Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku-Oki (Japan) earthquake

Size: px
Start display at page:

Download "Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku-Oki (Japan) earthquake"

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi: /2012gl051894, 2012 Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku-Oki (Japan) earthquake Tim J. Wright, 1 Nicolas Houlié, 1 Mark Hildyard, 1 and Tetsuya Iwabuchi 2 Received 3 April 2012; revised 17 May 2012; accepted 18 May 2012; published 20 June [1] The early warning issued after the onset of the M w 9.0 Tohoku-Oki earthquake significantly underestimated its magnitude, saturating, 120 seconds after the earthquake began, at M w 8.1. Here we investigate whether real-time deformation data from Japan s dense network of continuously-recording Global Positioning System (GPS) stations could have been used to provide a more reliable rapid estimate of the earthquake s magnitude, and ultimately a more robust tsunami forecast. We use precise point positioning in real-time mode with broadcast clock and orbital corrections to give station positions every 1 s. We then carry out a simple static inversion on a subset of stations to determine the portion of the fault that slipped and the earthquake magnitude. Unlike most previous methods, our method produces estimates of seismic moment before the earthquake rupture has completed. We find that the deformation data allow a robust magnitude estimate just 100 s after the earthquake onset. We also investigated the density of stations required for a robust moment magnitude estimate. Fewer than 1 station every 100 km are needed. We recommend that GPS data be incorporated into earthquake early warning systems for regions at threat from large magnitude earthquakes and tsunamis. Citation: Wright, T. J., N. Houlié, M. Hildyard, and T. Iwabuchi (2012), Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: The 2011 Tohoku-Oki (Japan) earthquake, Geophys. Res. Lett., 39,, doi: / 2012GL COMET+, School of Earth and Environment, University of Leeds, Leeds, UK. 2 GPS Solutions Inc., Boulder, Colorado, USA. Corresponding author: T. J. Wright, COMET+, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK. (t.j.wright@leeds.ac.uk) American Geophysical Union. All Rights Reserved. 1. Introduction [2] The successful early warning [Yamada, 2011; Hoshiba et al., 2011] issued after the onset of the M w 9.0 Great Tohoku-Oki Earthquake of 11 March 2011 [Simons et al., 2011; Ozawa et al., 2011] undoubtedly saved lives. Yet it significantly underestimated the earthquake s magnitude, saturating, 120 seconds after the earthquake began, at M w 8.1. Here, we investigate whether deformation data recorded during the earthquake could have been used to rapidly determine its magnitude more reliably than existing seismic methods, and more rapidly than GPS methods previously proposed. In addition, we explore the number of GPS stations that are required for such magnitude estimation. [3] Several countries, including Japan, now have operational earthquake early warning systems (EEW) based on seismic methods [Allen et al., 2009]. These systems are able to detect and estimate the location and magnitude of earthquakes, and to transmit this information to places yet to be shaken. To provide the longest warning times, most EEW systems attempt to estimate earthquake magnitude from the earliest P-wave arrivals. The methods developed use empirical relationships to magnitude, for either the predominant period [Nakamura, 1988; Allen and Kanamori, 2003; Kanamori, 2005; Hildyard et al., 2008; Hildyard and Rietbrock, 2010], the peak amplitudes of the early P-wave [Wu and Zhao, 2006; Zollo et al., 2006], or a combination of these methods [Wu et al., 2007]. [4] Currently, a key limitation in earthquake early warning systems is the reliability of magnitude estimations [Yamada and Mori, 2009]. In particular, the relationships may saturate for large magnitudes. For peak displacement, Wu and Zhao [2006] and Zollo et al. [2007] demonstrate saturation effects above M w For period-based methods, saturation effects above M w 6.5 have been demonstrated from theoretical considerations [Kanamori, 2005; Hildyard and Rietbrock, 2008]. Saturation is likely in part due to the short length of the time window used, and also due to insufficient data in the very large magnitude range. Both amplitude- and period-based estimates improve with a larger time window [Zollo et al., 2007; Yamada and Mori, 2009] although this may then include S-wave arrivals. [5] Deformation data from the Global Positioning System (GPS) have long been used to determine source parameters for earthquakes [e.g., Lisowski et al., 1990; Clarke et al., 1997] using simple elastic dislocation theory [Okada, 1985]. After the 2004 M w 9.3 Indonesian earthquake and tsunami, several teams investigated methods for using GPS data in real time with a particular focus on tsunami warnings [Blewitt et al., 2006; Sobolev et al., 2007; Blewitt et al., 2009; Crowell et al., 2009; Behrens et al., 2010]. Similar methods were employed after the 2010 M w 7.2 El Mayor- Cucapah earthquake [Allen and Ziv, 2011]. These previous studies have all relied on estimating the final static displacements for the earthquake, usually after the transient motions have died down. These methods therefore typically take 10 minutes to produce estimates of earthquake magnitude. Instead, like Ohta et al. [2012], we attempt to speed up the magnitude estimation by determining an evolving slip model (and magnitude estimate) while the earthquake rupture is still progressing. The data available for the Tohoku- 1of5

