Volcanic Ash and Saharan Dust Loads derived from Airborne Observations

Size: px
Start display at page:

Download "Volcanic Ash and Saharan Dust Loads derived from Airborne Observations"

Transcription

1 Volcanic Ash and Saharan Dust Loads derived from Airborne Observations Ulrich Schumann with contributions by Bernadett Weinzierl, Andreas Petzold, Hans Schlager, Andreas Minikin, Oliver Reitebuch and many others Institut für Physik der Atmosphäre in cooperation with Ludwig-Maximilians University Munich

2 Desert dust and volcanic ash Eyjafjallajökull ash April 15, 2010 Desert dust, Libyan 31 May 2009 MODIS on NASA Terra Satellite at GMT Thursday April 15, 2010 Quelle: NASA Earth Observatory DLR Institute of Atmospheric Physics 3

3 Comparison Saharan dust Volcanic ash (preliminary) Parameter Desert Dust Volcanic Ash Altitude 0-6 km 3-15 km Depth 3-5 km km width km km Critical ages < 3 days < 6 days Max concentration 100 mg/m3 1 g/m3 Concentration after one day < 5 mg/m3 < 10 mg/m3 Annual mean at airports 0.2 mg/m3 Max. particle diameter in lofted layers < 50 m < 30 m Particle shape, aspect ratio aspherical, 1-2 aspherical, 2 Lidar Depolarization 532 nm Refractive index, typical, real Imaginary (550 nm) morphology crystalline glassy or crystalline Main composition like carbonates and clay quartz, silicate more variable? Melting temperature 960 to 1700 C, low for clay lower??? etc., high for quartz Optical appearance Yellow to brownish dark grey, brownish Aerosol optical depth, after one day < 1 away from source region < 2 Impact on aviation Close to airports, LTO Free troposphere, cruise DLR Institute of Atmospheric Physics 4

4 Global Aerosol Sources boreal forest fires anthropogenic pollution desert dust anthropogenic pollution biomass burning dust + biomass burning biomass burning 2006 annual average of MODIS AOT (@550) Image of the Week - February 18, 2007 DLR Institute of Atmospheric Physics 5

5 SAMUM-1 and SAMUM-2 research flights Faro mineral dust Casablanca Ouarzazate & Zagora SAMUM-1 Tenerife SAMUM-2 Praia Dakar Sahara: largest desert on Earth (9 Mio km²) % of global annual mean dust emissions (Mahowald et al., 2005) biomass burning aerosol SAharan Mineral DUst ExperiMent (SAMUM) DLR Institute of Atmospheric Physics 6

6 Airborne instrumentation during SAMUM-1 and SAMUM-2 meteorological measurements aerosol inlet DLR Falcon 20-E5 max. altitude: ft max. endurance: 4 h gas molecules 10 4 particles cloud droplets 10 3 dn / dlog D p (cm -3 ) nm µm D p (µm) High Spectral Resolution Lidar PCASP-100X FSSP-300 & FSSP-100 aerosol in-situ measurement techniques condensation (CPSA/CPC) deposition (CPC + DS) electrical mobility (DMA) light scattering (PCASP-100X, FSSP-300, FSSP-100) light transmission (3-λ-PSAP) thermo-optic (thermal denuder + CPCs and Grimm OPC) filter sampling: chemical composition & particle shape DLR Institute of Atmospheric Physics 7

7 Lidar: vertical structure: SAMUM-1 versus SAMUM-2 3 June 2006: Casablanca - Zagora mineral dust SAMUM-1 May/June January 2008: Tenerife - Cape Verde biomass burning aerosol SAMUM-2 January 2008 mineral dust DLR Institute of Atmospheric Physics 8

8 SAMUM-1: Size distributions 6 dn (dlog D p ) -1 / cm SAMUM, ground-based SAMUM, airborne envelope of airborne measurements OPAC, dust + WASO altitude / km ASL D p / µm Good agreement between airborne and ground measurements Saltation mode" at ground. in all cases, particle diameters D p > 10 µm Mostly (80%) particles smaller than 40 µm No height dependence 1 Ouarzazate: ~ 1 km ASL D p, max [N = 10-2 scm -3 ] / µm (Weinzierl et al., 2008) DLR Institute of Atmospheric Physics 10

9 dn (dlog D p ) -1 / scm -3 SAMUM-1: Microphysical dust properties #060519a, L02 dust, OZT 11:23:44-11:37: m ASL RH ~ 51 % D p / µm Zone 1 Zone nm particles with nonvolatile core and volatile coating (ammoniumsulfat) m mean, 532nm = i 10 µm Nonvolatile particles with absorbing material m mean, 532nm = i n sd, 532nm = k sd, 532nm = Zone 1 Zone 2 (Weinzierl et al., 2009) DLR Institute of Atmospheric Physics 11

10 Data from SAMUM mass concentrations up to 5 mg/m3 (TSP: total suspended particulate matter; Weinzierl et al., 2009) DLR Institute of Atmospheric Physics 12

