Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Size: px
Start display at page:

Download "Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks"

Transcription

1 Earth Planets Space, 99, 1 8, 2011 Centroid moment-tensor analysis of the 2011 Tohoku earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström, and Howard C. Koss Lamont-Doherty Earth Observatory, Columbia University, USA (Received xxxx xx, 2011; Revised xxxx xx, 2011; Accepted xxxx xx, 2011; Online published Xxxxx xx, 2008) Centroid-moment tensors (CMTs) for the March 11, 2011, off the Pacific coast of Tohoku earthquake and its larger foreshocks and aftershocks are presented. The CMTs are calculated using long-period data from the Global Seismographic Network retrieved in near-real time, and the inversion algorithm employed in the Global CMT Project. Owing to its large size and long duration, the mainshock CMT analysis is performed at periods longer than 300 s. The resulting moment tensor has a scalar moment of dyne-cm, and a geometry that indicates thrust motion of the Pacific Plate beneath the island of Honshu on a plane dipping 10. The large scalar moment, translating to moment magnitude M W = 9.1, makes this the fourth largest earthquake in the last 100 years. The mainshock was preceded by several large foreshocks with similar underthrusting mechanisms, the largest of which having M W = 7.4. The aftershock sequence extends over a portion of the plate boundary more than 500 km long, and exhibits an unusual diversity of faulting geometries. A M W = 7.9 aftershock occurred near the southern end of the aftershock zone approximately 30 minutes after the main shock, and is, at the time of writing, the largest aftershock in the sequence. The second-largest aftershock is a M W = 7.6 normalfaulting outer-rise earthquake that occurred 40 minutes after the mainshock. Key words: Centroid-moment tensor, Tohoku earthquake, subduction, aftershock. 1. Introduction The great Tohoku earthquake of March 11, 2011, was one of the largest earthquakes of the past century and the largest well-documented earthquake to strike Japan. The earthquake was preceded by Copy right c The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. 1

2 2 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES a number of foreshocks, the largest of which was a M W = 7.4 event on March 9. The M W = 9.1 mainshock has been followed by intensive aftershock activity offshore of a 500-km-long portion of the eastern Honshu coast, as well as by moderate-size earthquakes on the west side of Honshu. The shallow-thrusting focal mechanism of the mainshock reflects the relative motion of the subducting Pacific plate and the overriding North America plate. The foreshocks and approximately half of the aftershocks show similar faulting geometries, and their locations are generally consistent with rupture on the same plate-boundary fault as the mainshock. A significant number of aftershocks are, however, not associated with slip on the plate boundary, but occur on intraplate faults of a variety of orientations. These earthquakes likely reflect the long-term internal deformation patterns of the plates as well as coseismic stress changes associated with the mainshock. Their focal geometries and spatial distribution are therefore important for constraining and confirming both of these. In this paper, we present early results of a systematic moment-tensor analysis of the larger (M > 5.5) earthquakes in the Tohoku earthquake sequence, and characterize the aftershock sequence in terms of earthquake locations and focal geometries. 2. Analysis and Results We use the standard methods and algorithms of the Global CMT Project to determine moment tensors of the Tohoku sequence (Dziewonski et al., 1981; Arvidsson and Ekström, 1998; Ekström et al., 2005). In these methods, the moment tensor and source centroid are estimated by matching observed long-period three-component seismograms to synthetic waveforms calculated by summation of Earth s normal modes. In the case of the 2011 Tohoku earthquake, and of other great earthquakes with intense aftershock sequences, the analysis is complicated by the mainshock s strong excitation of long-period, slowly attenuating overtone modes, as well as the superposition of high-amplitude surface-wave signals from large and frequent aftershocks. Both of these factors raise the amplitude of the background noise, and

3 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES 3 make it difficult to isolate waveforms that can be clearly attributed to a particular earthquake of interest. Careful selection of appropriate time windows to be included in the source inversion is in some cases essential for obtaining a robust result. We use data from the Global Seismographic Network acquired in near-real time in the analysis. For many of the events, the waveforms selected for inversion are primarily minor-arc intermediate-period ( s period) surface waves, since these arrivals are typically of high amplitude and well defined in the seismograms. The event selection for the analysis presented here was based on the magnitudes reported by the USGS NEIC right after the events occurred. We selected for analysis all events with reported magnitudes greater than or equal to 5.5. We augmented the list of earthquakes selected for analysis with events detected using long-period surface waves (Ekström, 2006; Many events that occurred during the first 24 hours following the mainshock could not be successfully analyzed, due to the strong residual signals from the mainshock and subsequent large aftershocks. However, we were able to determine robust moment-tensor solutions for 88 earthquakes during the period starting with the foreshocks on March 9 through 25 days following the March 11 mainshock (April 4). Figure 1 shows the time of occurrence and magnitude of each earthquake analyzed in this study. 2.1 Foreshocks On March 9, the first large earthquake in the Tohoku sequence occurred. The seismic activity that followed over the subsequent 51 hours can retrospectively be identified as a foreshock sequence. We calculated CMT solutions for six of the largest earthquakes in the foreshock sequence, and their locations and focal mechanisms are shown in Figure 2. The six focal mechanisms are consistent with underthrusting motion of the Pacific plate. The first earthquake in the foreshock sequence is the largest, with a moment magnitude of M W = 7.4. Its epicenter is close to the source regions of earlier large earthquakes off the coast of Miyagi Prefecture, notably the M W = 7.6 earthquake of June 12, 1978, and the M W = 7.2 earthquake of August 16, 2005.

