Site Location (Latitude/ Longitude)

Size: px
Start display at page:

Download "Site Location (Latitude/ Longitude)"

Transcription

1 Core Identification: Expedition Site & Hole Core & Type* Pacific Cores TABLE 2.. Seafloor cores Physiographic Site Location Site Location (Latitude/ Longitude) Water Depth (m) 2-687A-2H Peru continental shelf 2.9S/77.0W 36 Seuss et al., SE Pacific basin, North of Antarctica Ross Sea, South of Australia, margin of Antarctica B-2H Chinook Trough, North Pacific abyssal plain 69S/98.8W 4433 Hollister et al., S/40.E 4282 Hayes et al., N/68.2W 5743 Rea et al., A-2H Detroit Seamount NW Pacific 50.36N/67.6E Rea et al., A- NW Pacific, east of the Sea of Okhotsk 47.N/6.5E 553. Rea et al., C-2H Patton-Murray Seamount, NE Pacific 54.4N/48.5W Rea et al., Bering Sea 53.8N/78.7E 2649 Creager et al., Alaskan continental slope 57.9N/48.7W 49 Klum et al., Line Islands Ridge, south central Pacific 4.8S/46.9W 264 Schlanger et al., Marquesas Fracture Zone, central Pacific abyssal plain 2.5S/35.3W 48 Tracey et al., SE Pacific abyssal plain 8.8S/29.8W 466 Leinen et al., A-2H Antarctic Peninsula continental rise 64.4S/70.3W Barker et al., A-H Antarctic Peninsula continental rise 67.57S/77.0W 352 Barker et al., A-3R Antarctic Peninsula shelf 66.4S/70.75W 55.7 Barker et al., South of New Zealand 56.6S/60.E 3675 Kennett et al., A-2H Nazca Ridge, SE Pacific 2.4S/8.44W Mix et al., B-2H Guatemala Basin, eastern tropical Pacific Clipperton Fracture Zone, central Pacific abyssal plain 6.7N/9.9W Wilson et al., N/36.W 443 Tracey et al., A-H South of Hawaii 9.3N/59.W Dziewonski et al., A-2H Shatsky Rise, NW Pacific 32.7N/58.5E Bralower et al., A-2H NE of Hawaii, North Pacific abyssal plain 26.0N/47.9W Lyle et al., West of Midway Island, North Pacific abyssal plain 32.4N/64.3E 627 Heath et al., B-2H Philippine Sea 9.3N/35.E Salisbury et al., A-2H Ontong Java Plateau, western equatorial Pacific 3.6N/56.6E Kroenke et al., A-2H Chatham Rise, east of New Zealand 42.6S/78.2W Carter et al., 999

2 TABLE 2.. Continued Core Identification: Expedition Site & Hole Core & Type* A-H B-2H Physiographic Site Location Escanaba Trough, west of Oregon and N. California Cascadia margin, west of Vancouver, BC Site Location (Latitude/ Longitude) Water Depth (m) 4.0N/27.5W Fouquet et al., N/26.7W Westbrook et al., E-H West of Baja California 30.0N/8.W Lyle et al., C-H North Pacific abyssal plain, south of the Murray Fracture Zone 27.9N/42.0W Stephen et al., A-2H Japan Sea 44.0N/39.0E Tamaki et al., North of Ross Ice Shelf, Antarctica 69.0S/73.4E 3305 Hayes et al., 975 North Atlantic Cores Western flank of Mid-Atlantic Ridge 36.8N/33.7W 666 Aumento et al., Western flank of Mid-Atlantic Ridge 33.8N/37.3W 3754 Bougault et al., A-2H Northeast Bermuda Rise 33.7N/57.6W Keigwin et al., A-2H Labrador Sea, south of Greenland 58.2N/48.4W Srivastava et al., A-2H Rockall Bank, west of Ireland 55.5N/4.7W Jansen et al., A-2H SE Greenland, continental rise 62.7N/37.5W Larsen et al., H New Jersey continental shelf 39.2N/72.3W Austin et al., H Madeira abyssal plain 25.9N/27.W 536 Hayes et al., 972 * The letter indicating the type of drilling (e.g., H for hydraulic piston coring) is not always included in the core identification (Column of Table 2.). This is because early on in the drilling program, there was only one type of coring (rotary), and thus no special notation was needed. Core identification in Table 2. matches the core identification on the related core photos (and the end of this chapter).

3 TABLE 2.2. Smear slide data Smear Slide Sample Identification Texture (%) Composition (%) Grain Size Mineral Grains Microfossils Exp-Site&Hole-Core&Type-Section, Interval (cm) Sand Silt Clay Accessory Min. Calcite/Dolomite Clay Minerals Fe Oxide Feldspar Other Minerals* Mica Quartz Volcanic Glass Calc. Nannos Diatoms Pacific samples 2-687A-2H-, A-2H-3, A-2H-5, A-2H-6, , 20 none given , 50 none given , 00 none given , 00 none given , 34 none given , 37 none given A-H-, A-H-2, A-H-2, B-2H-, B-2H-5, B-2H-6, A-2H-2, A-2H-3, A-2H-4, C-2H-, C-2H-3, C-2H-3, * Other minerals includes opaques, phillipsite, phroxene, hornblende, and others. D = dominant, A = abundant, C = common, P = present, R = rare, T = trace.

