Structured Prediction: A Large Margin Approach. Ben Taskar University of Pennsylvania

Size: px
Start display at page:

Download "Structured Prediction: A Large Margin Approach. Ben Taskar University of Pennsylvania"

Transcription

1 Structured Prediction: A Large Margin Approach Ben Taskar University of Pennsylvania

2 Structured Prediction Prediction of complex outputs Structured outputs: multivariate, correlated, constrained Novel, general way to solve many learning problems

3 Supervised Learning Learn from Regression: Binary Classification: Multiclass Classification: Structured Prediction:

4 Handwriting Recognition x y structured

5 Object Segmentation x y

6 Articulated Pose Estimation x y Arthur Gretton

7 Natural Language Parsing x y The screen was a sea of red

8 Bilingual Word Alignment x What is the anticipated cost of collecting fees under the new proposal? En vertu des nouvelles propositions, quel est le coût prévu de perception des droits? What is the anticipated cost of collecting fees under the new proposal? y En vertu de les nouvelles propositions, quel est le coût prévu de perception de les droits?

9 Protein Structure and Disulfide Bridges AVITGACERDLQCG KGTCCAVSLWIKSV RVCTPVGTSGEDCH PASHKIPFSGQRMH HTCPCAPNLACVQT SPKKFKCLSK Protein: IMT

10 Local Prediction Using only local information Ignores correlations & constraints!

11 Local Prediction building tree shrub ground

12 Challenges: Local Prediction Anatomical parts are hard to detect Histogram of Gradients (HoG) SVM classifier weights:

13 Local Prediction y x θ left upper arm

14 Challenges: Local Prediction Anatomical parts are hard to detect Histogram of Gradients (HoG) SVM classifier weights:

15 Challenges: Local Prediction Anatomical parts are hard to detect y x θ left lower arm

16 Structured Prediction Use local information + Exploit correlations Respect constraints

17 Structured Prediction building tree shrub ground

18 Structured Prediction

19 Outline Structured prediction models ( CRFs ) Sequences, trees ( CFGs ) Parse Trees ( MRFs Associative Markov networks (Special Matchings Structured large margin estimation Margins and structure Min-max formulation Linear programming inference Certificate formulation collecting fee unde th new proposa

20 Structured Models scoring function Mild assumption: space of feasible outputs linear combination

21 (* CRF Chain Markov Net (aka y a-z a-z a-z a-z a-z x Lafferty et al.

22 (* CRF Chain Markov Net (aka y a-z a-z a-z a-z a-z x *Lafferty et al.

23 Associative Markov Nets Point features spin-images, point height Edge features length of edge, edge orientation associative restriction φ j y j φ jk y k

24 CFG Parsing ( NN #(NP DT ( NP #(PP IN ( sea #(NN

25 Bilingual Word Alignment What is the anticipated cost of collecting fees under the new proposal? j k En vertu de les nouvelles propositions, quel est le coût prévu de perception de le droits? position orthography association

26 Structured Models scoring function Mild assumptions: space of feasible outputs linear combination sum of part scores

27 Supervised Structured Prediction Model: Data Learning Prediction Estimate w Local Margin (ignores structure) Likelihood ( intractable (can be Example: Weighted matching Generally: Combinatorial optimization

28 Local Estimation Model: Data Treat edges as independent decisions Estimate w locally, use globally E.g., naïve Bayes, SVM, logistic regression Simple and cheap Not well-calibrated for inference Ignores correlations & constraints

29 Conditional Likelihood Estimation Model: Data Estimate w jointly: Denominator is #P-complete [Valiant 79, Jerrum & Sinclair 93] Tractable model, intractable learning Need tractable learning method margin-based estimation

30 Outline Structured prediction models ( CRFs ) Sequences, Trees ( CFGs ) Parse Trees ( MRFs Associative Markov networks (Special Matchings Structured large margin estimation Margins and structure Min-max formulation Linear programming inference Certificate formulation collecting fee unde th new proposa

31 OCR Example We want: brace Equivalently: brace aaaaa brace aaaab a lot! brace zzzzz

32 Parsing Example We want: It was red S A B C D Equivalently: It was red S A B C D It was red S A B D F It was red S A B C D It was red S A B C D a lot! It was red S A B C D It was red S E F G H