2 Figure 1. GPS displacements for the 11 March 2011 great Tohoku-Oki earthquake. Arrows show horizontal displacements (a) 50 s, (b) 100 s and (c) 300 s after the earthquake onset. Thin black lines outline the model fault geometry, with inverted slip values given by the colors. Major plate boundaries are thick lines. The white star is the USGS epicentre. Time histories for labelled GPS stations are given in Figure 2. Oki earthquake provides an unprecedented opportunity to test these methods using real data from a M w 9.0 event. [6] In this manuscript we do not attempt to resolve the details of the earthquake slip distribution or rupture process, which have been the focus of numerous studies [e.g., Ozawa et al., 2011; Simons et al., 2011; Yokota et al., 2011; Loveless and Meade, 2011; Yue and Lay, 2011; Iinuma et al., 2011; Yagi and Fukahata, 2011]. Instead, we exploit the dense data available in Japan [e.g., Grapenthin and Freymueller, 2011] to test the utility of sparse GPS networks for real-time earthquake early warning, by testing the resolving power of small subsets of the available data. Such networks could be set up with minimum cost in countries at risk from great earthquakes but without Japan s resources. 2. GPS Data [7] The Tohoku-Oki event is the best recorded great earthquake in history. Deformation from the earthquake was recorded on 1200 sites from Japan s extensive GPS Earth Observation Network (GEONET) [Sagiya, 2004]. We postprocessed the 1 Hz GEONET data from 414 sites in the range E, N, centred on the Tohoku district of Japan. We used the Real-Time Network (RTNet) software [Rocken et al., 2004] in real-time mode using a precise point positioning strategy [Zumberge et al., 1997]. We applied a very loose kinematic constraint of 100 m/s, allowing us to retrieve any rapid motions at stations. Clock errors and satellite orbits were adjusted using corrections from the VERIPOS service based on global GNSS network that were also available in real time and every 5 seconds [Rocken et al., 2011]. We have confirmed that for 1 s GPS data, the temporal resolution of the satellite product is optimal at 5 s; degradation of the coordinate solution is negligible compared to solutions using 1 s corrections. Furthermore, real-time generation and transmission of the satellite products is possible at 5 s. We note that these positions could be produced in real time with a 1 2 second delay for data transmission and processing. [8] The positional accuracy (1-sigma) for any individual site is found to be 2.7 cm (east west), 4.2 cm (north south), and 12.2 cm (vertical) based on an analysis of 144 minutes (0.1 day) of data before the earthquake event for all the stations used here. Accuracy of the height solution is a little worse than the nominal accuracy declared by APEX (10 cm). The primary contributor to the noisy height solution is likely to be water vapor variations in the relatively humid climate over Japan. [9] The sites closest to the epicentre begin to move significantly about 30 seconds after the earthquake onset (Figures 1 and 2). Displacements for coastal sites near the Figure 2. Measured (black) and modelled (red) east west displacements as a function of time at 5 selected GPS sites. The site locations are given in Figure 1. 2of5

3 Figure 3. (a) Estimated moment magnitude as a function of time after earthquake onset. The red line shows the operational seismic early warnings issued, with updates at each square. The black lines are the moment magnitude from 10 inversions that each use 10 different GPS stations, spaced by 100 km along strike. Seismic Moment, M 0, is equal to mas, where m is the shear modulus ( Pa used here), A is the fault plane area and s is the mean slip on the fault. Moment magnitude, M w ¼ 2 3 log 10 M 0 6:0. (b) Estimated magnitude at t = 100 s as a function of station density (sites/100 km). For each density, we ran 50 inversions with randomly chosen sites at the given station spacing. Bars show the range of M w found. epicentre peak at around 6 m, 100 s after the onset, with sites further south along the trench reaching their maxima up to 60 s later (Figure 2). 3. Inversion Methodology [10] Although solving for the slip on a fault with predefined geometry is a linear inversion, determining its geometry is non-linear. We restrict range of possible fault geometries by forcing it to occur on a pre-defined Japan trench, following the simple geometry used in the USGS finite fault seismic inversion [Hayes, 2011]. We use a subduction interface that is a plane dipping at 15 degrees, striking at 195 and intersecting the USGS earthquake hypocentre (lat/lon/depth). Although the earthquake only ruptured 300 km of the subduction interface, we extend it for 400 km on either side of the hypocentre. [11] For simplicity, we treat the displacements recorded at each epoch as if they were the final, static displacement field, and model the earthquake as a series of eight rectangular dislocations, each 100 km long, embedded in an elastic half space [Okada, 1985]. We solve for the slip on each dislocation, the down-dip extent of faulting, and a single fault rake by minimising the square misfit between the predicted displacements and those observed at ten different selections of ten coastal stations spaced by 100 km. We note that we are not attempting to determine the most accurate slip model for the earthquake, but are more interested in the stability of the inversion when relatively few data are available. [12] For Japan, where there are no islands near the trench, land-based geodetic observations have very little sensitivity to slip in the shallowest (and most distal) part of the subduction interface [Loveless and Meade, 2011]. We therefore fix the up-dip limit of faulting to 10 km below the surface. Inversions without this, or similar, constraint collapse to very narrow line sources with very high slip, but have near-identical M w to sources with more normal aspect ratios. [13] This simple non-linear inversion is solved using a hybrid downhill simplex, Monte-Carlo inversion scheme [Clarke et al., 1997; Wright et al., 1999] and takes less than 1 second to run on a standard desktop computer. [14] Because of the relatively high noise levels in the realtime GPS precise point positions in comparison to postprocessed static offsets, we do not attempt to solve for an earthquake magnitude until at least one site has moved by more than 8 cm. This value was found by trial and error to be sufficient to avoid false alarms, but restricts the utility of GPS early warning for earthquakes on the subduction interface to those larger than M w 7, if used independently of seismology. 4. Results [15] We are first able to detect the Tohoku-Oki earthquake with GPS seconds after its onset (Figure 3a). Our GPS magnitude estimate quickly rises from M w 7.5 at 40 seconds to M w 8 at 60 seconds, before reaching its maximum value (M w 8.8) at seconds. [16] By comparison, the first early warning from seismic data (M w 7.1) was issued at 28 s, rising to M w 7.7 at 60 seconds, and saturating at M w 8.1 at 120 seconds (Figure 3a). Subsequently, the Japanese Meteorological Agency increased their estimate to M w 8.4 after 75 minutes and to M w 8.8 after nearly three hours. The initial USGS earthquake notification service alert (issued about 30 minutes after the earthquake) had M w 7.9. [17] For this earthquake, it appears that the maximum GPS M w is reached before the earthquake has finished propagating - an initial dynamic overshoot of displacements at sites closest to the epicentre appears to balance slip yet to have occurred on fault patches at larger distances and later times (Figure 2). The ongoing movements due to the continued passage of seismic waves is a second order effect when estimating M w. Dynamic displacements do not affect the moment estimate, presumably because the signals are different at each station. They are likely to have a bigger effect for smaller earthquakes, but we believe that in general the effect will be second order. [18] We note that our GPS magnitude estimate of M w 8.8 still underestimates the final seismic moment M w 9.0. We believe the discrepancy is primarily due to our simplified geometry and the insensitivity to shallow slip near the trench. We tested whether the results of the inversion were sensitive to size of the fault patch used. For this earthquake and station spacing, near-identical moments were found with 50 km and 200 km patches, although there was significantly more noise for 50 km patches with 100 km station spacing, particularly in the first 50 s. [19] We also explored how many stations were needed to make a reliable forecast. To do this, we divided the GPS data set into 100 km bins along strike and varied the number of stations used in each bin. For each of these station densities, we picked 50 random sets of stations and examined the range of magnitudes found. We found that the magnitude 3of5