4 Lithologic Name of the Sediment Rock Frags./Other Foraminifers Radiolarians Silicoflagellates Sponge Spicules Skeletal Debirs Carbonate Frags. Organic matter Nodules Rock Fragments 0 2 Seuss et al., Hollister et al., Hayes et al., 975 Rea et al., Rea et al., Rea et al., Rea et al., (Continued)

5 TABLE 2.2. Continued Smear Slide Sample Identification Texture (%) Composition (%) Grain Size Mineral Grains Microfossils Exp-Site&Hole-Core&Type-Section, Interval (cm) Sand Silt Clay Accessory Min. Calcite/Dolomite Clay Minerals Fe Oxide Feldspar Other Minerals* Mica Quartz Volcanic Glass Calc. Nannos Diatoms Pacific samples , 56 none given , 20 none given , 75 none given , 75 none given , tr , , 67 none given R D , 00 none given , 0 none given , 0 none given , 35 none given , 0 none given A-2H-, A-2H-2, A-2H-2, A-2H-4, A-2H-6, A-H-, A-H-, A-H-4, A-H-6, * Other minerals includes opaques, phillipsite, phroxene, hornblende, and others. D = dominant, A = abundant, C = common, P = present, R = rare, T = trace.

6 Lithologic Name of the Sediment Rock Frags./Other Foraminifers Radiolarians Silicoflagellates Sponge Spicules Skeletal Debirs Carbonate Frags. Organic matter Nodules Rock Fragments Creager et al., 973 Klum et al., 973 A P C Schlanger et al., 976 Tracey et al., Barker et al., Barker et al., 99 (Continued)

7 TABLE 2.2. Continued Smear Slide Sample Identification Texture (%) Composition (%) Grain Size Mineral Grains Microfossils Exp-Site&Hole-Core&Type-Section, Interval (cm) Sand Silt Clay Accessory Min. Calcite/Dolomite Clay Minerals Fe Oxide Feldspar Other Minerals* Mica Quartz Volcanic Glass Calc. Nannos Diatoms Pacific samples A-3R- all gravel , 27 none given CC, 0 none given A-2H,, A-2H, R A-2H, R B-2H-2, , 2 none given , 0 none given A-H-, A-H-4, A-H-6, A-H-6, A-H-7, A-2H-, 39 none given A-2H-5, 38 none given A-2H-, A-2H-3, A-2H-CC, Pacific samples , , , , * Other minerals includes opaques, phillipsite, phroxene, hornblende, and others. D = dominant, A = abundant, C = common, P = present, R = rare, T = trace.

8 Lithologic Name of the Sediment Rock Frags./Other Foraminifers Radiolarians Silicoflagellates Sponge Spicules Skeletal Debirs Carbonate Frags. Organic matter Nodules Rock Fragments 00 Barker et al., Kennett et al., Mix et al., Wilson et al., < Tracey et al., Dziewonski et al., Bralower et al., Lyle et al., Heath et al., (Continued)

9 TABLE 2.2. Continued Smear Slide Sample Identification Texture (%) Composition (%) Grain Size Mineral Grains Microfossils Exp-Site&Hole-Core&Type-Section, Interval (cm) Sand Silt Clay Accessory Min. Calcite/Dolomite Clay Minerals Fe Oxide Feldspar Other Minerals* Mica Quartz Volcanic Glass Calc. Nannos Diatoms 95-20B-2H-, D P R P R 95-20B-2H-5, D R P R 95-20B-2H-7, D P P R P A-2H-2, A-2H-, P R D A-H-3, 80 C A R R A R R C R R A-H-5, 62 A C R R R R C A R B-2H-5, B-2H-6, E-H-3, E-H-4, C-H-, C-H-2, C-H-3, C-H-5, Pacific samples A-2H-, A-2H-2, A-2H-3, A-2H-5, , , , * Other minerals includes opaques, phillipsite, phroxene, hornblende, and others. D = dominant, A = abundant, C = common, P = present, R = rare, T = trace.

10 Lithologic Name of the Sediment Rock Frags./Other Foraminifers Radiolarians Silicoflagellates Sponge Spicules Skeletal Debirs Carbonate Frags. Organic matter Nodules Rock Fragments Salisbury et al., Kroenke et al., 99 P R P Carter et al., 999 R Fouquet et al., 998 R 5 Westbrook et al., Lyle et al., Stephen et al., Tamaki et al., Hayes et al., 975 (Continued)

11 TABLE 2.2. Continued Smear Slide Sample Identification Texture (%) Composition (%) Grain Size Mineral Grains Microfossils Exp-Site&Hole-Core&Type-Section, Interval (cm) Sand Silt Clay Accessory Min. Calcite/Dolomite Clay Minerals Fe Oxide Feldspar Other Minerals* Mica Quartz Volcanic Glass Calc. Nannos Diatoms North Atlantic samples , , 75 none given , 75 none given A-2H-3, R D T T A C R A-2H-6, R D T T C A C A-2H-, A-2H-2, A-2H-5, A-2H-, A-2H-3, A-2H-6, North Atlantic samples 52-99A-2H-, A-2H-3, A-2H-4, A-H-, 0 none given A-H-, 20 none given H-2, 90 none given * Other minerals includes opaques, phillipsite, phroxene, hornblende, and others. D = dominant, A = abundant, C = common, P = present, R = rare, T = trace.

12 Lithologic Name of the Sediment Rock Frags./Other Foraminifers Radiolarians Silicoflagellates Sponge Spicules Skeletal Debirs Carbonate Frags. Organic matter Nodules Rock Fragments 4 Aumento et al., Bougault et al., T T T R Keigwin et al., 998 T T T C Srivastava et al., Jansen et al., Larsen et al., Austin et al., 998 8

Activity of the Month

Activity of the Month Activity of the Month September, 2008 It s Sedimentary, My Dear Watson Summary National Math Standards In this introductory activity, students will analyze core sample data to identify sediment composition

More information

Student Exercise Inquiry into Sediment Cores

Student Exercise Inquiry into Sediment Cores Student Exercise Inquiry into Sediment Cores Teaching for Science Learning for Life TM www.deepearthacademy.org Summary This activity serves as an inquiry-based introduction to description of sediment