11 (Kandler et al., 2009) DLR Institute of Atmospheric Physics 13

12 Saharan dust mass concentration at ground in Morocco < 200 mg/m 3 (Kandler et al., 2009) DLR Institute of Atmospheric Physics 14

13 Dust aerosol optical depth at Quarzazate, Morocco (at Quarzazate, in 2006, Toledano et al., 2009) DLR Institute of Atmospheric Physics 15

14 Altitudes from LIDAR dust measurements Occurrence frequencies of dust layer depth above ground near to the source during SAMUM 1 Tesche et al. (2009). DLR Institute of Atmospheric Physics 16

15 Light absorbing aerosol components VIS + IR "green" Fe 2 O 3 black carbon brown carbon near IR H 2 O (NH 4 ) 2 SO 4 dust (Morocco) hematite 9 µm SiO 2 imaginary part of refractive index k dust (Burkina Faso) soot Hematite (Sokolik & Toon 1999) Kaolinite (Arakawa 1997) Soot (Shettle & Fenn, 1979) Light-absorbing properties of dust are determined by the iron oxides content. Soot mixed with dust "closes" the transparent window in the red to near IR region wavelength, µm DLR Institute of Atmospheric Physics 1737

16 Eyjafjallajökull volcano plume, May 1, noon time DLR Institute of Atmospheric Physics 18

17 Eyjafjallajökull volcano plume, May 1, noon time DLR Institute of Atmospheric Physics 19

18 Emergency Aircraft, e.g. DLR-Falcon (future: HALO) meteorological measurements DLR Falcon 20-E5 max. altitude: ft max. endurance: 4 h aerosol & trace gas instruments total & non-vol. aerosol, 3-λ B ap, particle comp. & shape (4 nm µm) CO (UV fluoresc.), O 3 (UV photom.), SO 2 (fluoresc.), H 2 O (τ-point, Ly-α) GPaC (particle collector) TU Darmstadt 2- μm-wind-lidar (heterodyne) PCASP-100X (dry accumulation mode concentration) FSSP-300 & 2-DC ( µm) DLR & LaMP DLR Institute of Atmospheric Physics 20

19 d N / d log D, cm Number and volume - size distributions nucleation mode Aitken mode accumulation mode coarse mode diameter, m d M / d log D, µg m Aitken mode nuc. mode acc. mode coarse mode diameter, m DLR Institute of Atmospheric Physics 21

20 gas molecules particles ash & dust paricles/cloud droplets Nucleation, Aitken Accumulation, coarse, super coarse mode Number size dn / dn distribution, d log (d log Dp D / cm p ) / (dn/d cm -3 logd)/cm µm CPC/CPSA µm CPC + DS CPC + Grimm OPC size resolved particle volatility µm Grimm OPC D p / µ m µm PCASP 100 -X particle samplin for chemical analyses Diameter Dp / md/ m µm FSSP -300 measurement technique condensation deposition light scattering light transmission thermo -optic µm 2D-C probe DLR Institute of Atmospheric Physics 22

21 17 DLR Falcon flights, April 19 - May 18, 2010: OP - Iceland Keflavik Eyjafjöll Stornoway Isle of Man 2-6 km altitude N km wide, km thick Oslo Koszalin De Bilt Hamburg Leipzig range-corrected backscatter 2 µm OP Keflavik: 2700 km New Quai Stuttgart Munich Oberpfaffenhofen DLR Institute of Atmospheric Physics 23

22 May 2: Plume sounded at 3.4 km altitude for 3 min Outer Hebrides 570 km range-corrected backscatter 2 µm N Iceland Eyjafjallajökull DLR Institute of Atmospheric Physics 24

23 May 2: 3 min measurements in top of ash plume at 60 N DLR Institute of Atmospheric Physics 25

24 May 17, 1 hour in ash yellow = ash retrieval red = ash + SO2 retrieval Falcon flight path within thick ash layer DLR Institute of Atmospheric Physics 26

25 One hour Falcon flight in 2 km layer with >0.2 mg/m3 ash Volcanic ash layer range-corrected backscatter 2 µm DLR Institute of Atmospheric Physics 27

26 Just above volcanic ash layer Main layer topped by thin layer (also seen in in-situ measurements) Main layer very hazy Horizon not visible Ground (water) not visible to the side 17-May-2010, 15:54 UT, 6.4 km altitude, North Sea area DLR Institute of Atmospheric Physics 28

27 Inside volcanic ash layer at 5.5 km altitude looking towards sun very hazy horizon not visible ground/water not visible to the side no clouds below 17-May-2010, 16:10 UT, 5.5 km altitude, North Sea area DLR Institute of Atmospheric Physics 29

28 Below volcanic ash layer at 2.7 km altitude visibility much better than inside volcanic ash layer diffuse light horizon hardly visible ground/water visible 17-May-2010, 16:35 UT, 2.7 km altitude, North Sea area DLR Institute of Atmospheric Physics 30