4 could be determined with fewer than 1 site every 100 km (Figure 3b). However, additional stations would leave the inversion less susceptible to outliers and be valuable for discriminating between subduction zone thrusts and earthquakes in the upper plate or outer rise, for example. 5. Discussion and Conclusions [20] Our results demonstrate the utility of real-time GPS deformation data for earthquake early warning for large subduction zone earthquakes. Unlike existing seismic methods, the magnitude estimates derived from deformation data do not saturate. Unlike most previous GPS studies, our method can be applied while the earthquake is still propagating, before the permanent displacements have set in. For the Tohoku-Oki earthquake, this gives a reliable moment in under 2 minutes (compared to minutes in previous studies). This speed could be critical for the evacuation effort. [21] Ohta et al. [2012] carried out a similar analysis to that presented here, but used positions based on Real-Time Kinematic (RTK) GPS processing. As these authors pointed out, the Precise-Point Positioning method that we use has the advantage over RTK that it does not require the use of a reference station, which might itself be subject to shaking. We also note that our simpler inversion scheme, and the use of a subset of GPS sites, means that our scheme more rapidly reaches a maximum moment estimate. [22] The lack of islands above the shallowest part of the plate boundary that slipped limits the ability of GPS data to determine the exact distribution of slip on the plate interface and the resultant seafloor deformation [Sobolev et al., 2007]. The details of resultant tsunami predictions will therefore be inaccurate. Nevertheless, the moment magnitude from GPS is robust, whereas existing seismic methods can underestimate the tsunami danger of great earthquakes [Blewitt et al., 2009]. Seafloor geodetic data [Sato et al., 2011] would be essential in Japan to improve the accuracy of inversions for slip distributions and therefore for tsunami forecasts. [23] We note that for an operational system, a careful definition of subduction zone interfaces and other potential sources would be required. Seismic early warning locations, or P-wave picks from the GPS data themselves, could be used to limit the source faults in the early warning system. We recommend that further work be carried out to assess the optimum configuration of a GPS network that is able to distinguish, for example, earthquakes on the subduction interface from those occurring with different mechanisms in the upper plate or outer rise. [24] In the near future, it is unlikely that most countries at threat from great earthquakes and tsunamis will be able to afford a GPS network with the density of Japan s GEONET. However, for earthquake early warning, we have shown that a station spacing of 100 km would be adequate. Furthermore, updated position vectors every 30 s could be used, significantly reducing the required bandwidth for telemetry if this was an issue (N. Houlié, Low sampling rate GPS earthquake early warning system, manuscript in preparation, 2012). Therefore, we support the arguments for incorporating GPS into tsunami warning systems [Sobolev et al., 2007]: A relatively modest investment in infrastructure (say 400 sites for the whole Pacific rim) could provide an early, accurate warning for vulnerable communities at threat from future great earthquakes and tsunamis. [25] Acknowledgments. TJW is funded by the Royal Society through a University Research Fellowship. 1 Hz GEONET data provided by the Geospatial Information Authority of Japan via the Nippon GPS Data Services Company. Processed results were made available online at The Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET+) is part of the UK Natural Environment Research Council s National Centre for Earth Observation. We thank Tim Dixon and Jeffrey Freymueller and two anonymous reviewers for their constructive comments. [26] The Editor thanks Jeffrey Freymueller and an anonymous reviewer for assisting in the evaluation of this paper. References Allen, R., and H. Kanamori (2003), The potential for earthquake early warning in Southern California, Science, 300(5620), Allen, R. M., and A. Ziv (2011), Application of real-time GPS to earthquake early warning, Geophys. Res. Lett., 38, L16310, doi: / 2011GL Allen, R., P. Gasparini, O. Kamigaichi, and M. Bose (2009), The status of earthquake early warning around the world: An introductory overview, Seismol. Res. Lett., 80(5), 682. Behrens, J., A. Androsov, A. Babeyko, S. Harig, F. Klaschka, and L. Mentrup (2010), A new multi-sensor approach to simulation assisted tsunami early warning, Nat. Hazards Earth Syst. Sci., 10(6), Blewitt, G., C. Kreemer, W. C. Hammond, H.-P. Plag, S. Stein, and E. Okal (2006), Rapid determination of earthquake magnitude using GPS for tsunami warning systems, Geophys. Res. Lett., 33, L11309, doi: / 2006GL Blewitt, G., W. Hammond, C. Kreemer, H. Plag, S. Stein, and E. Okal (2009), GPS for real-time earthquake source determination and tsunami warning systems, J. Geod., 83(3), Clarke, P., D. Paradissis, P. Briole, P. England, B. Parsons, H. Billiris, G. Veis, and J. Ruegg (1997), Geodetic investigation of the 13 May 1995 Kozani-Grevena (Greece) earthquake, Geophys. Res. Lett, 24(6), Crowell, B., Y. Bock, and M. Squibb (2009), Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks, Seismol. Res. Lett., 80(5), Grapenthin, R. and J. T. Freymueller (2011), The dynamics of a seismic wave field: Animation and analysis of kinematic GPS data recorded during the 2011 Tohoku-oki earthquake, Japan, Geophys. Res. Lett., 38, L18308, doi: /2011gl Hayes, G. (2011), Rapid source characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake, Earth Planets Space, 63(7), Hildyard, M., and A. Rietbrock (2008), Insights into predominant period as an early estimate of earthquake magnitude, Geophys. Res. Abstr., 10, Abstract EGU2008-A Hildyard, M., and A. Rietbrock (2010), T pd, a damped predominant period function with improvements for magnitude estimation, Bull. Seismol. Soc. Am., 100(2), Hildyard, M., S. Nippress, and A. Rietbrock (2008), Event detection and phase picking using a time-domain estimate of predominate period T pd, Bull. Seismol. Soc. Am., 98(6), Hoshiba, M., K. Iwakiri, N. Hayashimoto, T. Shimoyama, K. Hirano, Y. Yamada, Y. Ishigaki, and H. Kikuta (2011), Outline of the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) Earthquake early warning and observed seismic intensity, Earth Planets Space, 63(7), Iinuma, T., M. Ohzono, Y. Ohta, and S. Miura (2011), Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku earthquake (M 9.0) estimated based on GPS data Was the asperity in Miyagi-oki ruptured?, Earth Planets Space, 63(7), Kanamori, H. (2005), Real-time seismology and earthquake damage mitigation, Annu. Rev. Earth Planet. Sci., 33, Lisowski, M., W. H. Prescott, J. C. Savage, and M. J. Johnston (1990), Geodetic estimate of coseismic slip during the 1989 Loma Prieta, California, earthquake, Geophys. Res. Lett., 17(9), Loveless, J. P., and B. J. Meade (2011), Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 M W = 9.0 Tohoku-oki earthquake, Geophys. Res. Lett., 38, L17306, doi: /2011gl Nakamura, Y. (1988), On the urgent earthquake detection and alarm system (UrEDAS), in Proceedings of the Ninth World Conference on Earthquake Engineering, pp , Jpn. Assoc. for Earthquake Disaster Prev., Tokyo. 4of5

