Law. Book page 48-49 Newton s 3 rd Law Book page 48-49 14/9/2016 cgrahamphysics.com 2016 Newton s 2 nd Law problem Newton s second law does not always work: - does not work when applied to atoms and molecules - does not work

More information

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied.

However, the friction forces are limited in magnitude and will not prevent motion if sufficiently large forces are applied. FRICTION 1 Introduction In preceding chapters, it was assumed that surfaces in contact were either frictionless (surfaces could move freely with respect to each other) or rough (tangential forces prevent

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

More information

Forces on an inclined plane. And a little friction too

Forces on an inclined plane. And a little friction too Forces on an inclined plane And a little friction too The Takeaway } You should be able to: } 2.2.2 Identify the forces acting on an object } Forces on non-horizontal surfaces } Including Friction } 2.2.8

More information

Static Equilibrium; Torque

Static Equilibrium; Torque Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force

More information

What is the initial velocity (magnitude and direction) of the CM? Ans: v CM (0) = ( 7 /2) v 0 ; tan 1 ( 3 /2) 41 above horizontal.

What is the initial velocity (magnitude and direction) of the CM? Ans: v CM (0) = ( 7 /2) v 0 ; tan 1 ( 3 /2) 41 above horizontal. Reading: Systems of Particles, Rotations 1, 2. Key concepts: Center of mass, momentum, motion relative to CM, collisions; vector product, kinetic energy of rotation, moment of inertia; torque, rotational

More information

Experimenting with Forces

Experimenting with Forces A mother hears a loud crash in the living room. She walks into the room to see her seven-year-old son looking at a broken vase on the floor. How did that happen? she asks. I don t know. The vase just fell

More information

PHY2048 Physics with Calculus I

PHY2048 Physics with Calculus I PHY2048 Physics with Calculus I Section 584761 Prof. Douglas H. Laurence Exam 1 (Chapters 2 6) February 14, 2018 Name: Solutions 1 Instructions: This exam is composed of 10 multiple choice questions and

More information

Physics 8 Monday, October 9, 2017

Physics 8 Monday, October 9, 2017 Physics 8 Monday, October 9, 2017 Pick up a HW #5 handout if you didn t already get one on Wednesday. It s due this Friday, 10/13. It contains some Ch9 (work) problems, some Ch10 (motion in a plane) problems,

More information

Chapter 7 Newton s Third Law

Chapter 7 Newton s Third Law Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 7-2 Chapter 7 Preview Slide 7-3 Chapter 7 Preview Slide 7-4 Chapter 7 Preview Slide 7-6 Chapter

More information

Physics 8 Wednesday, October 11, 2017

Physics 8 Wednesday, October 11, 2017 Physics 8 Wednesday, October 11, 2017 HW5 due Friday. It s really Friday this week! Homework study/help sessions (optional): Bill will be in DRL 2C6 Wednesdays from 4 6pm (today). Grace will be in DRL

More information

Name ME 270 Summer 2006 Examination No. 1 PROBLEM NO. 3 Given: Below is a Warren Bridge Truss. The total vertical height of the bridge is 10 feet and each triangle has a base of length, L = 8ft. Find:

More information

Created by T. Madas WORK & ENERGY. Created by T. Madas

Created by T. Madas WORK & ENERGY. Created by T. Madas WORK & ENERGY Question (**) A B 0m 30 The figure above shows a particle sliding down a rough plane inclined at an angle of 30 to the horizontal. The box is released from rest at the point A and passes

More information

Lecture 2 - Force Analysis

Lecture 2 - Force Analysis Lecture 2 - orce Analysis A Puzzle... Triangle or quadrilateral? 4 distinct points in a plane can either be arrange as a triangle with a point inside or as a quadrilateral. Extra Brownie Points: Use the

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

Physics 2514 Lecture 13

Physics 2514 Lecture 13 Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/18 Goals We will discuss some examples that involve equilibrium. We then move on to a discussion

More information

Thursday February 8. Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Thursday February 8. Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Assignment 4 due Friday like almost every Friday Pre-class due 15min before class like every class Help Room: Here, 6-9pm Wed/Thurs SI: Morton 222, M&W 7:15-8:45pm Office Hours: 204 EAL, 10-11am Wed or

More information

Work and kinetic Energy

Work and kinetic Energy Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

Name Period Date. 75 kg. Horizontal, frictionless surface. Label a coordinate system, write the formula, substitute and solve.

Name Period Date. 75 kg. Horizontal, frictionless surface. Label a coordinate system, write the formula, substitute and solve. Example Problems 5.3 Net Force E1. Two horizontal forces, 225 N and 165 N, are exerted in the same direction on a 75 kg crate as shown below. Find the net force and the acceleration of the crate. 165 N

More information

Problem 1 Problem 2 Problem 3 Problem 4 Total

Problem 1 Problem 2 Problem 3 Problem 4 Total Name Section THE PENNSYLVANIA STATE UNIVERSITY Department of Engineering Science and Mechanics Engineering Mechanics 12 Final Exam May 5, 2003 8:00 9:50 am (110 minutes) Problem 1 Problem 2 Problem 3 Problem

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

UNIT-07. Newton s Three Laws of Motion

UNIT-07. Newton s Three Laws of Motion 1. Learning Objectives: UNIT-07 Newton s Three Laws of Motion 1. Understand the three laws of motion, their proper areas of applicability and especially the difference between the statements of the first

More information

ME 230: Kinematics and Dynamics Spring 2014 Section AD. Final Exam Review: Rigid Body Dynamics Practice Problem

ME 230: Kinematics and Dynamics Spring 2014 Section AD. Final Exam Review: Rigid Body Dynamics Practice Problem ME 230: Kinematics and Dynamics Spring 2014 Section AD Final Exam Review: Rigid Body Dynamics Practice Problem 1. A rigid uniform flat disk of mass m, and radius R is moving in the plane towards a wall

More information

Ph211 Summer 09 HW #4, week of 07/13 07/16. Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed).