29 May 17 number concentration / cm -3 RH / % GPS altitude / km GPS altitude / km x N x N NONV mass N SO 2 N >2 µm mass conc. / µg m -3 CO mixing ratio / nmol mol -1 RH O 3 DLR Institute of Atmospheric Physics 31

30 Particles collected inside the ash plume at 60 N, May m 10 m 1 m DLR Institute of Atmospheric Physics 32

31 May 2, also found: ammonium sulfate, aggregates 2 m 2 m 10 m DLR Institute of Atmospheric Physics 33

32 Particle composition for a) 2 May and b) 17 May <0.5 µm 0.5-1µm 1-2 µm >2 µm n=194 n=101 n=136 n=87 a) b) Mixtures Silicates Quartz Oxides Phosphates Carbonates Sulfates Secondary <0.5 µm 0.5-1µm 1-2 µm >2 µm n=166 n=167 n=149 n=7 Mixtures Silicates Quartz Oxides Sulfates Secondary DLR Institute of Atmospheric Physics 34

33 Particle properties derived from ESM analysis Table 4. Number of investigated particles, measured two-dimensional aspect ratio and calculated density and complex refractive index values m for different particle size classes. 2 May May 2010 Size/ m < >2 < >2 Number Aspect ratio density m (630 nm) i 0.004i 0.002i 0.001i 0.001i 0.003i 0.001i m (2 µm) i i i i i i i DLR Institute of Atmospheric Physics 35

34 Size distributions 19 April (left) 2 May (right) dn (dlogd) -1 / cm -3 ds (dlogd) -1 / µm 2 cm -3 dv (dlogd) -1 / µm 3 cm PCASP-100X OPC FSSP-300 (0i) FSSP-300 (0.004i) PCASP-100X OPC FSSP-300 (0i) FSSP-300 (0.004i) GPaC particle diameter D/µm particle diameter D/µm DLR Institute of Atmospheric Physics 36

35 Correlation between SO 2 and CO versus ash mass DLR Institute of Atmospheric Physics 37

36 Comparison Saharan dust Volcanic ash (preliminary) Parameter Desert Dust Volcanic Ash Altitude 0-6 km 3-15 km Depth 3-5 km km width km km Critical ages < 3 days < 6 days Max concentration 100 mg/m3 1 g/m3 Concentration after one day < 5 mg/m3 < 10 mg/m3 Annual mean at airports 0.2 mg/m3 Max. particle diameter in lofted layers < 50 m < 30 m Particle shape, aspect ratio aspherical, 1-2 aspherical, 2 Lidar Depolarization 532 nm Refractive index, typical, real Imaginary (550 nm) morphology crystalline glassy or crystalline Main composition like carbonates and clay quartz, silicate more variable? Melting temperature 960 to 1700 C, low for clay lower??? etc., high for quartz Optical appearance Yellow to brownish dark grey, brownish Aerosol optical depth, after one day < 1 away from source region < 2 Impact on aviation Close to airports, LTO Free troposphere, cruise DLR Institute of Atmospheric Physics 38

37 Conclusions - Mass concentration is difficult to measure - High correlation between ash concentration and SO 2 - SO 2 is a well suited volcanic plume indicator - Vulcano Ash and Saharan Dust were comparable in may respect DLR Institute of Atmospheric Physics 39

Volcanic Ash Cloud Observations with the DLR- Falcon over Europe during Air Space Closure

Volcanic Ash Cloud Observations with the DLR- Falcon over Europe during Air Space Closure Volcanic Ash Cloud Observations with the DLR- Falcon over Europe during Air Space Closure Ulrich Schumann, Bernadett Weinzierl, Oliver Reitebuch, Andreas Minikin, Hans Schlager, Stephan Rahm, Monika Scheibe,

More information

Airborne aerosol in-situ observations of volcanic ash layers of the Eyjafjallajökull volcano in April & May, 2010, over central Europe

Airborne aerosol in-situ observations of volcanic ash layers of the Eyjafjallajökull volcano in April & May, 2010, over central Europe Airborne aerosol in-situ observations of volcanic ash layers of the Eyjafjallajökull volcano in April & May, 2010, over central Europe A. Minikin, B. Weinzierl, O. Reitebuch, H. Schlager, M. Scheibe, M.

More information

Saharan Mineral Dust Experiment (SAMUM) 2006: Vertical profiles of Dust Particle Properties from Airborne in situ and Lidar Observations

Saharan Mineral Dust Experiment (SAMUM) 2006: Vertical profiles of Dust Particle Properties from Airborne in situ and Lidar Observations Saharan Mineral Dust Experiment (SAMUM) 2006: Vertical profiles of Dust Particle Properties from Airborne in situ and Lidar Observations Andreas Petzold, Bernadett Weinzierl, Michael Esselborn, Katharina

More information

Volcanic Ash Cloud Observations during Air Space Closure in Europe in April/May 2010

Volcanic Ash Cloud Observations during Air Space Closure in Europe in April/May 2010 Volcanic Ash Cloud Observations during Air Space Closure in Europe in April/May 2010 Ulrich Schumann Institut für Physik der Atmosphäre in cooperation with Ludwig-Maximilians University Munich For details