5 Ohta, Y., et al. (2012), Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw 9.0), J. Geophys. Res., 117, B02311, doi: /2011jb Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75(4), Ozawa, S., T. Nishimura, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire (2011), Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku- Oki earthquake, Nature, 475(7356), Rocken, C., L. Mervart, Z. Lukes, J. Johnson, H. Kanzaki, M. Kakimoto, and Y. Iotake (2004), Testing a new network RTK software system, in Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), pp , Inst. of Navig., Fairfax, Va. Rocken, C., L. Mervart, J. Johnson, T. Iwabuchi, Z. Lukes, S. C. T. Springer, P. Toor, Q. Zhang, and M. Arciuch (2011), APEX A high accuracy service for global real-time precise point positioning with GPS and GLONASS, paper presented at ION GNSS 2011, Inst. of Navig., Portland, Oreg., Sept. Sagiya, T. (2004), A decade of GEONET: The continuous GPS observation in Japan and its impact on earthquake studies, Earth Planets Space, 56(8), xxix xli. Sato, M., T. Ishikawa, N. Ujihara, S. Yoshida, M. Fujita, M. Mochizuki, and A. Asada (2011), Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake, Science, 332(6036), Simons, M., et al. (2011), The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries, Science, 332(6036), Sobolev, S. V., A. Y. Babeyko, R. Wang, A. Hoechner, R. Galas, M. Rothacher, D. V. Sein, J. Schröter, J. Lauterjung, and C. Subarya (2007), Tsunami early warning using GPS-Shield arrays, J. Geophys. Res., 112, B08415, doi: /2006jb Wright, T., B. Parsons, J. Jackson, M. Haynes, E. Fielding, P. England, and P. Clarke (1999), Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling, Earth Planet. Sci. Lett., 172(1), Wu, Y.-M., and L. Zhao (2006), Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophys. Res. Lett., 33, L16312, doi: /2006gl Wu, Y., H. Kanamori, R. Allen, and E. Hauksson (2007), Determination of earthquake early warning parameters, tc and Pd, for Southern California, Geophys. J. Int, 170, Yagi, Y. and Y. Fukahata (2011), Rupture process of the 2011 Tohoku-Oki earthquake and absolute elastic strain release, Geophys. Res. Lett., 38, L19307, doi: /2011gl Yamada, M. (2011), The 2011 off the Pacific coast of Tohoku earthquake, Ecast Rep. 19, Kyoto Univ., Kyoto, Japan. [Available at dpri.kyoto-u.ac.jp/masumi/ecastweb/110311/index.htm.] Yamada, M., and J. Mori (2009), Using T c to estimate magnitude for earthquake early warning and effects of near-field terms, J. Geophys. Res., 114, B05301, doi: /2008jb Yokota, Y., K. Koketsu, Y. Fujii, K. Satake, S. Sakai, M. Shinohara, and T. Kanazawa (2011), Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake, Geophys. Res. Lett., 38, L00G21, doi: / 2011GL Yue, H., and T. Lay (2011), Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (M w 9.1), Geophys. Res. Lett., 38, L00G09, doi: /2011gl Zollo, A., M. Lancieri, and S. Nielsen (2006), Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records, Geophys. Res. Lett., 33, L23312, doi: / 2006GL Zollo, A., M. Lancieri, and S. Nielsen (2007), Reply to comment by P. Rydelek et al. on Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records, Geophys. Res. Lett., 34, L20303, doi: /2007gl Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102(B3), of5

Early magnitude and potential damage zone estimates for the great Mw 9 Tohoku-Oki earthquake

Early magnitude and potential damage zone estimates for the great Mw 9 Tohoku-Oki earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053923, 2012 Early magnitude and potential damage zone estimates for the great Mw 9 Tohoku-Oki earthquake Simona Colombelli, 1 Aldo Zollo, 1 Gaetano

More information

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Earth Planets Space, 64, 1239 1243, 2012 Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Tamao Sato 1, Shinya Hiratsuka

More information

Additional earthquakes parameters are put in the order of a clock-wise sense geographically, except Sumatra and Java, where they are from west to

Additional earthquakes parameters are put in the order of a clock-wise sense geographically, except Sumatra and Java, where they are from west to 1380 986 950 Additional earthquakes parameters are put in the order of a clock-wise sense geographically, except Sumatra and Java, where they are from west to east. s, g, and t in Data type denotes seismic,

More information

Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake

Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl050098, 2011 Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake

More information

Supplementary Figure 1 Published rupture models of the Tohoku-oki earthquake that included tsunami data as constraints. Each curve is labeled with

Supplementary Figure 1 Published rupture models of the Tohoku-oki earthquake that included tsunami data as constraints. Each curve is labeled with Supplementary Figure 1 Published rupture models of the Tohoku-oki earthquake that included tsunami data as constraints. Each curve is labeled with its model number as in Supplementary Tables 1 and 2. This

More information

Rapid magnitude determination from peak amplitudes at local stations

Rapid magnitude determination from peak amplitudes at local stations Earth Planets Space, 65, 843 853, 2013 Rapid magnitude determination from peak amplitudes at local stations Akio Katsumata 1, Hiroshi Ueno 1, Shigeki Aoki 1, Yasuhiro Yoshida 2, and Sergio Barrientos 3

More information

Seismogeodesy for rapid earthquake and tsunami characterization

Seismogeodesy for rapid earthquake and tsunami characterization Seismogeodesy for rapid earthquake and tsunami characterization Yehuda Bock Scripps Orbit and Permanent Array Center Scripps Institution of Oceanography READI & NOAA-NASA Tsunami Early Warning Projects