4 4 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES The second-largest event of the foreshock sequence, a M W = 6.5 earthquake on March 9 at 21:24:08.0, is the only earthquake analyzed in this study for which there is no NEIC detection, and we relied on our surface-wave detection of this event to initiate the CMT analysis. The earthquake followed closely a M W = 6.0 earthquake at 21:22:18.1, and the higher-frequency P phases may have been obscured in the coda of that event. 2.2 Mainshock The epicenter of the March 11, 05:46:24.7 mainshock lies approximately 40 km southwest of the foreshocks. The large rupture area and duration of the mainshock make it necessary to limit the CMT analysis to very long periods. We performed inversions in several different period bands between 200 s and 1000 s, obtaining consistent results in the different inversions. Our preferred solution was obtained using 8.5-h-long seismograms from 100 stations of the GSN filtered between 300 s and 500 s. The centroid time, reflecting the time-averaged center of moment, is shifted approximately 70 s after the hypocentral time, indicating a compact moment-rate distribution. The spatial centroid of moment is located 110 km SE and up dip of the epicenter. The moment tensor corresponds to an essentially pure double-couple mechanism with strike 203, dip 10, and rake 88. The seismic moment is dyne-cm, corresponding to moment magnitude M W = 9.1. We performed a number of experiments to examine the robustness of these results, in particular the seismic moment. Varying the filter parameters and constraining the centroid depth at deeper or shallower depths resulted in moment magnitudes in the range In an additional test to investigate the ability of the CMT point-source parameters to explain the longest-period seismic waves, we filtered the observed and synthetic waveforms corresponding to our preferred result in the period band seconds, outside of the period band used in the inversion. Figure 3 shows the fits at representative stations, including both vertical and horizontal components. Both very-long-period Love waves and Rayleigh waves are well fit.

5 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES Aftershocks The remaining 81 earthquakes for which we present preliminary results here are aftershocks that occurred in the 25 days following the mainshock. We note that the two largest aftershocks occurred during the hour following the mainshock (Figure 1). The aftershock sequence shows a striking pattern, with a large number of focal mechanisms different from that of the mainshock and which cannot be explained by additional slip on the interplate contact. A subset of these aftershocks are related to the frequently observed pattern of triggered intraplate normal-faulting activity near the outer rise of the subducting plate, and we include these events, together with the interplate seismicity, in a category we label conforming aftershocks. We choose to structure the description of our results here around (1) two early, large aftershocks (2) the distribution of conforming aftershocks, and (3) the distribution of non-conforming aftershocks Two early aftershocks Twenty-nine minutes after the mainshock, at 06:15:39.6, a M W = 7.9 earthquake occurred approximately 250 km south of the mainshock epicenter, and 200 km southwest of the mainshock centroid. The earthquake has a focal mechanism consistent with interplate slip (Figure 4). It is possible that the rupture areas of the mainshock and this event are contiguous, though the large distance of the aftershock from the mainshock centroid makes this relationship unclear. The CMT analysis of the M W = 7.9 aftershock was complicated by the interference of waves from the mainshock, but the intermediate-period surface-wave arrivals at many stations were sufficiently isolated in time for a successful analysis. Figure 5 shows representative fits at several stations. A second large aftershock occurred thirty-nine minutes after the mainshock, at 06:25:50.2. This M W = 7.6 normal-faulting earthquake is located east of the mainshock within the Pacific plate and should be classified as an outer-rise earthquake. We note that this earthquake has an epicenter very close to that of a M W = 7.0 normal-faulting outer-rise event that followed the 2005 M W = 7.2 interplate event mentioned earlier. These two earthquakes are, as of 2011/04/05, the only M W 6.5 aftershocks in the Tohoku

6 6 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES sequence Conforming aftershocks Aftershocks with shallow-dipping thrust-faulting mechanisms consistent with interplate slip extend from the triple junction in the south, around 34.5 N, to 40.5 N (Figure 4). The deepest earthquakes occur north of the mainshock at 55 km depth. There is a notable absence of thrust-faulting aftershocks up dip from the mainshock hypocenter, both to the north and to the south, over a total distance of 400 km along the strike of the plate boundary. This, together with the up-dip location of the centroid of moment, could indicate complete strain relaxation across this portion of the plate interface. Normal-faulting activity on the seaward side of the aftershock zone, inferred to represent triggered extensional faulting in the Pacific plate, is represented by thirteen focal mechanisms. These earthquakes are clustered near the centroid location of the mainshock, suggesting a causal relationship to the maximum or center of slip on the plate interface Non-conforming aftershocks The subset of non-conforming aftershocks includes earthquakes in a variety of settings and with different focal mechanisms (Figure 4). All of these events have depths and locations that suggest intraplate faulting in the overriding plate, except for the strike-slip earthquake near the trench, which we infer to be associated with tension in the Pacific plate. Three earthquakes occurred far west of the rupture area: one is a strike-slip earthquake located off the west coast of northern Honshu, in the source region of the 1983 M W = 7.7 Japan Sea (Akita- Oki) thrust earthquake (Fukuyama and Irikura, 1986). A second is located near the 2004 Chuetsu earthquake sequence (Hikima and Koktsu, 2005), and has a reverse-faulting focal mechanism similar to those earthquakes. A third event is located northwest of the Izu penisula and has a strike-slip focal mechanism similar to previous earthquakes in this area. The remaining non-conforming earthquakes occur above the interplate rupture zone, with a prevalence of normal-faulting mechanisms with a variety of fault strikes. The region close to and between the mainshock hypocenter and centroid is characterized by a particularly complex pattern of strain release.