Ph211 Summer 09 HW #4, week of 07/13 07/16. Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed). Solutions 1 for HW #4: Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed). We make use of: equations of kinematics, and Newton s Laws. You also (routinely) need to handle components of a vector, in nearly

More information

Question 01. A. Incorrect! This is not Newton s second law.

Question 01. A. Incorrect! This is not Newton s second law. College Physics - Problem Drill 06: Newton s Laws of Motion Question No. 1 of 10 1. Which of the options best describes the statement: Every object continues in a state of rest or uniform motion in a straight

More information

NII.3: Dynamics & Statics

NII.3: Dynamics & Statics NII.3: Dynamics & Statics Physics 203, Profs. Max Bean & Daniel Martens Yaverbaum John Jay College of Criminal Justice, the CUNY I. Friction Warm Ups A. Moxie, a 4kg calico cat (whose silvery hairs you

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

Final Exam - Spring

Final Exam - Spring EM121 Final Exam - Spring 2011-2012 Name : Section Number : Record all your answers to the multiple choice problems (1-15) by filling in the appropriate circle. All multiple choice answers will be graded

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes!

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Physics 8 Wednesday, October 19, 2011 Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Troublesome HW4 questions 1. Two objects of inertias

More information

Actually, no perfectly frictionless surface exists. For two surfaces in contact, tangential forces, called friction forces, will develop if one

Actually, no perfectly frictionless surface exists. For two surfaces in contact, tangential forces, called friction forces, will develop if one Chapter 8 Friction Actually, no perfectly frictionless surface exists. For two surfaces in contact, tangential forces, called friction forces, will develop if one attempts to move one relative to the other.

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

= M. L 2. T 3. = = cm 3

= M. L 2. T 3. = = cm 3 Phys101 First Major-1 Zero Version Sunday, March 03, 013 Page: 1 Q1. Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension

More information

Eng Sample Test 4

Eng Sample Test 4 1. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown in the figure. Adjusting the height of the hook F at the end of the tow bar is accomplished by

More information

4.4 Energy in multiple dimensions, dot product

4.4 Energy in multiple dimensions, dot product 4 CONSERVATION LAWS 4.4 Energy in multiple dimensions, dot product Name: 4.4 Energy in multiple dimensions, dot product 4.4.1 Background By this point, you have worked a fair amount with vectors in this

More information

Lecture 6. Analytical Physics 123 Prof. Noronha-Hostler Prof. Montalvo. Oct 12 th, 2018

Lecture 6. Analytical Physics 123 Prof. Noronha-Hostler Prof. Montalvo. Oct 12 th, 2018 Lecture 6 Analytical Physics 123 Prof. Noronha-Hostler Prof. Montalvo Oct 12 th, 2018 Tests The average was lower than expected, will discuss with Prof. Montolvo about a curve. Grades probably posted after

More information

1) caused by the interaction of 2 + objects. 2) opposite (opposes) motion. 3) Types Kinetic, static, sliding, rolling

1) caused by the interaction of 2 + objects. 2) opposite (opposes) motion. 3) Types Kinetic, static, sliding, rolling Friction: 1) caused by the interaction of 2 + objects 2) opposite (opposes) motion 3) Types Kinetic, static, sliding, rolling 4) size determined by: nature of surfaces force pushing surfaces together frictional

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads.

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads. 6.6 FRAMES AND MACHINES APPLICATIONS Frames are commonly used to support various external loads. How is a frame different than a truss? How can you determine the forces at the joints and supports of a

More information

Lecture 4 February 13, Mechanization

Lecture 4 February 13, Mechanization Lecture 4 February 13, 2006 Mechanization US Energy Consumption from all forms of energy from 1850-2000 1 The Lever Archimedes (Greek mathematician, 287 to 212 B.C.) who is believed to have said, Give

More information

Lecture 10 Mechanical Energy Conservation; Power

Lecture 10 Mechanical Energy Conservation; Power Potential energy Basic energy Lecture 10 Mechanical Energy Conservation; Power ACT: Zero net work The system of pulleys shown below is used to lift a bag of mass M at constant speed a distance h from the

More information

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017 Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

MITOCW 18. Quiz Review From Optional Problem Set 8

MITOCW 18. Quiz Review From Optional Problem Set 8 MITOCW 18. Quiz Review From Optional Problem Set 8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Resolving Forces. This idea can be applied to forces:

Resolving Forces. This idea can be applied to forces: Page 1 Statics esolving Forces... 2 Example 1... 3 Example 2... 5 esolving Forces into Components... 6 esolving Several Forces into Components... 6 Example 3... 7 Equilibrium of Coplanar Forces...8 Example

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information