More information

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 7 74, doi:1.12/grl.976, 213 Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes Satoko Murotani,

More information

STRONG GROUND MOTIONS DURING THE 2011 PACIFIC COAST OFF TOHOKU, JAPAN EARTHQUAKE

STRONG GROUND MOTIONS DURING THE 2011 PACIFIC COAST OFF TOHOKU, JAPAN EARTHQUAKE Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan STRONG GROUND MOTIONS DURING THE 2011 PACIFIC COAST OFF

More information

PUBLICATIONS. Geophysical Research Letters

PUBLICATIONS. Geophysical Research Letters PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Key Points: The three inversion approaches give similar first-order rupture parameters while depth, strike, dip, and rake angles show great differences

More information

How GNSS CORS in Japan works for geodetic control and disaster mitigations

How GNSS CORS in Japan works for geodetic control and disaster mitigations ICG Working Group D Reference Frames, Timing and Applications How GNSS CORS in Japan works for geodetic control and disaster mitigations ICG11, Nov. 7-11, 2016, Sochi, Russia Hiromichi TSUJI Geodetic Observation

More information

Earthquake source parameters from GPS-measured static

Earthquake source parameters from GPS-measured static GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 60 65, doi:10.1029/2012gl054209, 2013 Earthquake source parameters from GPS-measured static displacements with potential for real-time application Thomas B. O Toole,

More information

Low-Latency Earthquake Displacement Fields for Tsunami Early Warning and Rapid Response Support

Low-Latency Earthquake Displacement Fields for Tsunami Early Warning and Rapid Response Support Low-Latency Earthquake Displacement Fields for Tsunami Early Warning and Rapid Response Support Hans-Peter Plag, Geoffrey Blewitt Nevada Bureau of Mines and Geology and Seismological Laboratory University

More information

Rapid Determination of Earthquake Magnitude using GPS for Tsunami Warning Systems: An Opportunity for IGS to Make a Difference

Rapid Determination of Earthquake Magnitude using GPS for Tsunami Warning Systems: An Opportunity for IGS to Make a Difference Rapid Determination of Earthquake Magnitude using GPS for Tsunami Warning Systems: An Opportunity for IGS to Make a Difference Geoffrey Blewitt, 1 Corné Kreemer, 1 William C. Hammond, 1 Hans-Peter Plag,

More information

Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy

Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 2963 2968, doi:1.12/grl.559, 213 Rapid modeling of the 211 Mw 9. Tohoku-oki earthquake with seismogeodesy Diego Melgar, 1 Brendan W. Crowell, 1 Yehuda Bock, 1 and

More information

FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK

FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK Cinthia CALDERON MEE1771 Supervisor: Takumi HAYASHIDA Toshiaki YOKOI ABSTRACT

More information

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Earth Planets Space, 53, 235 241, 2001 Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Yuichiro Tanioka 1 and Kenji Satake 2 1 Meteorological Research

More information

Real-Time GNSS Positioning System REGARD for Rapid Earthquake Moment Estimates

Real-Time GNSS Positioning System REGARD for Rapid Earthquake Moment Estimates Real-Time GNSS Positioning System REGARD for Rapid Earthquake Moment Estimates Satoshi KAWAMOTO, Basara MIYAHARA, Yohei HIYAMA, Yudai SATO, Tomoaki FURUYA, Yusaku OHTA, Takuya NISHIMURA, and Masaru TODORIKI,

More information

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo 2012/9/24 17:20-17:35 WCEE SS24.4 Special Session: Great East Japan (Tohoku) Earthquake Earthquake Source Kazuki Koketsu Earthquake Research Institute, University of Tokyo 1 Names and features of the earthquake

More information

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0)

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0) Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0) Yuichi Kitagawa Senior Research Scientist, AIST, GSJ, Active Fault and Earthquake Research Cente Naoji Koizumi

More information

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake J-RAPID Symposium March 6-7, 2013 Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake Y. Honkura Tokyo Institute of Technology Japan Science and Technology

More information

Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake

Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake LETTER Earth Planets Space, 60, 155 160, 2008 Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake Yih-Min Wu 1 and Hiroo Kanamori 2 1

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA Dun Wang ( ) In collaboration with: Hitoshi Kawakatsu, Jim Mori, Kazuki Koketsu, Takuto Maeda, Hiroshi Tsuroka, Jiancang Zhunag, Lihua Fang, and Qiang Yao School of Geosciences, China University of Geosciences

More information

Slip-weakening models of the 2011 Tohoku-Oki earthquake and. constraints on stress drop and fracture energy

Slip-weakening models of the 2011 Tohoku-Oki earthquake and. constraints on stress drop and fracture energy Slip-weakening models of the 211 Tohoku-Oki earthquake and constraints on stress drop and fracture energy Yihe Huang 1, Jean-Paul Ampuero 1, Hiroo Kanamori 1 1 Division of Geological and Planetary Sciences,

More information

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Toshitaka Baba Research Program for Plate Dynamics, Institute for Frontier

More information

Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity

Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity LETTER Earth Planets Space, 63, 547 551, 2011 Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity Mitsuyuki Hoshiba 1, Kazuhiro

More information

A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding

A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding LETTER Earth Planets Space, 63, 773 777, 2011 A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding Takane Hori 1 and Shin ichi

More information

Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records

Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records LETTER Earth Planets Space, 63, 577 582, 2011 Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records Kunikazu Yoshida

More information

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data LETTER Earth Planets Space, 56, 311 316, 2004 Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data Yuji Yagi International

More information

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes Author(s) 2008. This work is licensed under a Creative Commons License. Advances in Geosciences Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes Y. Tanioka 1, Y.