7 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES 7 To the north, several thrust-faulting earthquakes with shallowly dipping nodal planes are located over a range of depths less than 40 km, while the depth to the plate interface below their epicenters is 50 km. These events thus reflect faulting on near-vertical or near-horizontal planes in the overriding plate. To the south of the mainshock centroid, a cluster of five focal mechanisms indicates trench-perpendicular extension in the overriding plate. Near the southern end of the aftershock zone, two mechanisms show northwest-southeast compression, possibly associated with the Sagami trough thrust fault (e. g., Stein et al., 2006). 3. Discussion and Conclusion The 2011 Tohoku earthquake is the best-observed great earthquake, and it will undoubtedly become one of the most studied, owing both to its size and the enormous losses associated directly with the earthquake as well as with the tsunami that it generated. The results presented here, compiled less than four weeks after the occurrence of the mainshock, are limited to preliminary seismological analyses of the larger earthquakes in the sequence. While ongoing and future investigations will improve and extend these analyses, the current results establish some basic parameters and characteristics, and may be useful in informing decisions about future directions of research. The mainshock was very well recorded on the GSN and other modern seismological instruments around the world. Our analysis at long periods indicates a relatively simple and compact source, especially when compared with the 2004 M W = 9.3 Sumatra earthquake which, even at long periods, showed complexities associated with changing rupture geometry and segmentation (e.g., Tsai et al., 2005). Our analysis of the Tohoku mainshock gives a moment magnitude M W = 9.1, making this the fourth-largest earthquake of the last 100 years. The two largest aftershocks (as of ) occurred within one hour of the mainshock. A M W = 7.9 event occurred near the southern end of the aftershock zone and presumed mainshock rupture area and may represent a contiguous extension of this rupture area. A M W = 7.6 normal-faulting outer-rise

8 8 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES earthquake, located northeast of the mainshock centroid, indicates a rapid lithospheric response to the changing stresses in the Pacific plate seaward of the maximum slip on the interplate fault. A large fraction of the aftershocks analyzed here can be characterized as non-conforming, in that they occur neither on the interplate fault nor as normal-faulting extensional events in the subducting plate. The nature of the causal relationship between the mainshock and these aftershocks remains to be investigated, including the extent to which stress-transfer models can explain their triggering (e.g., Toda and Enescu, 2011). CMT results for the 88 earthquakes analyzed here are available in standard GCMT formats from the Special Event Studies page on our web site: Acknowledgments. The GSN data analyzed in this study were collected and distributed by the Incorporated Research Institutions for Seismology (IRIS), the USGS, and the Geoscope, Geofon and Mednet projects, as well as the GLISN project and the Lamont Cooperative Seismographic Network. This research was supported by NSF Grants EAR and EAR References Arvidsson, R., and G. Ekström, Global CMT analysis of moderate earthquakes, M W 4.5, using intermediate period surface waves, Bull. Seism. Soc. Am., 88, , Bird, P., An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4, 1027, doi: /2001gc000252, Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, , Ekström, G., Global detection and location of seismic sources using surface waves, Bull. Seism. Soc. Am., 96, , Ekström, G., A. M. Dziewonski, N. N. Maternovskaya, and M. Nettles, Global seismicity of 2003: centroid-moment-tensor solutions for 1087 earthquakes, Phys. Earth Planet. Inter., 148, , Fukuyama, E.,and K. Irikura, Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a waveform inversion method, Bull. Seism. Soc. Am., 76, , Hikima, K., and K. Koktsu, Rupture processes of the 2004 Chuetsu (mid-niigata prefecture) earthquake, Japan: A series of events in a complex fault system, Geophys. Res. Lett., 32, L18303, doi: /2005gl023588, Stein, R. S., S. Toda, T. Parsons, and E. Grunewald, A new probabilistic seismic assessment for greater Tokyo, Phil. Trans. R. Soc. London A, 364, doi: /rsta , Toda, S., and B. Enescu, Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast, Earth Planets Space, 63, , Tsai, V. C., M. Nettles, G. Ekström, and A. M. Dziewonski, Multiple CMT source analysis of the 2004 Sumatra earthquake, Geophys. Res. Lett., 32, L17304, M. Nettles ( nettles@ldeo.columbia.edu), G. Ekström, and H. C. Koss

9 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES 9 Fig. 1. Times and magnitudes of earthquakes in the Tohoku sequence. Small blue symbols show times and magnitudes for all earthquakes reported by the USGS NEIC (data downloaded on ). Red and green symbols show moment magnitudes for earthquakes analyzed in this study. Red symbols denote conforming mechanisms, consistent with either interplate thrusting or outer-rise extension. Green symbols denote other intraplate earthquakes in the overriding plate.