33 Alignment Example We want: What is the Quel est le Equivalently: What is the Quel est le What is the Quel est le What is the Quel est le What is the Quel est le a lot! What is the Quel est le What is the Quel est le

34 Structured Loss b c a r e b r o r e b r o c e b r a c e It was red S A B C D S A E C D S B D A C S B E A C What is the Quel est le

35 Large margin estimation Given training examples, we want: Maximize margin Mistake weighted margin: *Collins 2, Altun et al 3, Taskar 3 # of mistakes in y

36 Large margin estimation Eliminate ( loss Add slacks for inseparable case (hinge

37 Large margin estimation Brute force enumeration Min-max formulation Plug-in linear program for inference

38 Min-max formulation Structured loss (Hamming): Inference LP Inference Key step: discrete optim. continuous optim.

39 Alternatives: Perceptron Simple iterative method Unstable for structured output: fewer instances, big updates May not converge if non-separable Noisy Voted / averaged perceptron [Freund & Schapire 99, Collins 2] Regularize / reduce variance by aggregating over iterations

40 Alternatives: Constraint Generation Add most violated constraint [Collins 2; Altun et al, 3] Handles several more general loss functions Need to re-solve QP many times Theorem: Only polynomial # of constraints needed to achieve ε-error [Tsochantaridis et al, 4] Worst case # of constraints larger than factored

41 Outline Structured prediction models ( CRFs ) Sequences ( CFGs ) Trees ( MRFs Associative Markov networks (Special Matchings Structured large margin estimation Margins and structure Min-max formulation Linear programming inference Certificate formulation collecting fee unde th new proposa

42 Matching Inference LP Need Hamming-like loss What is the anticipated cost of collecting fees under the new proposal? j k En vertu de les nouvelles propositions, quel est le coût prévu de perception de le droits? degree Has integral solutions z ( unimodular (A is totally [Nemhauser+Wolsey 88]

43 y z Map for Markov Nets..... : : : : : z : b a z : b a z. b a z. b a z. b a z. b a

44 Markov Net Inference LP normalization agreement Has integral solutions z for chains, (hyper)trees Can be fractional for untriangulated networks [Chekuri+al, Wainright+al 2]

45 Associative MN Inference LP associative restriction ( optimal ) For K=2, solutions are always integral ( cliques For K>2, within factor of 2 of optimal (results for larger [Greig+al 89, Boykov+al 99, Kolmogorov & Zabih 2, Taskar+al 4]

46 CFG Chart CNF tree = set of two types of parts: ( e Constituents (A, s, ( e CF-rules (A B C, s, m,

47 CFG Inference LP root inside outside Has integral solutions z

48 LP Duality Linear programming duality Variables constraints Constraints variables Optimal values are the same When both feasible regions are bounded

49 Min-max Formulation LP duality

50 Min-max formulation summary Formulation produces concise QP for Low-treewidth Markov networks ( K=2 ) Associative MNs Context free grammars Bipartite matchings Approximate for untriangulated MNs, AMNs with K>2 *Taskar et al 4

51 Unfactored Primal/Dual QP duality Exponentially many constraints/variables

52 Factored Primal/Dual By QP duality Dual inherits structure from problem-specific inference LP Variables μ correspond to a decomposition of α variables of the flat case

53 The Connection b c a r e b r o r e b r o c e b r a c e r c a o c r b e μ

54 Duals and Kernels Kernel trick works: Factored dual Local functions (log-potentials) can use kernels

55 3D Mapping Data provided by: Michael Montemerlo & Sebastian Thrun Laser Range Finder GPS IMU Label: ground, building, tree, shrub Training: 3 thousand points Testing: 3 million points

56

57

58

59

60 Segmentation results Hand labeled 8K test points Model SVM V-SVM M 3 N Accuracy 68% 73% 93%

61 Hypertext Classification WebKB dataset Four CS department websites: 3 pages/35 links Classify each page: faculty, course, student, project, other Train on three universities/test on fourth 2 better loopy belief propagation *Taskar et al 2 Test Error % error reduction over SVMs 38% error reduction over RMNs SVMs RMNS M^3Ns relaxed LP