More information

Volcanic, Weather and Climate Effects on Air Transport

Volcanic, Weather and Climate Effects on Air Transport Volcanic, Weather and Climate Effects on Air Transport Ulrich Schumann German Aerospace Center Institute of Atmospheric Physics Oberpfaffenhofen, Germany Content: - Volcanic ash hazard avoidance by improved

More information

Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006

Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006 PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (2009), 61B, 96 117 Printed in Singapore. All rights reserved C 2008 The Authors Journal

More information

Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006

Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006 SERIES B CHEMICAL AND PHYSICAL METEOROLOGY PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM Tellus (2009), 61B, 118 130 Printed in Singapore. All rights reserved C 2008 The Authors

More information

Observation of nucleation mode particles in the UT LS: From dedicated field studies to routine observations by instrumented in service aircraft

Observation of nucleation mode particles in the UT LS: From dedicated field studies to routine observations by instrumented in service aircraft Observation of nucleation mode particles in the UT LS: From dedicated field studies to routine observations by instrumented in service aircraft Andreas Petzold Andreas Minikin Markus Hermann IEK 8, FZ

More information

Quantification of Icelandic dust export: proposal of a combined measurement and modeling experiment

Quantification of Icelandic dust export: proposal of a combined measurement and modeling experiment Quantification of Icelandic dust export: proposal of a combined measurement and modeling experiment Konrad Kandler, Stephan Weinbruch, Kerstin Schepanski Technische Universität Darmstadt, Applied Geosciences

More information

Mixing of mineral dust with urban pollution aerosol over Dakar (Senegal): impact on dust physico-chemical and radiative properties

Mixing of mineral dust with urban pollution aerosol over Dakar (Senegal): impact on dust physico-chemical and radiative properties PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (2011), 63B, 619 634 Printed in Singapore. All rights reserved C 2011 The Authors

More information

A-Train observations of the 2010 eruption of Eyjafjallajökull volcano (Iceland)

A-Train observations of the 2010 eruption of Eyjafjallajökull volcano (Iceland) A-Train observations of the 2010 eruption of Eyjafjallajökull volcano (Iceland) S.A. Carn 1, N.A. Krotkov 2, K. Yang 2, A.J. Prata 3 1. Michigan Technological University, Houghton, MI, USA 2. GEST Center,

More information

Indices of Refraction of Absorptive Aerosol Their Importance and Complexity

Indices of Refraction of Absorptive Aerosol Their Importance and Complexity Indices of Refraction of Absorptive Aerosol Their Importance and Complexity Steven T Massie NCAR Earth System Laboratory HITRAN Cambridge, Massachusetts June 16-18, 2010 NCAR is sponsored by the National

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

Supplement of Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

Supplement of Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events Supplement of Atmos. Meas. Tech., 11, 2897 2910, 2018 https://doi.org/10.5194/amt-11-2897-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement

More information

A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 1. In situ airborne observations

A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 1. In situ airborne observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd016688, 2012 A case study of observations of volcanic ash from the Eyjafjallajökull eruption: 1. In situ airborne observations Kate Turnbull,

More information

Examining effect of Asian dusts on the AIRS-measured radiances from radiative transfer simulations

Examining effect of Asian dusts on the AIRS-measured radiances from radiative transfer simulations Examining effect of Asian dusts on the AIRS-measured radiances from radiative transfer simulations Hyo-Jin Han 1, B.J. Sohn 1 Allen Huang 2, Elisabeth Weisz 2 1 School of Earth and Environmental Sciences

More information

Aerosols AP sizes AP types Sources Sinks Amount and lifetime Aerosol radiative effects. Aerosols. Trude Storelvmo Aerosols 1 / 21

Aerosols AP sizes AP types Sources Sinks Amount and lifetime Aerosol radiative effects. Aerosols. Trude Storelvmo Aerosols 1 / 21 Aerosols Trude Storelvmo Aerosols 1 / 21 Aerosols: Definition Definition of an aerosol: disperse system with air as carrier gas and a solid or liquid or a mixture of both as disperse phases. Aerosol particles

More information

AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE. SAHEL Conference April 2007 CILSS Ouagadougou, Burkina Faso

AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE. SAHEL Conference April 2007 CILSS Ouagadougou, Burkina Faso AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE SAHEL Conference 2007 2-6 April 2007 CILSS Ouagadougou, Burkina Faso The aerosol/precipitation connection Aerosol environment has changed

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D00U02, doi: /2010jd015567, 2011

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D00U02, doi: /2010jd015567, 2011 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010jd015567, 2011 Ash and fine mode particle mass profiles from EARLINET AERONET observations over central Europe after the eruptions of the Eyjafjallajökull

More information

Duncan Axisa*, Amit Teller, Roelof Bruintjes, Dan Breed, Roelof Burger National Center for Atmospheric Research (NCAR), Boulder CO USA