10 10 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES Fig. 2. Map showing 88 focal mechanisms determined in this study. Symbols are plotted at the centroid locations, and their size is proportional to the moment magnitude. Gray focal mechanisms correspond to the six large foreshocks of the March 11 mainshock. Plate boundaries are from Bird (2003).

11 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES 11 Fig. 3. Waveform fits for the M W = 9.1 mainshock. Displacement waveforms are filtered between 500 and 1000 s, outside the range used in the inversion. Black lines are observed seismograms and red lines are corresponding normal-mode synthetic waveforms. Timescale shows time after the mainshock hypocentral time. For each pair of traces, the station name, channel, epicentral distance, and maximum displacement are given.

12 12 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES Fig. 4. Maps showing (left) focal mechanisms of the mainshock and conforming aftershocks, and (right) non-conforming aftershocks. The focal mechanisms are plotted at the centroid locations, and their size is proportional to the moment magnitude. Yellow hexagon in left map shows mainshock epicenter. Plate boundaries are from Bird (2003).

13 M. NETTLES et al.: CMT MECHANISMS FOR TOHOKU EARTHQUAKES 13 Fig. 5. Waveform fits for the M W = 7.9 aftershock on March 11. Displacement waveforms are filtered between 75 and 200 s. Black lines are observed seismograms and red lines are corresponding synthetic waveforms. Timescale shows time after the earthquake hypocentral time. For each pair of traces, the station name, channel, epicentral distance, and maximum displacement are given.

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks LETTER Earth Planets Space, 63, 519 523, 2011 Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström,

More information

Earthquake source parameters for the January, 2010, Haiti mainshock and aftershock sequence

Earthquake source parameters for the January, 2010, Haiti mainshock and aftershock sequence Earthquake source parameters for the January, 2010, Haiti mainshock and aftershock sequence Meredith Nettles 1,2 and Vala Hjörleifsdóttir 1,3 1 Lamont-Doherty Earth Observatory of Columbia University 2

More information

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

Crustal deformation by the Southeast-off Kii Peninsula Earthquake Crustal deformation by the Southeast-off Kii Peninsula Earthquake 51 Crustal deformation by the Southeast-off Kii Peninsula Earthquake Tetsuro IMAKIIRE, Shinzaburo OZAWA, Hiroshi YARAI, Takuya NISHIMURA

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

Physics of the Earth and Planetary Interiors

Physics of the Earth and Planetary Interiors Physics of the Earth and Planetary Interiors 200-201 (2012) 1 9 Contents lists available at SciVerse ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi

More information

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Earth Planets Space, 64, 1239 1243, 2012 Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Tamao Sato 1, Shinya Hiratsuka

More information

Rapid source characterization of the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake

Rapid source characterization of the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 529 534, 2011 Rapid source characterization of the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake Gavin P. Hayes 1,2 1 U.S. Geological Survey, National Earthquake

More information

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 414 AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE Shunroku YAMAMOTO 1 Naohito

More information

Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence

Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jb004480, 2007 Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence Sun-Cheon Park 1 and Jim Mori 1 Received 3 May

More information

Moment tensor inversion of near source seismograms

Moment tensor inversion of near source seismograms Moment tensor inversion of near source seismograms Yuji Yagi and Naoki Nishimura ABSTRACT We construct a program set for estimating moment tensor solution using near source seismograms. We take the effect

More information

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN Japan was rattled by a strong aftershock and tsunami warning Thursday night nearly a month after a devastating earthquake and tsunami flattened the northeastern coast. This earthquake can be considered

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

LETTER Earth Planets Space, 56, , 2004

LETTER Earth Planets Space, 56, , 2004 LETTER Earth Planets Space, 56, 353 357, 2004 Deep seismic activities preceding the three large shallow earthquakes off south-east Hokkaido, Japan the 2003 Tokachi-oki earthquake, the 1993 Kushiro-oki

More information

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Earth Planets Space, 53, 235 241, 2001 Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake Yuichiro Tanioka 1 and Kenji Satake 2 1 Meteorological Research

More information

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate T. Sasatani, N. Takai, M. Shigefuji, and Y. Miyahara Hokkaido University, Sapporo, Japan W. Kawabata Electric Power Development

More information

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling Salvatore Stramondo Bignami C., Borgstrom S., Chini M., Guglielmino F., Melini D., Puglisi G., Siniscalchi V.,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11492 Figure S1 Short-period Seismic Energy Release Pattern Imaged by F-net. (a) Locations of broadband seismograph stations in Japanese F-net used for the 0.5-2.0 Hz P wave back-projection

More information

Rapid magnitude determination from peak amplitudes at local stations

Rapid magnitude determination from peak amplitudes at local stations Earth Planets Space, 65, 843 853, 2013 Rapid magnitude determination from peak amplitudes at local stations Akio Katsumata 1, Hiroshi Ueno 1, Shigeki Aoki 1, Yasuhiro Yoshida 2, and Sergio Barrientos 3

More information

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data LETTER Earth Planets Space, 56, 311 316, 2004 Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data Yuji Yagi International

More information

Scaling of apparent stress from broadband radiated energy catalogue and seismic moment catalogue and its focal mechanism dependence

Scaling of apparent stress from broadband radiated energy catalogue and seismic moment catalogue and its focal mechanism dependence Earth Planets Space, 53, 943 948, 2001 Scaling of apparent stress from broadband radiated energy catalogue and seismic moment catalogue and its focal mechanism dependence Z. L. Wu Institute of Geophysics,