62 Word Alignment Results Data: [Hansards Canadian Parliament] Trained on sentences (, edges) ( edges Tested on 35 sentences (35, Error: weighted combination of precision/recall Model GIZA/IBM4 [Och & Ney 3] +Local learning+matching +Our approach +Our approach+qap Error collecting fees unde collecting fee unde the new th new proposa proposa? [Taskar+al 5] [Lacoste-Julien+Taskar+al 6] [Vision Apps: T. S. Caetano + al. ICCV 27]

63 Modeling First Order Effects Monotonicity Local inversion Local fertility QAP NP-complete ( Mosek ) Sentences ( 3 words, k vars) few seconds Learning: use LP relaxation Testing: using LP, 83.5% sentences, 99.85% edges integral

64 Outline Structured prediction models ( CRFs ) Sequences ( CFGs ) Trees ( MRFs Associative Markov networks (Special Matchings Structured large margin estimation Margins and structure Min-max formulation Linear programming inference Certificate formulation What is the anticipated cost of collecting fees under the new proposal? collecting En vertu fee de les nouvelles unde propositions, quel th est le new coût prévu proposa de perception de les droits?

65 Certificate formulation Non-bipartite matchings: O(n 3 ) combinatorial algorithm No polynomial-size LP known Spanning trees No polynomial-size LP known Simple certificate of optimality kl ij Intuition: Verifying optimality easier than optimizing Compact optimality condition of wrt.

66 Formulation summary Brute force enumeration Min-max formulation Plug-in convex program for inference Certificate formulation Directly guarantee optimality of

67 Scalable Algorithms Convex quadratic program # variables and constraints linear in # parameters, edges Can solve using off-the-shelf software Matlab, CPLEX, Mosek, etc. Superlinear convergence Problem: linear is too large ( quadratic ) Second-order methods run out of memory Need scalable memory-efficient methods Space/time tradeoff Structured SMO [Taskar+al 4] Structured exponentiated gradient [Bartlett+al 4, Collins+al 7] Don t work for matchings, min-cuts

68 Other approaches Online methods Online updates with respect to most violated constraints [Crammer+al 5,6] Regression based methods Regression from input to transformed output space [Cortes+al 7] Learning to search Learn classifier to guide local search for structured solution [Daume+al 5] Many others

69 Generalization Bounds If the past any indication of the future, he ll have a cruller.

70 Generalization Bounds

71 Several Pointers Perceptron bound [Colllins ] Assume separability with margin γ Bound on - loss Covering-number bound [Taskar+al 3] Bound on Hamming loss Logarithmic dependence on # variables in each y Regret Bounds [Crammer+al 6] Online-style guarantees for more general loss PAC-Bayes bound [McAllester 7] Tighter analysis, consistency Bounds for Learning with Approximate Inference [Kulesza & Pereira, 7]

72 Open Questions for Large-Margin Estimation Statistical consistency Hinge loss not consistent for non-binary output [See Tewari & Bartlett 5, McAllester 7] Semi-supervised Laplacian-regularization [Altun+McAllester 5] Co-regularization [Brefeld+al 5] Latent variables Machine Translation [Liang+al 6] CCG Parsing to Logical Form [Zettlemoyer+Collins 7] Latent SVM [Ramanan et al 8] Learning with approximate inference

73 Learning with LP relaxations Does constant factor approximate inference guarantee anything a-priori about learning? No [See Kulesza & Pereira 7] Simple 3-node counter example Separable with exact inference, not separable with approximate Question: What other (stronger?) approximate inference guarantees will translate into learning guarantees?

74 Thanks!

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classification II Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Minimize Training Error? A loss function declares how costly each mistake is E.g. 0 loss for correct label,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Max-margin learning of GM Eric Xing Lecture 28, Apr 28, 2014 b r a c e Reading: 1 Classical Predictive Models Input and output space: Predictive

More information

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classifica(on III Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley The Perceptron, Again Start with zero weights Visit training instances one by one Try to classify If correct,

More information

Natural Language Processing. Classification. Margin. Linear Models: Perceptron. Issues with Perceptrons. Problems with Perceptrons.

Natural Language Processing. Classification. Margin. Linear Models: Perceptron. Issues with Perceptrons. Problems with Perceptrons. Natural Language Processing Classification Classification II Dan Klein UC Berkeley Linear Models: Perceptron The perceptron algorithm Iteratively processes the training set, reacting to training errors

More information

Classification. Statistical NLP Spring Example: Text Classification. Some Definitions. Block Feature Vectors.