More information

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks LETTER Earth Planets Space, 63, 519 523, 2011 Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström,

More information

REAL-TIME TSUNAMI INUNDATION FORECAST STUDY IN CHIMBOTE CITY, PERU

REAL-TIME TSUNAMI INUNDATION FORECAST STUDY IN CHIMBOTE CITY, PERU REAL-TIME TSUNAMI INUNDATION FORECAST STUDY IN CHIMBOTE CITY, PERU Nabilt Moggiano Supervisor: Kenji SATAKE MEE16720 ABSTRACT For rapid forecast of tsunami inundation during a tsunamigenic event, we constructed

More information

Earthquakes and Tsunamis

Earthquakes and Tsunamis Earthquakes and Tsunamis Kenji Satake Earthquake Research Institute University of Tokyo 1 Part I 2011 Tohoku earthquake and tsunami 2 Fukushima Dai ichi NPP accident Earthquake ground motion Reactors automatically

More information

COMPARISON OF COSEISMIC DISPLACEMENTS OBTAINED FROM STRONG MOTION ACCELEROGRAMS AND GPS DATA IN JAPAN

COMPARISON OF COSEISMIC DISPLACEMENTS OBTAINED FROM STRONG MOTION ACCELEROGRAMS AND GPS DATA IN JAPAN COMPARISON OF COSEISMIC DISPLACEMENTS OBTAINED FROM STRONG MOTION ACCELEROGRAMS AND GPS DATA IN JAPAN Fumio YAMAZAKI 1, Luis MOYA 2, Kiminobu ANEKOJI 3 and Wen LIU 4 ABSTRACT Strong motion seismometers

More information

Analysis of seafloor seismograms of the 2003 Tokachi-Oki earthquake sequence for earthquake early warning

Analysis of seafloor seismograms of the 2003 Tokachi-Oki earthquake sequence for earthquake early warning GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14310, doi:10.1029/2008gl033986, 2008 Analysis of seafloor seismograms of the 2003 Tokachi-Oki earthquake sequence for earthquake early warning Jeffrey J. McGuire,

More information

Magnitude determination using strong groundmotion attenuation in earthquake early warning

Magnitude determination using strong groundmotion attenuation in earthquake early warning Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 3,, doi:10.1029/2010gl042502, 2010 Magnitude determination using strong groundmotion attenuation in earthquake early warning Ting Li Lin 1

More information

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling Salvatore Stramondo Bignami C., Borgstrom S., Chini M., Guglielmino F., Melini D., Puglisi G., Siniscalchi V.,

More information

3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities

3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049308, 2011 3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities B. Shibazaki,

More information

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L02611, doi:10.1029/2007gl032129, 2008 Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami S. Koshimura, 1 Y.

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004 GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi:10.1029/2004gl020366, 2004 Characteristic seismic activity in the subducting plate boundary zone off Kamaishi, northeastern Japan, revealed by precise

More information

Tohoku-oki event: Tectonic setting

Tohoku-oki event: Tectonic setting Tohoku-oki event: Tectonic setting This earthquake was the result of thrust faulting along or near the convergent plate boundary where the Pacific Plate subducts beneath Japan. This map also shows the

More information

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

Crustal deformation by the Southeast-off Kii Peninsula Earthquake Crustal deformation by the Southeast-off Kii Peninsula Earthquake 51 Crustal deformation by the Southeast-off Kii Peninsula Earthquake Tetsuro IMAKIIRE, Shinzaburo OZAWA, Hiroshi YARAI, Takuya NISHIMURA

More information

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks Earth Planets Space, 99, 1 8, 2011 Centroid moment-tensor analysis of the 2011 Tohoku earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström, and Howard C. Koss Lamont-Doherty

More information

Case Study of Japan: Crustal deformation monitoring with GNSS and InSAR

Case Study of Japan: Crustal deformation monitoring with GNSS and InSAR Technical Seminar Reference Frame in Practice, Case Study of Japan: Crustal deformation monitoring with GNSS and InSAR Basara Miyahara miyahara-b96ip@milt.go.jp Geospatial Information Authority of Japan

More information

The Scientific Value of High-Rate, Low-Latency GPS Data

The Scientific Value of High-Rate, Low-Latency GPS Data The Scientific Value of High-Rate, Low-Latency GPS Data by W.C. Hammond, B.A. Brooks, R. Bürgmann, T. Heaton, M. Jackson, A.R. Lowry, S. Anandakrishnan Recent and ongoing technical advances in uses of

More information

Source of the July 2006 West Java tsunami estimated from tide gauge records

Source of the July 2006 West Java tsunami estimated from tide gauge records GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L24317, doi:10.1029/2006gl028049, 2006 Source of the July 2006 West Java tsunami estimated from tide gauge records Yushiro Fujii 1 and Kenji Satake 2 Received 13

More information

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0)

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0) GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048408, 2011 Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0) Dapeng Zhao, 1 Zhouchuan

More information

Moment tensor inversion of near source seismograms

Moment tensor inversion of near source seismograms Moment tensor inversion of near source seismograms Yuji Yagi and Naoki Nishimura ABSTRACT We construct a program set for estimating moment tensor solution using near source seismograms. We take the effect

More information

Coupled Simulation of Ground Shaking and Tsunami for Mega-thrust Subduction Earthquakes

Coupled Simulation of Ground Shaking and Tsunami for Mega-thrust Subduction Earthquakes Coupled Simulation of Ground Shaking and Tsunami for Mega-thrust Subduction Earthquakes Katsuichiro Goda Senior Lecturer, Dept. of Civil Engineering, University of Bristol, Bristol, United Kingdom Raffaele

More information

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT-

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT- TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT- Amilcar Cabrera Supervisor: Yuichiro TANIOKA MEE16718 ABSTRACT Nicaragua

More information

NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS

NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS Setyoajie Prayoedhie Supervisor: Yushiro FUJII MEE10518 Bunichiro SHIBAZAKI ABSTRACT We conducted numerical simulations

More information

A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation

A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048565, 2011 A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation Naoyuki Kato 1 and Shingo Yoshida 1

More information

Tsunami Research and Its Practical Use for Hazard Mitigation. Hiroo Kanamori Seismological Laboratory, California Institute of Technology

Tsunami Research and Its Practical Use for Hazard Mitigation. Hiroo Kanamori Seismological Laboratory, California Institute of Technology Tsunami Research and Its Practical Use for Hazard Mitigation Hiroo Kanamori Seismological Laboratory, California Institute of Technology Cause of Tsunami Earthquakes Landslides Volcanic origin Impact (Dr.