More information

Seth Stein and Emile Okal, Department of Geological Sciences, Northwestern University, Evanston IL USA. Revised 2/5/05

Seth Stein and Emile Okal, Department of Geological Sciences, Northwestern University, Evanston IL USA. Revised 2/5/05 Sumatra earthquake moment from normal modes 2/6/05 1 Ultra-long period seismic moment of the great December 26, 2004 Sumatra earthquake and implications for the slip process Seth Stein and Emile Okal,

More information

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES Madlazim Physics Department, Faculty Mathematics and Sciences of Surabaya State University (UNESA) Jl. Ketintang, Surabaya 60231, Indonesia. e-mail:

More information

A search for seismic radiation from late slip for the December 26, 2004 Sumatra-Andaman (M w = 9.15) earthquake

A search for seismic radiation from late slip for the December 26, 2004 Sumatra-Andaman (M w = 9.15) earthquake Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L18305, doi:10.1029/2006gl027286, 2006 A search for seismic radiation from late slip for the December 26, 2004 Sumatra-Andaman (M w =

More information

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone IJMS 2017 vol. 4 (2): 49-54 International Journal of Multidisciplinary Studies (IJMS) Volume 4, Issue 2, 2017 DOI: http://doi.org/10.4038/ijms.v4i2.22 Seismic Activity near the Sunda and Andaman Trenches

More information

Magnitude 7.1 SOUTH SANDWICH ISLANDS

Magnitude 7.1 SOUTH SANDWICH ISLANDS A magnitude 7.1 earthquake occurred at a depth of 164.7 km (102 miles) in the South Sandwich Islands, an uninhabited British territory off the coast of Argentina in the southern Atlantic Ocean. Antarctica

More information

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes Author(s) 2008. This work is licensed under a Creative Commons License. Advances in Geosciences Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes Y. Tanioka 1, Y.

More information

revised October 30, 2001 Carlos Mendoza

revised October 30, 2001 Carlos Mendoza Earthquake Sources in the circum-caribbean Region Puerto Rico Tsunami Mitigation and Warning Program Federal Emergency Management Agency Preliminary Report: Task 3 revised October 30, 2001 Carlos Mendoza

More information

The 2011 Tohoku Earthquake and Tsunami Sequence. Mitchell May, EPSC 330

The 2011 Tohoku Earthquake and Tsunami Sequence. Mitchell May, EPSC 330 The 2011 Tohoku Earthquake and Tsunami Sequence Mitchell May, 260556044 EPSC 330 The 2011 earthquake sequence east of Tohoku is classified as a megathrust earthquake off the east coast of Japan. The earthquake

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NGEO177 The Long Precursory Phase of Most Large Interplate Earthquakes Supplementary Information Supplementary Methods 1. Data and Classification We select the earthquakes

More information

Analysis of Seismological and Tsunami Data from the 1993 Guam Earthquake

Analysis of Seismological and Tsunami Data from the 1993 Guam Earthquake PAGEOPH, Vol. 144, Nos. 3/4 (1995) 0033-4553/95/040823-1551.50 + 0.20/0 9 1995 Birkh/iuser Verlag, Basel Analysis of Seismological and Tsunami Data from the 1993 Guam Earthquake YUICHIRO TANIOKA, 1 KENJI

More information

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground.

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground. Japan was struck by a magnitude 8.9 earthquake off its northeastern coast Friday. This is one of the largest earthquakes that Japan has ever experienced. In downtown Tokyo, large buildings shook violently

More information

Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake

Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 687 692, 2011 Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake Thorne Lay 1, Charles J. Ammon 2, Hiroo Kanamori 3, Lian

More information

The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets

The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets The Size and Duration of the Sumatra-Andaman Earthquake from Far-Field Static Offsets P. Banerjee, 1 F. F. Pollitz, 2 R. Bürgmann 3 * 1 Wadia Institute of Himalayan Geology, Dehra Dun, 248001, India. 2

More information

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE An 8.2-magnitude earthquake struck off the coast of northern Chile, generating a local tsunami. The USGS reported the earthquake was centered 95 km (59 miles) northwest of Iquique at a depth of 20.1km

More information

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION Synopses of Master Papers Bulletin of IISEE, 47, 19-24, 2013 SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION Fabricio Moquete Everth* Supervisor:

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

Outer trench-slope faulting and the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake

Outer trench-slope faulting and the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 713 718, 2011 Outer trench-slope faulting and the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake Thorne Lay 1, Charles J. Ammon 2, Hiroo Kanamori 3, Marina J. Kim

More information

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR Annemarie CHRISTOPHERSEN 1 And Euan G C SMITH 2 SUMMARY This paper considers the distribution of aftershocks in space, abundance, magnitude and time. Investigations

More information

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Tadashi Yaginuma 1, Tomomi Okada 1, Yuji Yagi 2, Toru Matsuzawa 1, Norihito

More information

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA Dun Wang ( ) In collaboration with: Hitoshi Kawakatsu, Jim Mori, Kazuki Koketsu, Takuto Maeda, Hiroshi Tsuroka, Jiancang Zhunag, Lihua Fang, and Qiang Yao School of Geosciences, China University of Geosciences

More information

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004 LETTER Earth Planets Space, 57, 411 416, 2005 Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004 Shigeki Aoki 1, Masaki Nishi 2, Koji Nakamura 2, Tetsuo

More information

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1359 RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING Shusaku INOUE 1,

More information

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane.