More information

Marine Sediments. Introductory Oceanography. Ray Rector: Instructor

Marine Sediments. Introductory Oceanography. Ray Rector: Instructor Marine Sediments Introductory Oceanography Ray Rector: Instructor Ocean Basins are Vast Sinks for Huge Amounts of Sediment from Numerous Different Sources Four Major Types of Seafloor Sediments 1. Lithogenous

More information

http://www.neic.cr.usgs.gov/neis/pands/global.html Global Seismicity and World Cities This map displays the worldwide hazard to cities by large earthquakes. When earthquakes occur near cities, the potential

More information

Earth s Seafloors. Ocean Basins and Continental Margins. Introductory Oceanography Ray Rector - Instructor

Earth s Seafloors. Ocean Basins and Continental Margins. Introductory Oceanography Ray Rector - Instructor Earth s Seafloors Ocean Basins and Continental Margins Introductory Oceanography Ray Rector - Instructor OCEAN BASINS and CONTINENTAL PLATFORMS Key Concepts I. Earth s rocky surface covered by of two types

More information

Directed Reading. Section: The Water Planet. surface is called the a. Earth s ocean. b. Pacific Ocean. c. salt-water ocean. d. global ocean.

Directed Reading. Section: The Water Planet. surface is called the a. Earth s ocean. b. Pacific Ocean. c. salt-water ocean. d. global ocean. Skills Worksheet Directed Reading Section: The Water Planet 1. The body of salt water covering nearly three-quarters of the Earth s surface is called the a. Earth s ocean. b. Pacific Ocean. c. salt-water

More information

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 2

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 2 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 2 Ocean basins and relation to climate Learning objectives: (1)What are the similarities and differences among different ocean basins? (2) How does

More information

17. CARBONATE SEDIMENTARY ROCKS FROM THE WESTERN PACIFIC: LEG 7, DEEP SEA DRILLING PROJECT

17. CARBONATE SEDIMENTARY ROCKS FROM THE WESTERN PACIFIC: LEG 7, DEEP SEA DRILLING PROJECT 17. CARBONATE SEDIMENTARY ROCKS FROM THE WESTERN PACIFIC: LEG 7, DEEP SEA DRILLING PROJECT Ralph Moberly, Jr., Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii and G. Ross Heath,

More information

12. The diagram below shows the collision of an oceanic plate and a continental plate.

12. The diagram below shows the collision of an oceanic plate and a continental plate. Review 1. Base your answer to the following question on the cross section below, which shows the boundary between two lithospheric plates. Point X is a location in the continental lithosphere. The depth

More information

Introduction to the Seafloor. Follow the steps below while taking notes in your science notebook.

Introduction to the Seafloor. Follow the steps below while taking notes in your science notebook. Procedure Follow the steps below while taking notes in your science notebook. 1. Name and locate all of the continents. 2. Identify linear (straight-line) and arcuate (curved-line) features on the continents.

More information

Ocean Floor. Continental Margins. Divided into 3 major regions. Continental Margins. Ocean Basins. Mid-Ocean Ridges. Include:

Ocean Floor. Continental Margins. Divided into 3 major regions. Continental Margins. Ocean Basins. Mid-Ocean Ridges. Include: Ocean Floor Divided into 3 major regions Continental Margins Ocean Basins Mid-Ocean Ridges Continental Margins Include: Continental Shelves Continental Slopes Continental Rise 1 Continental Shelves Part

More information

Proposed draft marine bioregions

Proposed draft marine bioregions Proposed draft marine bioregions 1. PROPOSED PELAGIC BIOREGIONS Map 1. Proposed draft pelagic bioregions List of proposed pelagic bioregions: 1. Agulhas Current 2. Antarctic 3. Antarctic Polar Front 4.

More information

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations?

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations? Patterns and observations? Patterns and observations? Observations? Patterns? Observations? Patterns? Geometry of the ocean Actual bathymetry (with vertical exaggeration) Continental Continental Basin

More information

Map Elements & The 5 Oceans

Map Elements & The 5 Oceans Map Elements & The 5 Oceans Latitude and Longitude Longitude lines run north and south. Latitude lines run east and west. The lines measure distances in degrees. Latitude Longitude Where is 0 degrees?

More information

Practice Questions: Plate Tectonics

Practice Questions: Plate Tectonics Practice Questions: Plate Tectonics 1. Base your answer to the following question on The block diagram below shows the boundary between two tectonic plates. Which type of plate boundary is shown? A) divergent

More information

Figure 1. Locations of Sites 280 and 281.

Figure 1. Locations of Sites 280 and 281. 33. DETRITAL AND BIOGENIC SEDIMENT TRENDS AT DSDP SITES 280 AND 281, AND EVOLUTION OF MIDDLE CENOZOIC CURRENTS Monty A. Hampton, Geology Department, University of Rhode Island, Kingston, Rhode Island ABSTRACT

More information

USU 1360 TECTONICS / PROCESSES

USU 1360 TECTONICS / PROCESSES USU 1360 TECTONICS / PROCESSES Observe the world map and each enlargement Pacific Northwest Tibet South America Japan 03.00.a1 South Atlantic Arabian Peninsula Observe features near the Pacific Northwest

More information

are unconsolidated particulate materials that either precipitate from or are deposited by a fluid (e.g., water, wind);

are unconsolidated particulate materials that either precipitate from or are deposited by a fluid (e.g., water, wind); Sediments... are unconsolidated particulate materials that either precipitate from or are deposited by a fluid (e.g., water, wind); provide information about the past depositional environments and climatic

More information

Paleocene-Eocene Thermal Maximum (PETM)

Paleocene-Eocene Thermal Maximum (PETM) Paleocene-Eocene Thermal Maximum (PETM) Part 1 Shipboard Data and Analysis Teaching for Science Learning for Life TM www.deepearthacademy.org Coring in the Deep Sea and the Role of the Shipboard Scientist