Classification. Statistical NLP Spring Example: Text Classification. Some Definitions. Block Feature Vectors. tatistical NLP pring 0 Lecture : Classification Dan Klein UC Berkeley Classification Automatically make a decision about inputs Example: document category Example: image of digit digit Example: image of

More information

Structured Prediction

Structured Prediction Structured Prediction Classification Algorithms Classify objects x X into labels y Y First there was binary: Y = {0, 1} Then multiclass: Y = {1,...,6} The next generation: Structured Labels Structured

More information

Support vector machines Lecture 4

Support vector machines Lecture 4 Support vector machines Lecture 4 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin Q: What does the Perceptron mistake bound tell us? Theorem: The

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Uppsala University Department of Linguistics and Philology Slides borrowed from Ryan McDonald, Google Research Machine Learning for NLP 1(50) Introduction Linear Classifiers Classifiers

More information

Cutting Plane Training of Structural SVM

Cutting Plane Training of Structural SVM Cutting Plane Training of Structural SVM Seth Neel University of Pennsylvania sethneel@wharton.upenn.edu September 28, 2017 Seth Neel (Penn) Short title September 28, 2017 1 / 33 Overview Structural SVMs

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classifica(on III Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Objec(ve Func(ons What do we want from our weights? Depends! So far: minimize (training) errors: This is

More information

CSC 411 Lecture 17: Support Vector Machine

CSC 411 Lecture 17: Support Vector Machine CSC 411 Lecture 17: Support Vector Machine Ethan Fetaya, James Lucas and Emad Andrews University of Toronto CSC411 Lec17 1 / 1 Today Max-margin classification SVM Hard SVM Duality Soft SVM CSC411 Lec17

More information

Algorithms for Predicting Structured Data

Algorithms for Predicting Structured Data 1 / 70 Algorithms for Predicting Structured Data Thomas Gärtner / Shankar Vembu Fraunhofer IAIS / UIUC ECML PKDD 2010 Structured Prediction 2 / 70 Predicting multiple outputs with complex internal structure

More information

Sequential Supervised Learning

Sequential Supervised Learning Sequential Supervised Learning Many Application Problems Require Sequential Learning Part-of of-speech Tagging Information Extraction from the Web Text-to to-speech Mapping Part-of of-speech Tagging Given

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

A Support Vector Method for Multivariate Performance Measures

A Support Vector Method for Multivariate Performance Measures A Support Vector Method for Multivariate Performance Measures Thorsten Joachims Cornell University Department of Computer Science Thanks to Rich Caruana, Alexandru Niculescu-Mizil, Pierre Dupont, Jérôme

More information

Lab 12: Structured Prediction

Lab 12: Structured Prediction December 4, 2014 Lecture plan structured perceptron application: confused messages application: dependency parsing structured SVM Class review: from modelization to classification What does learning mean?

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Kernelized Perceptron Support Vector Machines

Kernelized Perceptron Support Vector Machines Kernelized Perceptron Support Vector Machines Emily Fox University of Washington February 13, 2017 What is the perceptron optimizing? 1 The perceptron algorithm [Rosenblatt 58, 62] Classification setting:

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Structured Prediction

Structured Prediction Machine Learning Fall 2017 (structured perceptron, HMM, structured SVM) Professor Liang Huang (Chap. 17 of CIML) x x the man bit the dog x the man bit the dog x DT NN VBD DT NN S =+1 =-1 the man bit the

More information

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines Gautam Kunapuli Example: Text Categorization Example: Develop a model to classify news stories into various categories based on their content. sports politics Use the bag-of-words representation for this

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Support Vector Machines. Machine Learning Fall 2017

Support Vector Machines. Machine Learning Fall 2017 Support Vector Machines Machine Learning Fall 2017 1 Where are we? Learning algorithms Decision Trees Perceptron AdaBoost 2 Where are we? Learning algorithms Decision Trees Perceptron AdaBoost Produce

More information

2.2 Structured Prediction

2.2 Structured Prediction The hinge loss (also called the margin loss), which is optimized by the SVM, is a ramp function that has slope 1 when yf(x) < 1 and is zero otherwise. Two other loss functions squared loss and exponential

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 12, April 23, 2013 David Sontag NYU) Graphical Models Lecture 12, April 23, 2013 1 / 24 What notion of best should learning be optimizing?