Duncan Axisa*, Amit Teller, Roelof Bruintjes, Dan Breed, Roelof Burger National Center for Atmospheric Research (NCAR), Boulder CO USA J12.1 AEROSOL - CLOUD INTERACTIONS OVER ISTANBUL, TURKEY AND CENTRAL SAUDI ARABIA Duncan Axisa*, Amit Teller, Roelof Bruintjes, Dan Breed, Roelof Burger National Center for Atmospheric Research (NCAR),

More information

Trends in the Saharan Air Layer Composition Observed at Izaña - Tenerife

Trends in the Saharan Air Layer Composition Observed at Izaña - Tenerife Izaña: 1916-2016 Trends in the Saharan Air Layer Composition Observed at Izaña - Tenerife Izaña Sergio Rodríguez srodriguezg@aemet.es Izaña Atmospheric Research Centre, Tenerife 1 -North Africa: 50-70%

More information

Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde

Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (2011), 63B, 649 676 Printed in Singapore. All rights reserved C 2011 The Authors

More information

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

ATOC 3500/CHEM 3152 Week 9, March 8, 2016 ATOC 3500/CHEM 3152 Week 9, March 8, 2016 Hand back Midterm Exams (average = 84) Interaction of atmospheric constituents with light Haze and Visibility Aerosol formation processes (more detail) Haze and

More information

IAA. 1.9: Aerosol-UA - Satellite remote sensing of aerosols in the Earth atmosphere

IAA. 1.9: Aerosol-UA - Satellite remote sensing of aerosols in the Earth atmosphere IAA. 1.9: Aerosol-UA - Satellite remote sensing of aerosols in the Earth atmosphere Ya. Yatskiv (1), O. Degtyaryov (3), G. Milinevsky (1,2), I. Syniavskyi (1), A. Bovchaliuk (1), Yu. Ivanov (1), M. Sosonkin

More information

Professional English

Professional English Tomsk Polytechnic University Institute of natural recourses Geoecology and Geochemistry Department Professional English Lecture 1 «Basic concept of atmospheric aerosols» Anna V. Talovskaya PhD, Associate

More information

in East Asia and West Pacific Ocean M.Yamada(NU), T.Nagatani(NU) D.Zhang(PUK), T.Shibata(NU)

in East Asia and West Pacific Ocean M.Yamada(NU), T.Nagatani(NU) D.Zhang(PUK), T.Shibata(NU) Dust Particle Distribution in Free Troposphere in East Asia and West Pacific Ocean Y.Iwasaka (NU), G.-Y.Shi (IAP) Z.Zhen (CAREERI), Y.S.Kim (HU/NU) A.Matsuki(NU),D.Trochkine(IWEP/NU) M.Yamada(NU), T.Nagatani(NU)

More information

Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion

Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion ESA/IDEAS Project- WP 3440-2 Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion Q. Hu, P. Goloub, O. Dubovik, A. Lopatin, T. Povdin, T. Lopyonok,

More information

Characterisation of atmospheric aerosol sampled from an aircraft using scanning electron microscopy

Characterisation of atmospheric aerosol sampled from an aircraft using scanning electron microscopy School of Earth and Environment INSTITUTE FOR CLIMATE & ATMOSPHERIC SCIENCE Characterisation of atmospheric aerosol sampled from an aircraft using scanning electron microscopy Alberto Sánchez-Marroquín,

More information

Physio-chemical and Optical Characterization of Anthropogenic and Natural Aerosol: Implications for Assessing Global Effects

Physio-chemical and Optical Characterization of Anthropogenic and Natural Aerosol: Implications for Assessing Global Effects Physio-chemical and Optical Characterization of Anthropogenic and Natural Aerosol: Implications for Assessing Global Effects GLOBE Pollution Southern Japan TRACE-P, 2001 Dust Antony Clarke, University

More information

ESTIMATED DESERT-DUST ICE NUCLEI

ESTIMATED DESERT-DUST ICE NUCLEI ESTIMATED DESERT-DUST ICE NUCLEI PROFILES FROM CALIPSO Eleni Marinou *, Vassilis Amiridis, Albert Ansmann, Athanasios Nenes, Dimitris Balis, Rodanthi Mamouri, Alexandra Tsekeri, Ioannis Binietoglou, Dimitra

More information

Regional Saharan dust modelling during the SAMUM 2006 campaign

Regional Saharan dust modelling during the SAMUM 2006 campaign PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (9), B, 37 3 Printed in Singapore. All rights reserved C The Authors Journal compilation

More information

Airborne and satellite observations of volcanic ash from the Eyjafjallajökull eruption

Airborne and satellite observations of volcanic ash from the Eyjafjallajökull eruption Airborne and satellite observations of volcanic ash from the Eyjafjallajökull eruption Stuart Newman and co-authors ITSC-18, Toulouse, France, 21-27 March 2012 Photo credit: Arnar Thorisson 17.4.10 Acknowledgements