More information

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge? 1. Crustal formation, which may cause the widening of an ocean, is most likely occurring at the boundary between the A) African Plate and the Eurasian Plate B) Pacific Plate and the Philippine Plate C)

More information

The Ocean Floor Chapter 14. Essentials of Geology, 8e. Stan Hatfield and Ken Pinzke Southwestern Illinois College

The Ocean Floor Chapter 14. Essentials of Geology, 8e. Stan Hatfield and Ken Pinzke Southwestern Illinois College The Ocean Floor Chapter 14 Essentials of Geology, 8e Stan Hatfield and Ken Pinzke Southwestern Illinois College The vast world ocean Earth is often referred to as the water planet 71% of Earth s surface

More information

Marine Sediments EPSS15 Spring 2017 Lab 4

Marine Sediments EPSS15 Spring 2017 Lab 4 Marine Sediments EPSS15 Spring 2017 Lab 4 Why Sediments? Record of Earth s history - Tectonic plate movement - Past changes in climate - Ancient ocean circulation currents - Cataclysmic events 1 Classification

More information

Small area of the ocean that is partially surrounded by land. The Ocean Basins. Three Major Oceans. Three Major Oceans. What is a SEA?

Small area of the ocean that is partially surrounded by land. The Ocean Basins. Three Major Oceans. Three Major Oceans. What is a SEA? The Ocean Basins How Deep is the Ocean? 1 2 Three Major Oceans Three Major Oceans Pacific Atlantic the shallowest ocean (3.3km average depth) Indian second shallowest ocean (3.8km average depth) Pacific

More information

ARE YOU READY TO THINK? Look at the first slide THINK PAIR SHARE!

ARE YOU READY TO THINK? Look at the first slide THINK PAIR SHARE! ARE YOU READY TO THINK? Look at the first slide THINK PAIR SHARE! WHAT PROMINENT FEATURE CAN YOU IDENTIFY IN THIS PICTURE? What do you think the different colors represent? Who might find such a picture

More information

Chapter 02 The Sea Floor

Chapter 02 The Sea Floor Chapter 02 The Sea Floor Multiple Choice Questions 1. One of the following is not one of the world's major ocean basins: A. Atlantic Ocean B. Arctic Ocean C. Indian Ocean D. Antarctic Ocean E. Pacific

More information

Earth s Continents and Seafloors. GEOL100 Physical Geology Ray Rector - Instructor

Earth s Continents and Seafloors. GEOL100 Physical Geology Ray Rector - Instructor Earth s Continents and Seafloors GEOL100 Physical Geology Ray Rector - Instructor OCEAN BASINS and CONTINENTAL PLATFORMS Key Concepts I. Earth s rocky surface covered by of two types of crust Dense, thin,

More information

Ocean Sciences 101 The Marine Environment OCEA 101 THE MARINE ENVIRONMENT MID-TERM EXAM

Ocean Sciences 101 The Marine Environment OCEA 101 THE MARINE ENVIRONMENT MID-TERM EXAM OCEA 101 THE MARINE ENVIRONMENT MID-TERM EXAM Part I. Multiple Choice Questions. Choose the one best answer from the list, and write the letter legibly in the blank to the left of the question. 2 points

More information

1. Name at least one place that the mid-atlantic Ridge is exposed above sea level.

1. Name at least one place that the mid-atlantic Ridge is exposed above sea level. Interpreting Tectonic and Bathymetric Maps. The purpose of this lab is to provide experience interpreting the bathymetry of the seafloor in terms of tectonic and geologic settings and processes. Use the

More information

14.2 Ocean Floor Features Mapping the Ocean Floor

14.2 Ocean Floor Features Mapping the Ocean Floor 14.2 Ocean Floor Features Mapping the Ocean Floor The ocean floor regions are the continental margins, the ocean basin floor, and the mid-ocean ridge. 14.2 Ocean Floor Features Continental Margins A continental

More information

OCN 201 Physiography of the Seafloor

OCN 201 Physiography of the Seafloor OCN 201 Physiography of the Seafloor 1 Ocean Depth versus Continental Height Why do we have dry land? Solid surface of Earth is dominated by two levels: Land with a mean elevation of +840 m (29% of Earth

More information

OCN 201 Mantle plumes and hot spots

OCN 201 Mantle plumes and hot spots OCN 201 Mantle plumes and hot spots Question Long-term (>50 million years) changes in sea level are caused by: A. Changes in the volume of water in the ocean B. Changes in the volume of the ocean basins

More information

The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are

The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are 11.1 Ocean Basins The surface of the ocean floor is as varied as the land. The five major oceans, from largest to smallest, are w the Pacific w the Atlantic w the Indian w the Southern w the Arctic The

More information

Seas. A sea is a part of an ocean that is nearly surrounded by water. The Mediterranean, Arctic and Black Sea are really part of the Atlantic Ocean.

Seas. A sea is a part of an ocean that is nearly surrounded by water. The Mediterranean, Arctic and Black Sea are really part of the Atlantic Ocean. Exploring the Ocean Since ancient times people have studied the ocean such as waters and ocean floor It provides food and services, and serves as a route for trade and travel The World s Oceans 71% of

More information

GEOGRAPHY OCEAN TYPES OF OCEANS Economics Importance of Oceans to Man Relief of the ocean floor Continental Shelf Importance of Continental Shelf

GEOGRAPHY OCEAN TYPES OF OCEANS Economics Importance of Oceans to Man Relief of the ocean floor Continental Shelf Importance of Continental Shelf GEOGRAPHY OCEAN The oceans and seas occupy about 71 per cent of the total earth surface which means that about 29 percent of the earth s surface is occupied by the land. The study of the oceans. The water

More information

Class Notes: Water and Climate. Ever since the outgassing of water vapor years ago, Earth has been recycling its water supply. Water Cycle -!