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Random Field Models for Applications in Computer Vision

Random Field Models for Applications in Computer Vision Random Field Models for Applications in Computer Vision Nazre Batool Post-doctorate Fellow, Team AYIN, INRIA Sophia Antipolis Outline Graphical Models Generative vs. Discriminative Classifiers Markov Random

More information

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask Machine Learning and Data Mining Support Vector Machines Kalev Kask Linear classifiers Which decision boundary is better? Both have zero training error (perfect training accuracy) But, one of them seems

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

ML4NLP Multiclass Classification

ML4NLP Multiclass Classification ML4NLP Multiclass Classification CS 590NLP Dan Goldwasser Purdue University dgoldwas@purdue.edu Social NLP Last week we discussed the speed-dates paper. Interesting perspective on NLP problems- Can we

More information

Support Vector Machine (continued)

Support Vector Machine (continued) Support Vector Machine continued) Overlapping class distribution: In practice the class-conditional distributions may overlap, so that the training data points are no longer linearly separable. We need

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

Structured Learning with Approximate Inference

Structured Learning with Approximate Inference Structured Learning with Approximate Inference Alex Kulesza and Fernando Pereira Department of Computer and Information Science University of Pennsylvania {kulesza, pereira}@cis.upenn.edu Abstract In many

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Reading: Ben-Hur & Weston, A User s Guide to Support Vector Machines (linked from class web page) Notation Assume a binary classification problem. Instances are represented by vector

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Outline Modeling Inference Training Applications Outline Modeling Problem definition Discriminative vs. Generative Chain CRF General

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Support Vector Machines Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

Introduction to Gaussian Process

Introduction to Gaussian Process Introduction to Gaussian Process CS 778 Chris Tensmeyer CS 478 INTRODUCTION 1 What Topic? Machine Learning Regression Bayesian ML Bayesian Regression Bayesian Non-parametric Gaussian Process (GP) GP Regression

More information

From Binary to Multiclass Classification. CS 6961: Structured Prediction Spring 2018

From Binary to Multiclass Classification. CS 6961: Structured Prediction Spring 2018 From Binary to Multiclass Classification CS 6961: Structured Prediction Spring 2018 1 So far: Binary Classification We have seen linear models Learning algorithms Perceptron SVM Logistic Regression Prediction

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Midterm Exam Solutions, Spring 2007

Midterm Exam Solutions, Spring 2007 1-71 Midterm Exam Solutions, Spring 7 1. Personal info: Name: Andrew account: E-mail address:. There should be 16 numbered pages in this exam (including this cover sheet). 3. You can use any material you

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Polyhedral Outer Approximations with Application to Natural Language Parsing

Polyhedral Outer Approximations with Application to Natural Language Parsing Polyhedral Outer Approximations with Application to Natural Language Parsing André F. T. Martins 1,2 Noah A. Smith 1 Eric P. Xing 1 1 Language Technologies Institute School of Computer Science Carnegie

More information

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated Fall 3 Computer Vision Overview of Statistical Tools Statistical Inference Haibin Ling Observation inference Decision Prior knowledge http://www.dabi.temple.edu/~hbling/teaching/3f_5543/index.html Bayesian

More information

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley

Natural Language Processing. Classification. Features. Some Definitions. Classification. Feature Vectors. Classification I. Dan Klein UC Berkeley Natural Language Processing Classification Classification I Dan Klein UC Berkeley Classification Automatically make a decision about inputs Example: document category Example: image of digit digit Example:

More information

Kernels. Machine Learning CSE446 Carlos Guestrin University of Washington. October 28, Carlos Guestrin

Kernels. Machine Learning CSE446 Carlos Guestrin University of Washington. October 28, Carlos Guestrin Kernels Machine Learning CSE446 Carlos Guestrin University of Washington October 28, 2013 Carlos Guestrin 2005-2013 1 Linear Separability: More formally, Using Margin Data linearly separable, if there

More information

Multiclass Classification-1

Multiclass Classification-1 CS 446 Machine Learning Fall 2016 Oct 27, 2016 Multiclass Classification Professor: Dan Roth Scribe: C. Cheng Overview Binary to multiclass Multiclass SVM Constraint classification 1 Introduction Multiclass

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x))