More information

Geophysical Research Letters. Supporting Information for

Geophysical Research Letters. Supporting Information for Geophysical Research Letters Supporting Information for A P-wave based, on-site method for earthquake early warning S. Colombelli(1), A. Caruso(1), A. Zollo(1), G. Festa(1) and H. Kanamori(2) (1) Department

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/eaao4915/dc1 Supplementary Materials for Global variations of large megathrust earthquake rupture characteristics This PDF file includes: Lingling Ye, Hiroo

More information

Rapid determination of earthquake magnitude using GPS for tsunami warning systems

Rapid determination of earthquake magnitude using GPS for tsunami warning systems Rapid determination of earthquake magnitude using GPS for tsunami warning systems Geoffrey Blewitt, 1 Corné Kreemer, 1 William C. Hammond, 1 Hans-Peter Plag, 1 Seth Stein, and Emile Okal The 6 December

More information

Three Dimensional Simulations of Tsunami Generation and Propagation

Three Dimensional Simulations of Tsunami Generation and Propagation Chapter 1 Earth Science Three Dimensional Simulations of Tsunami Generation and Propagation Project Representative Takashi Furumura Authors Tatsuhiko Saito Takashi Furumura Earthquake Research Institute,

More information

RAPID SOURCE PARAMETER DETERMINATION AND EARTHQUAKE SOURCE PROCESS IN INDONESIA REGION

RAPID SOURCE PARAMETER DETERMINATION AND EARTHQUAKE SOURCE PROCESS IN INDONESIA REGION RAPI SOURCE PARAETER ETERINATION AN EARTHQUAKE SOURCE PROCESS IN INONESIA REGION Iman Suardi Supervisor: Yui YAGI EE06012 Akio KATSUATA Osamu KAIGAICHI ABSTRACT We proposed a magnitude determination method

More information

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Changjiang Wu 1 and Kazuki Koketsu Earthquake Research Institute, University

More information

JMA Tsunami Warning Services. Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency

JMA Tsunami Warning Services. Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency JMA Tsunami Warning Services Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency Tectonic Setting of Japan (Headquarters for Earthquake Research

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 675 679, 2011 Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

Joint inversion of InSAR and broadband teleseismic waveform data with ABIC: application to the 1997 Manyi, Tibet earthquake

Joint inversion of InSAR and broadband teleseismic waveform data with ABIC: application to the 1997 Manyi, Tibet earthquake Joint inversion of InSAR and broadband teleseismic waveform data with ABIC: application to the 1997 Manyi, Tibet earthquake Gareth Funning 1, Yukitoshi Fukahata 2, Yuji Yagi 3 & Barry Parsons 4 1 University

More information

JMA Tsunami Warning Services. Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency

JMA Tsunami Warning Services. Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency JMA Tsunami Warning Services Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency Organization Chart of the Government of Japan Cabinet Office Diet Ministry of Internal

More information

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1359 RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING Shusaku INOUE 1,

More information

Rapid Earthquake Rupture Duration Estimates from Teleseismic Energy Rates, with

Rapid Earthquake Rupture Duration Estimates from Teleseismic Energy Rates, with 1 2 Rapid Earthquake Rupture Duration Estimates from Teleseismic Energy Rates, with Application to Real-Time Warning 3 Jaime Andres Convers 1 and Andrew V. Newman 1 4 5 1. School of Earth and Atmospheric

More information

Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment

Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment Abstract D. Weatherley University of Queensland Coulomb stress change analysis has been applied in

More information

Spatial Correlation of Interseismic Coupling and Coseismic Rupture Extent of the 2011 M\(_W\) = 9.0 Tohoku-oki Earthquake

Spatial Correlation of Interseismic Coupling and Coseismic Rupture Extent of the 2011 M\(_W\) = 9.0 Tohoku-oki Earthquake Spatial Correlation of Interseismic Coupling and Coseismic Rupture Extent of the 2011 M\(_W\) = 9.0 Tohoku-oki Earthquake The Harvard community has made this article openly available. Please share how

More information

The 2016, October 26, Central Italy Earthquake Origin Time 17:10:36 UTC, M L(ISNet) =5.3; M W(ISNet) =5.6

The 2016, October 26, Central Italy Earthquake Origin Time 17:10:36 UTC, M L(ISNet) =5.3; M W(ISNet) =5.6 The 2016, October 26, Central Italy Earthquake Origin Time 17:10:36 UTC, M L(ISNet) =5.3; M W(ISNet) =5.6 RISSC-Lab: Laboratorio di RIcerca in Sismologia Sperimentale e Computazionale The event as seen

More information

Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records

Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L23312, doi:10.1029/2006gl027795, 2006 Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, LXXXXX, doi: /2007gl031077, 2007

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, LXXXXX, doi: /2007gl031077, 2007 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, LXXXXX, doi:10.1029/2007gl031077, 2007 2 Magnitude scaling relations from P-waves in southern California 3 Louisa L. H. Tsang, 1,2 Richard

More information

Ground displacement in a fault zone in the presence of asperities

Ground displacement in a fault zone in the presence of asperities BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 2, pp. 95-110; JUNE 2000 Ground displacement in a fault zone in the presence of asperities S. SANTINI (1),A.PIOMBO (2) and M. DRAGONI (2) (1) Istituto

More information

Title. Author(s)Mitsui, Y.; Heki, K. CitationGeophysical Journal International, 195: Issue Date Doc URL. Rights.

Title. Author(s)Mitsui, Y.; Heki, K. CitationGeophysical Journal International, 195: Issue Date Doc URL. Rights. Title Scaling of early afterslip velocity and possible det immediately after the 2011 Tohoku-Oki earthquake Author(s)Mitsui, Y.; Heki, K. CitationGeophysical Journal International, 195: 238-248 Issue Date

More information

University of Bristol - Explore Bristol Research. License (if available): Unspecified

University of Bristol - Explore Bristol Research. License (if available): Unspecified Song, J., & Goda, K. (2015). Sensitivity of probabilistic tsunami loss estimation to stochastic source modelling. Paper presented at 13th International Probabilistic Workshop, Lierpool, United Kingdom.