Class Notes: Water and Climate. Ever since the outgassing of water vapor years ago, Earth has been recycling its water supply. Water Cycle -! Name: Date: Period: Water and Climate The Physical Setting: Earth Science I. The Water Cycle Ever since the outgassing of water vapor years ago, Earth has been recycling its water supply Earth has not

More information

General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On

General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On Name Not attempting to answer questions on expeditions will result in point deductions on course workbook (two or more blank

More information

The Ocean Floor Earth Science, 13e Chapter 13

The Ocean Floor Earth Science, 13e Chapter 13 The Ocean Floor Earth Science, 13e Chapter 13 Stanley C. Hatfield Southwestern Illinois College The vast world ocean Earth is often referred to as the blue planet Seventy-one percent of Earth s surface

More information

OCN 201 Physiography of the Seafloor

OCN 201 Physiography of the Seafloor OCN 201 Physiography of the Seafloor Hypsometric Curve for Earth s solid surface Note histogram Hypsometric curve of Earth shows two modes. Hypsometric curve of Venus shows only one! Why? Ocean Depth vs.

More information

Lecture Outlines PowerPoint. Chapter 13 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 13 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 13 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Mineralogy of Deep-Sea Sediments Along the Murray Fracture Zone 1

Mineralogy of Deep-Sea Sediments Along the Murray Fracture Zone 1 Pacific Science (1979), vol. 33, no. 2 1980 by The University Press of Hawaii. All rights reserved Mineralogy of Deep-Sea Sediments Along the Murray Fracture Zone 1 POW-FOONG F AN 2 ABSTRACT: Semiquantitative

More information

Earth / Environmental Science. Ch. 14 THE OCEAN FLOOR

Earth / Environmental Science. Ch. 14 THE OCEAN FLOOR Earth / Environmental Science Ch. 14 THE OCEAN FLOOR The Blue Planet Nearly 70% of the Earth s surface is covered by the global ocean It was not until the 1800s that the ocean became an important focus

More information

Unit 8 Test Review -- Oceanography

Unit 8 Test Review -- Oceanography Unit 8 Test Review -- Oceanography Multiple Choice Identify the choice that best completes the statement or answers the question. D 1. A large body of saline water that may be surrounded by land is a(n)

More information

Late 20 th Century Tests of the Continental Drift Hypothesis

Late 20 th Century Tests of the Continental Drift Hypothesis Late 20 th Century Tests of the Continental Drift Hypothesis 5 Characteristics of the Ocean Trenches Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter.

More information

The Marine Environment

The Marine Environment The Marine Environment SECTION 16.1 Shoreline Features In your textbook, read about erosional landforms, beaches, estuaries, longshore currents, and rip currents. For each statement below, write or. 1.

More information

Oceanography is the scientific study of oceans Oceans make up over 70% of the Earth s surface

Oceanography is the scientific study of oceans Oceans make up over 70% of the Earth s surface Oceanography Oceanography is the scientific study of oceans Oceans make up over 70% of the Earth s surface An ocean must be large and have features which set it apart from other oceans (currents, water

More information

OCEANOGRAPHY MEASURING THE DEPTHS OF THE OCEANS

OCEANOGRAPHY MEASURING THE DEPTHS OF THE OCEANS Water 2 page 1 OCEANOGRAPHY Name If all the water was drained from the ocean basins, what kind of surface would be revealed? It would not be the quiet, subdued topography as was once thought, but a surface

More information

Lecture 26: Marine Geology Read: Chapter 21 Homework due December 3

Lecture 26: Marine Geology Read: Chapter 21 Homework due December 3 Learning Objectives (LO) Lecture 26: Marine Geology Read: Chapter 21 Homework due December 3 What we ll learn today:! 1. Describe the world s five oceans! 2. Understand patterns of ocean circulation! 3.

More information

Sedimentology & Stratigraphy. Thanks to Rob Viens for slides

Sedimentology & Stratigraphy. Thanks to Rob Viens for slides Sedimentology & Stratigraphy Thanks to Rob Viens for slides Sedimentology The study of the processes that erode, transport and deposit sediments Sedimentary Petrology The study of the characteristics and

More information

Reading Material. See class website. Sediments, from Oceanography M.G. Gross, Prentice-Hall

Reading Material. See class website. Sediments, from Oceanography M.G. Gross, Prentice-Hall Reading Material See class website Sediments, from Oceanography M.G. Gross, Prentice-Hall Materials filling ocean basins Dissolved chemicals especially from rivers and mid-ocean ridges (volcanic eruptions)

More information

Wednesday 22 May 2013 Morning

Wednesday 22 May 2013 Morning Wednesday 22 May 2013 Morning AS GCE GEOLOGY F792/01 Rocks Processes and Products *F713000613* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Ruler (cm/mm)

More information

Plate Tectonics. Earth has distinctive layers - Like an onion

Plate Tectonics. Earth has distinctive layers - Like an onion Plate Tectonics Earth has distinctive layers - Like an onion Earth s Interior Core: Metallic (Iron, Nickel) Inner (hot, solid, dense, Iron, Nickel) Outer (cooler, liquid, less dense) Crust (outermost layer):

More information

Laboratory #7: Plate Tectonics

Laboratory #7: Plate Tectonics Materials Needed: 1. Pencil 2. Colored Pencils 3. Metric/Standard Ruler 4. Calculator 5. Tracing Paper Laboratory #7: Plate Tectonics Plate Tectonics The Earth is composed of layers. At the center is a

More information

GEOLOGY MEDIA SUITE Chapter 5

GEOLOGY MEDIA SUITE Chapter 5 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 5 Sedimentation Rocks Formed by Surface Processes 2010 W.H. Freeman and Company Mineralogy of sandstones Key Figure 5.12