More information

Aerosols and climate. Rob Wood, Atmospheric Sciences

Aerosols and climate. Rob Wood, Atmospheric Sciences Aerosols and climate Rob Wood, Atmospheric Sciences What are aerosols? Solid or liquid particles suspended in air Sizes range from a few nm to a few thousand nm Huge range of masses Where do aerosols come

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Atmospheric Measurements from Space

Atmospheric Measurements from Space Atmospheric Measurements from Space MPI Mainz Germany Thomas Wagner Satellite Group MPI Mainz Part 1: Basics Break Part 2: Applications Part 1: Basics of satellite remote sensing Why atmospheric satellite

More information

Aerosol. Challenge: Global Warming. Observed warming during 20 th century, Tapio. 1910s. 1950s. 1990s T [Kelvin]

Aerosol. Challenge: Global Warming. Observed warming during 20 th century, Tapio. 1910s. 1950s. 1990s T [Kelvin] Aerosol Challenge: Global Warming 1910s 1950s 1990s 2 1 0 +1 +2 T [Kelvin] Observed warming during 20 th century, Tapio Schneider, J. Climate, 2001 1 Aerosols are liquid or solid particles suspended in

More information

Near real-time monitoring of the April-May 2010 Eyjafjöll s ash cloud

Near real-time monitoring of the April-May 2010 Eyjafjöll s ash cloud Near real-time monitoring of the April-May 2010 Eyjafjöll s ash cloud Labazuy P. and the HotVolc Team Observatoire de Physique du Globe de Clermont-Ferrand, CNRS, Université Blaise Pascal 13th International

More information

Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2

Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2 PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (2011), 63B, 635 648 Printed in Singapore. All rights reserved C 2011 The Authors

More information

Incorporating Volcanic Eruptions into Near Real time Aerosol Forecasts

Incorporating Volcanic Eruptions into Near Real time Aerosol Forecasts Incorporating Volcanic Eruptions into Near Real time Aerosol Forecasts Eric Hughes 1 Nick Krotkov 2 Arlindo Da Silva 2 Peter Colarco 2 (1) University of MD Department of Atmospheric and Oceanic Sciences

More information

UKCA_RADAER Aerosol-radiation interactions

UKCA_RADAER Aerosol-radiation interactions UKCA_RADAER Aerosol-radiation interactions Nicolas Bellouin UKCA Training Workshop, Cambridge, 8 January 2015 University of Reading 2014 n.bellouin@reading.ac.uk Lecture summary Why care about aerosol-radiation

More information

11/24/2003. Size-Distributions and Mixtures of Dust and Black Carbon Aerosol in Asian Outflow: Physio-chemistry and Optical Properties

11/24/2003. Size-Distributions and Mixtures of Dust and Black Carbon Aerosol in Asian Outflow: Physio-chemistry and Optical Properties 11/24/2003 Size-Distributions and Mixtures of Dust and Black Carbon Aerosol in Asian Outflow: Physio-chemistry and Optical Properties A.D. Clarke a, Y. Shinozuka a, V.N. Kapustin a, S. Howell a, B. Huebert

More information

Direct radiative forcing due to aerosols in Asia during March 2002

Direct radiative forcing due to aerosols in Asia during March 2002 Direct radiative forcing due to aerosols in Asia during March 2002 Soon-Ung Park, Jae-In Jeong* Center for Atmospheric and Environmental Modeling *School of Earth and Environmental Sciences, Seoul National

More information

Characterization of free-tropospheric aerosol layers from different source regions

Characterization of free-tropospheric aerosol layers from different source regions Leibniz Institute for Tropospheric Research Leipzig, Germany Characterization of free-tropospheric aerosol layers from different source regions Ina Mattis, Detlef Müller, Albert Ansmann, Ulla Wandinger,

More information

The role of dust on cloud-precipitation cycle

The role of dust on cloud-precipitation cycle UNIVERSITY OF ATHENS SCHOOL OF PHYSICS, DIVISION OF ENVIRONMENT AND METEOROLOGY ATMOSPHERIC MODELING AND WEATHER FORECASTING GROUP The role of dust on cloud-precipitation cycle Stavros Solomos, George

More information

ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach

ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach Lucia Mona CNR-IMAA, Potenza, Italy mona@imaa.cnr.it and EARLINET Team OUTLINE

More information

Part 2 Aircraft-based Observations

Part 2 Aircraft-based Observations Part 2 Aircraft-based Observations NSF C-130 CIRPAS Twin Otter FAAM BAe146 UK NEC Dornier 2028 Measuring microphysical, chemical and optical properties of aerosols aboard the NCAR/NSF C-130 during

More information

Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model

Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model Richard Ferrare, Chris Hostetler, John Hair, Anthony Cook, David Harper, Mike Obland, Ray Rogers, Sharon Burton,

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Lidar, sonde and aircraft observations of volcanic ash in Switzerland

Lidar, sonde and aircraft observations of volcanic ash in Switzerland In-situ, Lidar, sonde and aircraft observations of volcanic ash in Switzerland Dominik Brunner, Empa with contributions from Stephan Henne, Christoph Hüglin, Andrea Ulrich, Brigitte Buchmann Urs Baltensperger,,