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane. The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 28: Preliminary identification of the fault plane. J. Zahradnik 1, E. Sokos 2, A.Serpetsidaki 2, and G A.Tselentis 2 1 Charles University in

More information

Magnitude 7.1 PERU. There are early reports of homes and roads collapsed leaving one dead and several dozen injured.

Magnitude 7.1 PERU. There are early reports of homes and roads collapsed leaving one dead and several dozen injured. A magnitude 7.1 earthquake has occurred offshore Peru. The earthquake struck just after 4 a.m. local time and was centered near the coast of Peru, 40 km (25 miles) south-southwest of Acari, Peru at a depth

More information

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT-

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT- TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT- Amilcar Cabrera Supervisor: Yuichiro TANIOKA MEE16718 ABSTRACT Nicaragua

More information

Slab pull, slab weakening, and their relation to deep intra-slab seismicity

Slab pull, slab weakening, and their relation to deep intra-slab seismicity GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L14305, doi:10.1029/2005gl022922, 2005 Slab pull, slab weakening, and their relation to deep intra-slab seismicity Susan L. Bilek Earth and Environmental Science

More information

LETTER Earth Planets Space, 57, , 2005

LETTER Earth Planets Space, 57, , 2005 LETTER Earth Planets Space, 57, 345 35, 25 Estimation of the source model for the foreshock of the 24 off the Kii peninsula earthquakes and strong ground motion simulation of the hypothetical Tonankai

More information

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES Joan Cruz SALCEDO Supervisor: Tatsuhiko HARA MEE09186 ABSTRACT We have made a set of earthquake source

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004 GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi:10.1029/2004gl020366, 2004 Characteristic seismic activity in the subducting plate boundary zone off Kamaishi, northeastern Japan, revealed by precise

More information

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L24619, doi:10.1029/2004gl021228, 2004 An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake Changjiang

More information

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Naoyuki Kato (1) and Tomowo Hirasawa (2) (1) Geological

More information

A GLOBAL SURGE OF GREAT EARTHQUAKES FROM AND IMPLICATIONS FOR CASCADIA. Thorne Lay, University of California Santa Cruz

A GLOBAL SURGE OF GREAT EARTHQUAKES FROM AND IMPLICATIONS FOR CASCADIA. Thorne Lay, University of California Santa Cruz A GLOBAL SURGE OF GREAT EARTHQUAKES FROM 2004-2014 AND IMPLICATIONS FOR CASCADIA Thorne Lay, University of California Santa Cruz Last 10 yrs - 18 great earthquakes: rate 1.8/yr; rate over preceding century

More information

Three Dimensional Simulations of Tsunami Generation and Propagation

Three Dimensional Simulations of Tsunami Generation and Propagation Chapter 1 Earth Science Three Dimensional Simulations of Tsunami Generation and Propagation Project Representative Takashi Furumura Authors Tatsuhiko Saito Takashi Furumura Earthquake Research Institute,

More information

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Changjiang Wu 1 and Kazuki Koketsu Earthquake Research Institute, University

More information

Magnitude 7.9 SE of KODIAK, ALASKA

Magnitude 7.9 SE of KODIAK, ALASKA A magnitude 7.9 earthquake occurred at 12:31 am local time 181 miles southeast of Kodiak at a depth of 25 km (15.5 miles). There are no immediate reports of damage or fatalities. Light shaking from this

More information

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 24, 2248, doi:10.1029/2003gl018413, 2003 Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

More information

Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records

Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records LETTER Earth Planets Space, 63, 577 582, 2011 Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records Kunikazu Yoshida

More information

Magnitude 7.4 SOUTH GEORGIA ISLAND REGION

Magnitude 7.4 SOUTH GEORGIA ISLAND REGION A magnitude 7.4 earthquake occurred in the South Georgia Island Region. South Georgia Island is a British territory in the South Atlantic Ocean that lies about 800 miles east of the Falkland Islands. It

More information

Rupture process of the 2007 Chuetsu-oki, Niigata, Japan, earthquake Waveform inversion using empirical Green s functions

Rupture process of the 2007 Chuetsu-oki, Niigata, Japan, earthquake Waveform inversion using empirical Green s functions Earth Planets Space, 60, 1169 1176, 2008 Rupture process of the 2007 Chuetsu-oki, Niigata, Japan, earthquake Waveform inversion using empirical Green s functions Atsushi Nozu Independent Administrative

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

Performance of the GSN station KONO-IU,

Performance of the GSN station KONO-IU, Performance of the GSN station KONO-IU, 1991-2009 A report in a series documenting the status of the Global Seismographic Network WQC Report 2010:9 February 28, 2010 Göran Ekström and Meredith Nettles

More information

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations Earth Planets Space,,, Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations Ayako Nakamura, Youichi Asano, and Akira Hasegawa Research Center for Prediction of

More information

Magnitude 7.6 & 7.4 SOLOMON ISLANDS

Magnitude 7.6 & 7.4 SOLOMON ISLANDS A magnitude 7.6 earthquake struck near the Solomon Islands on Sunday morning local time; there were no immediate reports of damage. The earthquake was centered 100 km (60 miles) south of Kira Kira, a town

More information

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake J-RAPID Symposium March 6-7, 2013 Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake Y. Honkura Tokyo Institute of Technology Japan Science and Technology

More information

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Toshitaka Baba Research Program for Plate Dynamics, Institute for Frontier

More information

Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code.

Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code. Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code. J. Zahradnik 1), F. Gallovic 1), E. Sokos 2) G-A. Tselentis 2) 1) Charles University

More information

Magnitude 7.0 VANUATU

Magnitude 7.0 VANUATU A major earthquake struck in the southwest Pacific Ocean at a depth of 27 km beneath the island of Melampa in the Vanuatu island chain. There are no reports of damage. The Modified Mercalli Intensity (MMI)

More information

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM

More information

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes LETTER Earth Planets Space, 58, 1593 1597, 2006 Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes Kenichi Tsuda and Jamison Steidl Department of Earth Science and Institute for Crustal

More information

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations K. Somei & K. Miyakoshi Geo-Reserch Institute, Osaka, Japan SUMMARY: A great

More information

LETTER Earth Planets Space, 58, 63 67, 2006

LETTER Earth Planets Space, 58, 63 67, 2006 LETTER Earth Planets Space, 58, 63 67, 26 Spatial distribution of F-net moment tensors for the 25 West Off Fukuoka Prefecture Earthquake determined by the extended method of the NIED F-net routine Takumi

More information

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE GENERAL PERSPECTIVE The Highest Magnitude Ever Recorded The 2011 off the Pacific Coast of Tohoku Earthquake (hereafter, the 2011 Tohoku- Pacific Earthquake

More information

Case Study 2: 2014 Iquique Sequence

Case Study 2: 2014 Iquique Sequence Case Study 2: 2014 Iquique Sequence Overview Mw 8.2 earthquake on 1 April 2014 at 11:08:43 UTC Pictures of damage Seismicity maps Foreshock seismicity -> Main shock -> Aftershock 1 April 2014 11:08:43

More information

Chapter 2. Earthquake and Damage

Chapter 2. Earthquake and Damage EDM Report on the Chi-Chi, Taiwan Earthquake of September 21, 1999 2.1 Earthquake Fault 2.1.1 Tectonic Background The island of Taiwan is located in the complex junction where the Eurasian and Philippine

More information

1.3 Short Review: Preliminary results and observations of the December 2004 Great Sumatra Earthquake Kenji Hirata

1.3 Short Review: Preliminary results and observations of the December 2004 Great Sumatra Earthquake Kenji Hirata 1.3 Short Review: Preliminary results and observations of the December 2004 Great Sumatra Earthquake Kenji Hirata We give a brief review about observations and preliminary results regarding the 2004 great

More information

What happened before the last five strong earthquakes in Greece: Facts and open questions

What happened before the last five strong earthquakes in Greece: Facts and open questions 86 Proc. Jpn. Acad., Ser. B 82 (2006) [Vol. 82, What happened before the last five strong earthquakes in Greece: Facts and open questions By Panayiotis A. VAROTSOS ) Solid State Section and Solid Earth

More information

Rupture process of the 2005 West Off Fukuoka Prefecture, Japan, earthquake

Rupture process of the 2005 West Off Fukuoka Prefecture, Japan, earthquake LETTER Earth Planets Space, 8, 87 92, 26 Rupture process of the 2 West Off Fukuoka Prefecture, Japan, earthquake Haruo Horikawa Active Fault Research Center, National Institute of Advanced Industrial Science

More information

Seismological Aspects of the December 2004 Great Sumatra-Andaman Earthquake

Seismological Aspects of the December 2004 Great Sumatra-Andaman Earthquake Seismological Aspects of the December 2004 Great Sumatra-Andaman Earthquake Hiroo Kanamori, a M.EERI The 2004 Great Sumatra-Andaman earthquake had an average source duration of about 500 sec. and a rupture

More information

Detection of seismic events triggered by P-waves from the 2011 Tohoku-Oki earthquake

Detection of seismic events triggered by P-waves from the 2011 Tohoku-Oki earthquake Earth Planets Space, 64, 1223 1229, 2012 Detection of seismic events triggered by P-waves from the 2011 Tohoku-Oki earthquake Masatoshi Miyazawa 1,2 1 Disaster Prevention Research Institute, Kyoto University,

More information

Focal mechanism and slip history of the 2011 M w 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves

Focal mechanism and slip history of the 2011 M w 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves LETTER Earth Planets Space, 63, 559 564, 2011 Focal mechanism and slip history of the 2011 M w 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves Guangfu

More information

Imaging of S-wave reflectors in and around the hypocentral area of the 2004 mid Niigata Prefecture Earthquake (M6.8)

Imaging of S-wave reflectors in and around the hypocentral area of the 2004 mid Niigata Prefecture Earthquake (M6.8) LETTER Earth Planets Space, 57, 557 561, 2005 Imaging of S-wave reflectors in and around the hypocentral area of the 2004 mid Niigata Prefecture Earthquake (M6.8) Satoshi Matsumoto 1, Yoshihisa Iio 2,