More information

The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions

The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions LETTER Earth Planets Space, 63, 797 801, 2011 The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions Thorne Lay

More information

Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake

Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl050703, 2012 Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake Fumiko Tajima

More information

Magnitude 7.0 NEW CALEDONIA

Magnitude 7.0 NEW CALEDONIA A magnitude 7.0 earthquake has occurred 82km ENE of Maré Island, the secondlargest of the Loyalty Islands in the archipelago of New Caledonia. The initial report of the magnitude and shallow 10km depth

More information

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions Y. Ishii & K. Dan Ohsaki Research Institute, Inc., Tokyo

More information

Determination of earthquake early warning parameters, τ c and P d, for southern California

Determination of earthquake early warning parameters, τ c and P d, for southern California Geophys. J. Int. (2007) 170, 711 717 doi: 10.1111/j.1365-246X.2007.03430.x Determination of earthquake early warning parameters, τ c and P d, for southern California Yih-Min Wu, 1 Hiroo Kanamori, 2 Richard

More information

Earthquake Early Warning in Subduction Zones

Earthquake Early Warning in Subduction Zones Earthquake Early Warning in Subduction Zones Jeffrey J. McGuire 1, Frederik J. Simons 2, and John A. Collins 1 1 Department of Geology and Geophysics, Woods Hole Oceanographic Institution 2 Geosciences

More information

Synthetic sensitivity analysis of high frequency radiation of 2011 Tohoku-Oki (M W 9.0) earthquake

Synthetic sensitivity analysis of high frequency radiation of 2011 Tohoku-Oki (M W 9.0) earthquake Earthq Sci (214) 27(4):355 364 DOI 1.17/s11589-14-88-6 RESEARCH PAPER Synthetic sensitivity analysis of high frequency radiation of 211 Tohoku-Oki (M W 9.) earthquake Haoran Meng Yongshun John Chen Received:

More information

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM

More information

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2*,**/ pp. +-- +.1 * The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone The Japanese University Group of the Joint Seismic Observations

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 643 648, 2011 Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data Was the asperity in Miyagi-oki ruptured?

More information

22 Bulletin of the Geospatial Information Authority of Japan, Vol.59 December, 2011 Fig. 1 Crustal deformation (horizontal) associated with the 2011 o

22 Bulletin of the Geospatial Information Authority of Japan, Vol.59 December, 2011 Fig. 1 Crustal deformation (horizontal) associated with the 2011 o The Crustal Deformation and Fault Model of the 2011 off the Pacific Coast of Tohoku Earthquake 21 The Crustal Deformation and Fault Model of the 2011 off the Pacific Coast of Tohoku Earthquake Tetsuro

More information

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand Polina Berezina 1 Institute of Geology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Supervisor: Prof. Kenji Satake Earthquake

More information

Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence

Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jb004480, 2007 Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence Sun-Cheon Park 1 and Jim Mori 1 Received 3 May

More information

2 compared with the uncertainty in relative positioning of the initial triangulation (30 { 50 mm, equivalent to an angular uncertainty of 2 p.p.m. ove

2 compared with the uncertainty in relative positioning of the initial triangulation (30 { 50 mm, equivalent to an angular uncertainty of 2 p.p.m. ove Reply to: `Comment on \Geodetic investigation of the 13 May 1995 Kozani { Grevena (Greece) earthquake" by Clarke et al.' by Meyer et al. P. J. Clarke, 1 D. Paradissis, 2 P. Briole, 3 P. C. England, 1 B.

More information

Broadband ground motion simulations of mega-thrust subduction earthquakes based on multi-scale heterogeneous-source model

Broadband ground motion simulations of mega-thrust subduction earthquakes based on multi-scale heterogeneous-source model Paper N 3019 Registration Code: S-N1464583770 Broadband ground motion simulations of mega-thrust subduction earthquakes based on multi-scale heterogeneous-source model K. Irikura (1) and S. Kurahashi (2)

More information

Rupture Characteristics of Major and Great (M w 7.0) Megathrust Earthquakes from : 1. Source Parameter Scaling Relationships

Rupture Characteristics of Major and Great (M w 7.0) Megathrust Earthquakes from : 1. Source Parameter Scaling Relationships Journal of Geophysical Research Solid Earth Supporting Information for Rupture Characteristics of Major and Great (M w 7.0) Megathrust Earthquakes from 1990-2015: 1. Source Parameter Scaling Relationships

More information

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

4 Associate Professor, DPRI, Kyoto University, Uji, Japan Proceedings of the International Symposium on Engineering Lessons Learned from the 2 Great East Japan Earthquake, March -4, 22, Tokyo, Japan STRONG MOTION ESTIMATION AT THE ELEVATED BRIDGES OF THE TOHOKU

More information

THE 2011 OFF THE PACIFIC COAST OF TOHOKU-OKI EARTHQUAKE AND TSUNAMI: INFLUENCE OF THE SOURCE CHARACTERISTICS ON THE MAXIMUM TSUNAMI HEIGHTS

THE 2011 OFF THE PACIFIC COAST OF TOHOKU-OKI EARTHQUAKE AND TSUNAMI: INFLUENCE OF THE SOURCE CHARACTERISTICS ON THE MAXIMUM TSUNAMI HEIGHTS Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan THE 2011 OFF THE PACIFIC COAST OF TOHOKU-OKI EARTHQUAKE

More information

Deterministic and Non-deterministic Behavior of Earthquakes and Hazard Mitigation Strategy

Deterministic and Non-deterministic Behavior of Earthquakes and Hazard Mitigation Strategy Deterministic and Non-deterministic Behavior of Earthquakes and Hazard Mitigation Strategy Hiroo Kanamori Seismological Laboratory, California Institute of Technology Earthquake Process Deterministic Non-deterministic

More information

Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data

Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jb009186, 2012 Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic

More information

Deformation cycles of great subduction earthquakes in a viscoelastic Earth

Deformation cycles of great subduction earthquakes in a viscoelastic Earth Deformation cycles of great subduction earthquakes in a viscoelastic Earth Kelin Wang Pacific Geoscience Centre, Geological Survey of Canada School of Earth and Ocean Science, University of Victoria????

More information

Supplementary Material

Supplementary Material 1 Supplementary Material 2 3 4 Interseismic, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38-18 S) 5 6 7 8 9 11 12 13 14 1 GPS data set We combined in a single data set

More information

Case study of Japan: Reference Frames in Practice

Case study of Japan: Reference Frames in Practice Case study of Japan: Reference Frames in Practice Basara Miyahara and Koji Matsuo Sponsors: 1 Outline Introduction - Geodetic reference frame of Japan - GEONET : continuous GNSS observation system Geometric

More information

A Rayleigh wave back-projection method applied to the 2011 Tohoku earthquake

A Rayleigh wave back-projection method applied to the 2011 Tohoku earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl050183, 2012 A Rayleigh wave back-projection method applied to the 2011 Tohoku earthquake Daniel Roten, 1,2 Hiroe Miyake, 1 and Kazuki Koketsu

More information