More information

Projeto Temático FAPESP 2013/ Climate Ecosystems Atmospheric Composition

Projeto Temático FAPESP 2013/ Climate Ecosystems Atmospheric Composition Projeto Temático FAPESP 2013/05014-0 Climate Ecosystems Atmospheric Composition GoAmazon2014/15 Experiment Manaus is a city of 2 million people surrounded by just forest in a radius of 1.500 Km. UNIQUE

More information

Particle settling and convective mixing in the Saharan Air Layer as seen from an integrated model, lidar, and in-situ perspective

Particle settling and convective mixing in the Saharan Air Layer as seen from an integrated model, lidar, and in-situ perspective Atmos. Chem. Phys. Discuss., doi:.194/acp-16-480, 16 Particle settling and convective mixing in the Saharan Air Layer as seen from an integrated model, lidar, and in-situ perspective Josef Gasteiger 1,2,

More information

Satellite observation of atmospheric dust

Satellite observation of atmospheric dust Satellite observation of atmospheric dust Taichu Y. Tanaka Meteorological Research Institute, Japan Meteorological Agency 11 April 2017, SDS WAS: Dust observation and modeling @WMO, Geneva Dust observations

More information

ROSOLS S : SOURCES, PROPERTIES, MODELS AND MEASUREMENTS

ROSOLS S : SOURCES, PROPERTIES, MODELS AND MEASUREMENTS 1000 100 dn/dlnr (cm-3) 10 ATMOSPHERIC AEROSOL ROSOLS S : SOURCES, PROPERTIES, MODELS AND MEASUREMENTS François DULAC Laboratoire des Sciences du Climat et de l Environnement CEA-CNRS, Gif-Sur-Yvette,

More information

APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING

APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING P1.14 APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING Leona A. Charles*, Shuki Chaw, Viviana Vladutescu, Yonghua Wu, Fred Moshary, Barry Gross, Stanley

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

Aerosols and Climate

Aerosols and Climate Aerosols and Climate S K Satheesh S K Satheesh is an Assistant Professor at Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore. His research interests include aerosols,

More information

Fully coupled aerosol-radiationinteraction

Fully coupled aerosol-radiationinteraction Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Fully coupled aerosol-radiationinteraction with LM-ART D. Bäumer, B. Vogel, H. Vogel, T. Stanelle, R. Rinke, M. Bangert, Ch. Kottmeier Langen,

More information

Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation

Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation Thanks to: Rebecca Sheesley and Sascha Usenko, Baylor Barry Lefer, U. Houston, AQRP Sarah D. Brooks T. Ren,

More information

Recommendation proposed: CGMS-39 WGII to take note.

Recommendation proposed: CGMS-39 WGII to take note. Prepared by EUMETSAT Agenda Item: G.II/8 Discussed in WGII EUM REPORT ON CAPABILITIES AND PLANS TO SUPPORT VOLCANIC ASH MONITORING In response to CGMS action WGII 38.31: CGMS satellite operators are invited

More information

Spaceborne Wind Lidar Observations by Aeolus Data Products and Pre-Launch Validation with an Airborne Instrument

Spaceborne Wind Lidar Observations by Aeolus Data Products and Pre-Launch Validation with an Airborne Instrument DRAGON 3 Project ID 10532 Cal/Val Spaceborne Wind Lidar Observations by Aeolus Data Products and Pre-Launch Validation with an Airborne Instrument Reitebuch Oliver, Lemmerz Christian, Marksteiner Uwe,

More information

Current capabilities and limitations of satellite monitoring and modeling forecasting of volcanic clouds: and example of Eyjafjallaj

Current capabilities and limitations of satellite monitoring and modeling forecasting of volcanic clouds: and example of Eyjafjallaj Current capabilities and limitations of satellite monitoring and modeling forecasting of volcanic clouds: and example of Eyjafjallaj fjallajökull eruption (pronounced EYE-a-fyat fyat-la-jo-kotl) N. Krotkov

More information

EXTRACTION OF THE DISTRIBUTION OF YELLOW SAND DUST AND ITS OPTICAL PROPERTIES FROM ADEOS/POLDER DATA

EXTRACTION OF THE DISTRIBUTION OF YELLOW SAND DUST AND ITS OPTICAL PROPERTIES FROM ADEOS/POLDER DATA EXTRACTION OF THE DISTRIBUTION OF YELLOW SAND DUST AND ITS OPTICAL PROPERTIES FROM ADEOS/POLDER DATA Takashi KUSAKA, Michihiro KODAMA and Hideki SHIBATA Kanazawa Institute of Technology Nonoichi-machi

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic

Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic 1/23 Remote sensing of atmospheric aerosol, clouds and aerosol-cloud interactions. Bremen, 16-19 December 2013 Satellite analysis of aerosol indirect effect on stratocumulus clouds over South-East Atlantic