More information

Source of the July 2006 West Java tsunami estimated from tide gauge records

Source of the July 2006 West Java tsunami estimated from tide gauge records GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L24317, doi:10.1029/2006gl028049, 2006 Source of the July 2006 West Java tsunami estimated from tide gauge records Yushiro Fujii 1 and Kenji Satake 2 Received 13

More information

Magnitude 7.6 & 7.6 PERU

Magnitude 7.6 & 7.6 PERU Two deep 7.6 magnitude earthquakes have shaken a sparsely populated jungle region near the Peru-Brazil border in southeast Peru. There were no immediate reports of injuries or damage. The second M 7.6

More information

Long-term Crustal Deformation in and around Japan, Simulated by a 3-D Plate Subduction Model

Long-term Crustal Deformation in and around Japan, Simulated by a 3-D Plate Subduction Model Long-term Crustal Deformation in and around Japan, Simulated by a 3-D Plate Subduction Model Chihiro Hashimoto (1) and Mitsuhiro Matsu ura (2) (1) Institute of Frontier Research for Earth Evolution, Japan

More information

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

4 Associate Professor, DPRI, Kyoto University, Uji, Japan Proceedings of the International Symposium on Engineering Lessons Learned from the 2 Great East Japan Earthquake, March -4, 22, Tokyo, Japan STRONG MOTION ESTIMATION AT THE ELEVATED BRIDGES OF THE TOHOKU

More information

Tsunami early warning based on surface wave inversion techniques

Tsunami early warning based on surface wave inversion techniques Tsunami early warning based on surface wave inversion techniques H.K. Thio URS Corporation, Los Angeles, CA, USA J. Polet California State Polytechnic University, Pomona CA, USA SUMMARY: We studied a method

More information

Magnitude 7.0 NEW CALEDONIA

Magnitude 7.0 NEW CALEDONIA A magnitude 7.0 earthquake has occurred 82km ENE of Maré Island, the secondlargest of the Loyalty Islands in the archipelago of New Caledonia. The initial report of the magnitude and shallow 10km depth

More information

Shallow inland earthquakes in NE Japan possibly triggered by the 2011 off the Pacific coast of Tohoku Earthquake

Shallow inland earthquakes in NE Japan possibly triggered by the 2011 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 749 754, 2011 Shallow inland earthquakes in NE Japan possibly triggered by the 2011 off the Pacific coast of Tohoku Earthquake Tomomi Okada 1, Keisuke Yoshida 1, Sadato

More information

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Letter J. Phys. Earth, 41, 319-325, 1993 Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Yasuo Izutani Faculty of Engineering,

More information

Magnitude 8.3 SEA OF OKHOTSK

Magnitude 8.3 SEA OF OKHOTSK A powerful earthquake in Russia's Far East was felt as far away as Moscow, about 7,000 kilometers (4,400 miles) west of the epicenter, but no casualties or damage were reported. The epicenter was in the

More information

LETTER Earth Planets Space, 57, , 2005

LETTER Earth Planets Space, 57, , 2005 LETTER Earth Planets Space, 57, 1115 1120, 2005 A tectonic interpretation of NW-SE strike-slip faulting during the 2004 off the Kii peninsula earthquakes, Japan: Probable tear of the Philippine Sea plate

More information

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION A major 7.7 magnitude earthquake struck at 8:04 PM local time in western British Columbia, Canada. The epicenter is located on Moresby Island, the southern large island in the Queen Charlotte Islands region.

More information

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES Rey M. Lumbang MEE12608 Supervisor: Nobuo Hurukawa ABSTRACT We relocated large magnitude (Mw 7.0) earthquakes that

More information

KIRSTY STYLES - EARTHQUAKE RISK SCIENTIST

KIRSTY STYLES - EARTHQUAKE RISK SCIENTIST Aspen Opinion 1 ASPEN OPINION STRESS STATE IN JAPAN TWO YEARS ON KIRSTY STYLES - EARTHQUAKE RISK SCIENTIST Kirsty Styles PhD, summarizes key academic papers on the topic of Coulomb Stress Transfer (CST)

More information

Nobuo Hurukawa 1 and Tomoya Harada 2,3. Earth Planets Space, 65, , 2013

Nobuo Hurukawa 1 and Tomoya Harada 2,3. Earth Planets Space, 65, , 2013 Earth Planets Space, 65, 1441 1447, 2013 Fault plane of the 1964 Niigata earthquake, Japan, derived from relocation of the mainshock and aftershocks by using the modified joint hypocenter determination

More information

Magnitude 7.0 PERU. This region of the Andes is a sparsely populated area, there were no immediate reports of injuries or damage.

Magnitude 7.0 PERU. This region of the Andes is a sparsely populated area, there were no immediate reports of injuries or damage. A magnitude 7.0 earthquake occurred in southeastern Peru on Friday about 27 kilometers northeast of the town of Azángaro, Peru, near the border with Bolivia. The earthquake occurred at a depth of 257.4

More information

High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake

High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake K. Irikura Disaster Prevention Research Center, Aichi Institute of Technology, Japan S. Kurahashi Disaster Prevention

More information

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data Kunikazu Yoshida, Anatoly Petukhin & Ken Miyakoshi Geo-Research Institute, Japan Koji

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS Yasumaro KAKEHI 1 SUMMARY High-frequency (higher than 1 Hz) wave radiation processes

More information