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

Classical Predictive Models

Classical Predictive Models Laplace Max-margin Markov Networks Recent Advances in Learning SPARSE Structured I/O Models: models, algorithms, and applications Eric Xing epxing@cs.cmu.edu Machine Learning Dept./Language Technology

More information

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Perceptrons Definition Perceptron learning rule Convergence Margin & max margin classifiers (Linear) support vector machines Formulation

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting Readings: Murphy 16.4; Hastie 16 Dhruv Batra Virginia Tech Administrativia HW3 Due: April 14, 11:55pm You will implement

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

Machine Learning A Geometric Approach

Machine Learning A Geometric Approach Machine Learning A Geometric Approach CIML book Chap 7.7 Linear Classification: Support Vector Machines (SVM) Professor Liang Huang some slides from Alex Smola (CMU) Linear Separator Ham Spam From Perceptron

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

Support Vector Machines

Support Vector Machines Two SVM tutorials linked in class website (please, read both): High-level presentation with applications (Hearst 1998) Detailed tutorial (Burges 1998) Support Vector Machines Machine Learning 10701/15781

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Support vector machines

Support vector machines Support vector machines Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 SVM, kernel methods and multiclass 1/23 Outline 1 Constrained optimization, Lagrangian duality and KKT 2 Support

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Sameer Maskey Week 13, Nov 28, 2012 1 Announcements Next lecture is the last lecture Wrap up of the semester 2 Final Project

More information

Linear Classifiers IV

Linear Classifiers IV Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers IV Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

The Perceptron Algorithm, Margins

The Perceptron Algorithm, Margins The Perceptron Algorithm, Margins MariaFlorina Balcan 08/29/2018 The Perceptron Algorithm Simple learning algorithm for supervised classification analyzed via geometric margins in the 50 s [Rosenblatt

More information

Lecture 18: Kernels Risk and Loss Support Vector Regression. Aykut Erdem December 2016 Hacettepe University

Lecture 18: Kernels Risk and Loss Support Vector Regression. Aykut Erdem December 2016 Hacettepe University Lecture 18: Kernels Risk and Loss Support Vector Regression Aykut Erdem December 2016 Hacettepe University Administrative We will have a make-up lecture on next Saturday December 24, 2016 Presentations

More information

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families Midterm Review Topics we covered Machine Learning Optimization Basics of optimization Convexity Unconstrained: GD, SGD Constrained: Lagrange, KKT Duality Linear Methods Perceptrons Support Vector Machines

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt)

Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt) Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt) Nathan Schneider (some slides borrowed from Chris Dyer) ENLP 12 February 2018 23 Outline Words, probabilities Features,

More information

Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods Support Vector Machines and Kernel Methods Geoff Gordon ggordon@cs.cmu.edu July 10, 2003 Overview Why do people care about SVMs? Classification problems SVMs often produce good results over a wide range

More information

18.9 SUPPORT VECTOR MACHINES

18.9 SUPPORT VECTOR MACHINES 744 Chapter 8. Learning from Examples is the fact that each regression problem will be easier to solve, because it involves only the examples with nonzero weight the examples whose kernels overlap the

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Generalized Linear Classifiers in NLP

Generalized Linear Classifiers in NLP Generalized Linear Classifiers in NLP (or Discriminative Generalized Linear Feature-Based Classifiers) Graduate School of Language Technology, Sweden 2009 Ryan McDonald Google Inc., New York, USA E-mail:

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods 2018 CS420 Machine Learning, Lecture 3 Hangout from Prof. Andrew Ng. http://cs229.stanford.edu/notes/cs229-notes3.pdf Support Vector Machines and Kernel Methods Weinan Zhang Shanghai Jiao Tong University

More information

Introduction to Data-Driven Dependency Parsing

Introduction to Data-Driven Dependency Parsing Introduction to Data-Driven Dependency Parsing Introductory Course, ESSLLI 2007 Ryan McDonald 1 Joakim Nivre 2 1 Google Inc., New York, USA E-mail: ryanmcd@google.com 2 Uppsala University and Växjö University,

More information

Boosting. CAP5610: Machine Learning Instructor: Guo-Jun Qi

Boosting. CAP5610: Machine Learning Instructor: Guo-Jun Qi Boosting CAP5610: Machine Learning Instructor: Guo-Jun Qi Weak classifiers Weak classifiers Decision stump one layer decision tree Naive Bayes A classifier without feature correlations Linear classifier

More information