More information

Rockall Plateau. OCN 201: Shelf Sediments

Rockall Plateau. OCN 201: Shelf Sediments Rockall Plateau OCN 201: Shelf Sediments Classification by Size Classification by Mode of Formation Detrital sediments Transported and deposited as particles Derived from weathering of pre-existing rocks

More information

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Oceans: The Last Frontier Foundations, 6e - Chapter 9 Stan Hatfield Southwestern Illinois College The vast world ocean Earth is often referred

More information

NAME Lab TA. Introduction to Oceanography, EPSS15 Practice Lecture Exam #1, Fall 2017 Exam#

NAME Lab TA. Introduction to Oceanography, EPSS15 Practice Lecture Exam #1, Fall 2017 Exam# NAME Lab TA Introduction to Oceanography, EPSS15 Practice Lecture Eam #1, Fall 2017 Eam# 654321 Instructions 1. PRINT your name and lab TA s name on BOTH the cover sheet of this eam and on the SCANTRON

More information

Map shows 3 main features of ocean floor

Map shows 3 main features of ocean floor Map shows 3 main features of ocean floor 2017 Pearson Education, Inc. Chapter 3 Marine Provinces 2017 Pearson Education, Inc. 1 Chapter 3 Overview The study of bathymetry determines ocean depths and ocean

More information

Crustal Boundaries. As they move across the asthenosphere and form plate boundaries they interact in various ways. Convergent Transform Divergent

Crustal Boundaries. As they move across the asthenosphere and form plate boundaries they interact in various ways. Convergent Transform Divergent Name: Date: Period: Plate Tectonics The Physical Setting: Earth Science CLASS NOTES Tectonic plates are constantly moving and interacting As they move across the asthenosphere and form plate boundaries

More information

Chapter Overview. Bathymetry. Measuring Bathymetry. Measuring Bathymetry

Chapter Overview. Bathymetry. Measuring Bathymetry. Measuring Bathymetry CHAPTER 3 Marine Provinces Chapter Overview The study of bathymetry determines ocean depths and ocean floor topography. Echo sounding and satellites are efficient bathymetric tools. Most ocean floor features

More information

Plate Tectonics. 1)The plate tectonic system 2)A theory is born 3) Early evidence for continental drift 4) Continental drift and paleomagnetism

Plate Tectonics. 1)The plate tectonic system 2)A theory is born 3) Early evidence for continental drift 4) Continental drift and paleomagnetism Plate Tectonics Plate boundaries 1)The plate tectonic system 2)A theory is born 3) Early evidence for continental drift 4) Continental drift and paleomagnetism 6)History and future of plate motions system

More information

Section 14.1 The Vast World Ocean This section discusses how much of Earth is covered by water and how that water is studied.

Section 14.1 The Vast World Ocean This section discusses how much of Earth is covered by water and how that water is studied. Section 14.1 The Vast World Ocean This section discusses how much of Earth is covered by water and how that water is studied. Reading Strategy Building Vocabulary As you read the section, define each term

More information

Shape of the seafloor. Shape of the seafloor. Shape of the seafloor. Shape of the seafloor. Shape of the seafloor. Shape of the seafloor

Shape of the seafloor. Shape of the seafloor. Shape of the seafloor. Shape of the seafloor. Shape of the seafloor. Shape of the seafloor Multibeam echo sounders - Research vessel Scripps Institution of Oceanography R/V Roger Revelle depth Source: Scripps Institution of Oceanography http://woodshole.er.usgs.gov/project-pages/caribbean/movie1.html

More information

Sedimentary Features in Expedition 341 Cores: A Guide to Visual Core Description

Sedimentary Features in Expedition 341 Cores: A Guide to Visual Core Description Sedimentary Features in Expedition 341 Cores: A Guide to Visual Core Description 1. Typical Deep water Sediments in the Gulf of Alaska 1A & B: Mud and 1C: Laminated mud Description: Mud is representative

More information

The Puzzling Plates Part I. Follow the steps below while taking notes in your science notebook.

The Puzzling Plates Part I. Follow the steps below while taking notes in your science notebook. Procedure Follow the steps below while taking notes in your science notebook. 1. On the table is a pile of cardboard puzzle pieces. Work with your team to assemble the puzzle. The edges of the completed

More information

Geography of the world s oceans and major current systems. Lecture 2

Geography of the world s oceans and major current systems. Lecture 2 Geography of the world s oceans and major current systems Lecture 2 WHY is the GEOMORPHOLOGY OF THE OCEAN FLOOR important? (in the context of Oceanography) WHY is the GEOMORPHOLOGY OF THE OCEAN FLOOR important?

More information

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth Quiz 1 1) Earth's atmosphere is unique among the moons and planets in that A) it has a nitrogen (N2) rich atmosphere. B) it is rich in oxygen (O2) and nitrogen (N2). C) it is rich in carbon dioxide because

More information

An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate. Presented by Matt Laffin

An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate. Presented by Matt Laffin An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate Presented by Matt Laffin Presentation Outline Introduction to Marine Sediment as a Proxy Introduction to McCave

More information

Ocean Basins, Bathymetry and Sea Levels

Ocean Basins, Bathymetry and Sea Levels Ocean Basins, Bathymetry and Sea Levels Chapter 4 Please read chapter 5: sediments for next class and start chapter 6 on seawater for Thursday Basic concepts in Chapter 4 Bathymetry the measurement of

More information

Chapter 14: The Ocean Floor

Chapter 14: The Ocean Floor Chapter 14: The Ocean Floor Section 1: The Vast World Ocean I. The Blue Planet Group # II. Geography of the Oceans Group # III. Mapping the Ocean Floor Group # A. Sonar Group # B. Satellites Group # C.

More information

6th Grade Science Sample Assessment Items S6E3c.

6th Grade Science Sample Assessment Items S6E3c. Composition 6th Grade Science Sample Assessment Items Ocean water differs from freshwater in that it has. A. a lower temperature B. a higher temperature C. a higher concentration of silicon dioxide D.

More information

APPENDIX III. COMPOSITION AND SOURCE OF DETRITAL SAND LAYERS FROM THE GUAYMAS BASIN 1

APPENDIX III. COMPOSITION AND SOURCE OF DETRITAL SAND LAYERS FROM THE GUAYMAS BASIN 1 APPENDIX III. COMPOSITION AND SOURCE OF DETRITAL SAND LAYERS FROM THE GUAYMAS BASIN J. Eduardo Aguayo> instituto Mexicano del Petróleo, Mexico, D.F., Mexico QAL 0 After: Geological chart, Instituto de

More information

What Forces Drive Plate Tectonics?

What Forces Drive Plate Tectonics? What Forces Drive Plate Tectonics? The tectonic plates are moving, but with varying rates and directions. What hypotheses have been proposed to explain the plate motion? Convection Cells in the Mantle

More information

Ch. 17 Review. Life in the Cretaceous

Ch. 17 Review. Life in the Cretaceous Ch. 17 Review Life in the Cretaceous Diversification of diatoms, planktonic forams, calcareous nannoplankton Diversification of mobile predators (especially mollusks and teleost fishes) Origin of the angiosperms

More information

Bathymetry Measures the vertical distance from the ocean surface to mountains, valleys, plains, and other sea floor features

Bathymetry Measures the vertical distance from the ocean surface to mountains, valleys, plains, and other sea floor features 1 2 3 4 5 6 7 8 9 10 11 CHAPTER 3 Marine Provinces Chapter Overview The study of bathymetry determines ocean depths and ocean floor topography. Echo sounding and satellites are efficient bathymetric tools.

More information

IODP EXPEDITION 306: NORTH ATLANTIC CLIMATE II SITE U1314 SUMMARY

IODP EXPEDITION 306: NORTH ATLANTIC CLIMATE II SITE U1314 SUMMARY IODP EXPEDITION 306: NORTH ATLANTIC CLIMATE II SITE U1314 SUMMARY Hole U1314A Latitude: 56 21.883'N, Longitude: 27 53.309'W Hole U1314B Latitude: 56 21.896'N, Longitude: 27 53.311'W Hole U1314C Latitude:

More information

Continental Margin Geology of Korea : Review and constraints on the opening of the East Sea (Japan Sea)

Continental Margin Geology of Korea : Review and constraints on the opening of the East Sea (Japan Sea) Continental Margin Geology of Korea : Review and constraints on the opening of the East Sea (Japan Sea) Han-Joon Kim Marine Satellite & Observation Tech. Korea Ocean Research and Development Institute

More information

I. CALCIUM-CARBONATE AND SAND-FRACTION ANALYSIS OF CENOZOIC AND MESOZOIC SEDIMENTS FROM THE MOROCCAN BASIN

I. CALCIUM-CARBONATE AND SAND-FRACTION ANALYSIS OF CENOZOIC AND MESOZOIC SEDIMENTS FROM THE MOROCCAN BASIN I. CALCIUM-CARBONATE AND SAND-FRACTION ANALYSIS OF CENOZOIC AND MESOZOIC SEDIMENTS FROM THE MOROCCAN BASIN Marthe Melguen, Centre Océanologique de Bretagne, BP, 9 Brest Cedex, France INODUCTION As the

More information

An Introduction to the Seafloor and Plate Tectonics 1

An Introduction to the Seafloor and Plate Tectonics 1 An Introduction to the Seafloor and Plate Tectonics 1 Objectives 1) Investigate the components of the lithosphere and lithospheric plates. 2) Identify the associations among various seafloor features,

More information

EPSS 15 Fall 2017 Introduction to Oceanography. Marine Sediments

EPSS 15 Fall 2017 Introduction to Oceanography. Marine Sediments EPSS 15 Fall 2017 Introduction to Oceanography Marine Sediments INTRODUCTION There are two basic methods used for classification of marine sediments: genetic and descriptive. Genetic classifications distinguish

More information

Chapter 17. Ocean and Coastal Processes

Chapter 17. Ocean and Coastal Processes Chapter 17 Ocean and Coastal Processes Ocean Basins and Plates Ocean Basins Ocean Basins are profoundly different from the continents. Ocean crust is thin and dense and young. New ocean crust is generated

More information

The Marine Environment

The Marine Environment The Marine Environment SECTION 16.1 Shoreline Features In your textbook, read about erosional landforms, beaches, estuaries, longshore currents, and rip currents. For each statement below, write true or

More information

25. THE MINERALOGY OF SOME TURBIDITE SANDS FROM SITES 32 AND 35

25. THE MINERALOGY OF SOME TURBIDITE SANDS FROM SITES 32 AND 35 25. THE MINERALOGY OF SOME TURBIDITE SANDS FROM SITES 32 AND 35 Tracy L. Vallier, Indiana State University, Terre Haute, Indiana INTRODUCTION Samples of turbidite sands were selected from cores of Hole

More information

Plate Tectonics 3. Where Does All the Extra Crust Go?

Plate Tectonics 3. Where Does All the Extra Crust Go? Plate Tectonics 3 Where Does All the Extra Crust Go? Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter. Permission is granted to use them for non-commercial,

More information

10. DATA REPORT: SILICOFLAGELLATES SITES 1218, 1220, AND 1221, EASTERN EQUATORIAL PACIFIC 1 AND EBRIDIANS RECOVERED FROM LEG 199 INTRODUCTION

10. DATA REPORT: SILICOFLAGELLATES SITES 1218, 1220, AND 1221, EASTERN EQUATORIAL PACIFIC 1 AND EBRIDIANS RECOVERED FROM LEG 199 INTRODUCTION Wilson, P.A., Lyle, M., and Firth, J.V. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 199 10. DATA REPORT: SILICOFLAGELLATES AND EBRIDIANS RECOVERED FROM LEG 199 SITES 1218,

More information

Oceans. PPt. by, Robin D. Seamon

Oceans. PPt. by, Robin D. Seamon Oceans PPt. by, Robin D. Seamon Ocean Notes Salt water/ salinity 360 million square miles 3.5 billion years old 100,000 + species 28 degrees to 86 degrees F 7 miles down in some places Mineral composition:

More information

Lecture 18 Paleoceanography 2

Lecture 18 Paleoceanography 2 Lecture 18 Paleoceanography 2 May 26, 2010 Trend and Events Climatic evolution in Tertiary Overall drop of sea level General cooling (Figure 9-11) High latitude (deep-water) feature Two major step Middle

More information

EPSS 15 Introduction to Oceanography Spring Physiography of the Ocean Basins

EPSS 15 Introduction to Oceanography Spring Physiography of the Ocean Basins EPSS 15 Introduction to Oceanography Spring 2017 Physiography of the Ocean Basins ISOSTASY The surface of the earth can be subdivided into two major areas: 1) the ocean basins and 2) the continents. Although

More information

Full file at

Full file at Chapter 2 PLATE TECTONICS AND PHYSICAL HAZARDS MULTIPLE-CHOICE QUESTIONS 1. What direction is the Pacific Plate currently moving, based on the chain of Hawaiian Islands with only the easternmost island

More information

Ocean Scavenger Hunt. Materials: pencil study notes timer. Directions:

Ocean Scavenger Hunt. Materials: pencil study notes timer. Directions: Ocean Scavenger Hunt Materials: pencil study notes timer Directions: 1. Each student receives a copy of the scavenger hunt, placed upside down on their desk. 2. Explain to students that they will scavenge

More information

Evan K. Franseen, Dustin Stolz, Robert H. Goldstein, KICC, Department of Geology, University of Kansas

Evan K. Franseen, Dustin Stolz, Robert H. Goldstein, KICC, Department of Geology, University of Kansas Reservoir Character of the Avalon Shale (Bone Spring Formation) of the Delaware Basin, West Texas and Southeast New Mexico: Effect of Carbonate-rich Sediment Gravity Flows Evan K. Franseen, Dustin Stolz,

More information

is a unifying theme in modern geology that integrates the earlier ideas of

is a unifying theme in modern geology that integrates the earlier ideas of The concept of Global Plate Tectonics is a unifying theme in modern geology that integrates the earlier ideas of continental drift, sea-floor spread, and mountain building To explain why the present ocean

More information

Dynamic Earth A B1. Which type of plate boundary is located at the Jordan Fault? (1) divergent (3) convergent (2) subduction (4) transform

Dynamic Earth A B1. Which type of plate boundary is located at the Jordan Fault? (1) divergent (3) convergent (2) subduction (4) transform Dynamic Earth A B1 1. The edges of most lithospheric plates are characterized by (1) reversed magnetic orientation (2) unusually rapid radioactive decay (3) frequent volcanic activity (4) low P-wave and

More information

Seafloor Spreading and Paleomagnetism Activity

Seafloor Spreading and Paleomagnetism Activity Name: PART A: Ocean Bottom Profile Background: Seafloor spreading is the hypothesis that the sea floor moves sideways away from the crest of the mid- ocean ridge. It is estimated that 20 volcanic eruptions

More information

Plates Moving Apart Types of Boundaries

Plates Moving Apart Types of Boundaries Plates Moving Apart Types of Boundaries PLATE TECTONICS IS The theory that the Earth s crust is broken into slabs of rock that move around on top of the asthenosphere. How fast are plates moving? The Arctic

More information

Lecture Marine Provinces

Lecture Marine Provinces Lecture Marine Provinces Measuring bathymetry Ocean depths and topography of ocean floor Sounding Rope/wire with heavy weight Known as lead lining Echo sounding Reflection of sound signals 1925 German

More information

CHAPTER 3 Ocean Basins

CHAPTER 3 Ocean Basins Review: What Drives Plate Motions: (1) Density vs. Gravity: causes oceanic crust to sink in subduction zones, causes crust to extend at spreading ridges (called ridge push, but the ridge is not pushing,

More information

3. PLATE TECTONICS LAST NAME (ALL IN CAPS): FIRST NAME: PLATES

3. PLATE TECTONICS LAST NAME (ALL IN CAPS): FIRST NAME: PLATES LAST NAME (ALL IN CAPS): FIRST NAME: PLATES 3. PLATE TECTONICS The outer layers of the Earth are divided into the lithosphere and asthenosphere. The division is based on differences in mechanical properties

More information

Unit 4 - Water. Earth s Interior. Earth s Interior. Continental Drift. Continental Drift. Continental Drift. Crust. Mantle. Core.

Unit 4 - Water. Earth s Interior. Earth s Interior. Continental Drift. Continental Drift. Continental Drift. Crust. Mantle. Core. Unit 4 - Water How did the oceans form? What special adaptations do saltwater organisms have? Where does our water come from? How do humans affect the Earth s water? Crust Rigid outer shell of Earth Oceanic

More information

Pangaea to the Present Lesson #2

Pangaea to the Present Lesson #2 Pangaea to the Present Lesson #2 The Earth is a dynamic or constantly changing planet. The thin, fragile plates slide very slowly on the mantle's upper layer. This sliding of the plates is caused by the

More information

Question. What caused the recent explosive eruptions of hot ash and gas at Kilauea s Halema uma u crater:

Question. What caused the recent explosive eruptions of hot ash and gas at Kilauea s Halema uma u crater: OCN 201 Deep Sea Sediments Question What caused the recent explosive eruptions of hot ash and gas at Kilauea s Halema uma u crater: A. The interaction of lava with seawater B. Drainage of the lava lake

More information