More information

SACS & SACS2 an overview and recent developments

SACS & SACS2 an overview and recent developments SACS & SACS2 an overview and recent developments L. Clarisse (1), N. Theys (2), H. Brenot (2), J. van Gent (2), R. van der A (4), P. Valks (5), M. Van Roozendael (2), D. Hurtmans (1), P.-F. Coheur (1),

More information

Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center

Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center Sea of Okhotsk, MODIS image Feb. 6, 2007, NASA Earth Observatory Arctic Aerosol Remote Sensing Overview

More information

PHEOS - Weather, Climate, Air Quality

PHEOS - Weather, Climate, Air Quality Aerosol & cloud remote sensing over the Arctic : perspectives for the PHEMOS and meteorological imager payloads on the PCW mission Norm O Neill, Auromeet Saha, U. de Sherbrooke Chris E. Sioris, Jack McConnell,

More information

Global observations from CALIPSO

Global observations from CALIPSO Global observations from CALIPSO Dave Winker, Chip Trepte, and the CALIPSO team NRL, Monterey, 27-29 April 2010 Mission Overview Features: Two-wavelength backscatter lidar First spaceborne polarization

More information

1 Fundamentals of Lidar

1 Fundamentals of Lidar 1 Fundamentals of Lidar The lidar profiling technique (Fiocco, 1963) is based on the study of the interaction between a laser radiation sent into the atmosphere and the atmospheric constituents. The interaction

More information

Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy

Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy Nicholas Meskhidze & Matthew Johnson First International Workshop on the Long Range Transport and Impacts

More information

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( )

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( ) 10 th Anniversary Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project (2000-2010) 2010) Alex PAPAYANNIS (Coordinator) and the EARLINET Team Outline Role of aerosols

More information

Volcanic ash retrieval at Mt. Etna using Avhrr and Modis data

Volcanic ash retrieval at Mt. Etna using Avhrr and Modis data Volcanic ash retrieval at Mt. Etna using Avhrr and Modis data Claudia Spinetti* a, Stefano Corradini a, Maria F. Buongiorno a a Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata, 605

More information

Depolarization of Light by Single Particles: Unraveling the Mysteries of Paris Fog

Depolarization of Light by Single Particles: Unraveling the Mysteries of Paris Fog Depolarization of Light by Single Particles: Unraveling the Mysteries of Paris Fog Darrel Baumgardner Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México Neda Boyouk Site Instrumental

More information

In-situ observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses

In-situ observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses Atmos. Chem. Phys., 3, 1037 1049, 2003 Atmospheric Chemistry and Physics In-situ observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses M.

More information

Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles

Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (2009), 61B, 270 296 Printed in Singapore. All rights reserved C 2008 The Authors

More information

Aerosol Basics: Definitions, size distributions, structure

Aerosol Basics: Definitions, size distributions, structure Aerosol Basics: Definitions, size distributions, structure Antti Lauri NetFAM Summer School Zelenogorsk, 9 July 2008 Department of Physics, Division of Atmospheric Sciences and Geophysics, University of

More information

Eyjafjallajökull 2010: Ash and aerosol during and after the eruption

Eyjafjallajökull 2010: Ash and aerosol during and after the eruption Eyjafjallajökull 2010: Ash and aerosol during and after the eruption { Evgenia Ilyinskaya, Guðrún Nína Petersen, Sibylle von Löwis, Halldór Björnsson, Matthew J. Roberts, Steinunn S. Jakobsdóttir, Sigurlaug

More information

SATELLITE AEROSOL COMPOSITION RETRIEVAL

SATELLITE AEROSOL COMPOSITION RETRIEVAL SATELLITE AEROSOL COMPOSITION RETRIEVAL USING NEURAL NETWORKS τ(λ), ω(λ), g(λ), m(λ), dv/d log(r), Gabriele Curci (1,2) Del Frate, F. (3), Di Noia, A. (4), Sist, M. (3), Tirelli, C. (1) (1) CETEMPS (2)

More information

Satellite remote sensing of aerosols & clouds: An introduction

Satellite remote sensing of aerosols & clouds: An introduction Satellite remote sensing of aerosols & clouds: An introduction Jun Wang & Kelly Chance April 27, 2006 junwang@fas.harvard.edu Outline Principals in retrieval of aerosols Principals in retrieval of water

More information

INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS

INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS R. TÓTH 1, L. NYITRAI 1 ABSTRACT. Investigation of Saharan dust transport on the basis of aerological measurements. The

More information

Improving the Accuracy of Particle Mass Concentration Prediction. Lessons learned from the Eyjafjallajokull crisis and other cases

Improving the Accuracy of Particle Mass Concentration Prediction. Lessons learned from the Eyjafjallajokull crisis and other cases Improving the Accuracy of Particle Mass Concentration Prediction Lessons learned from the Eyjafjallajokull crisis and other cases J-L Brenguier Head Météo-France Experimental Research EUFAR Coordinator

More information

Derivation of Aerosol Properties From Satellite Measurements of Backscattered Ultraviolet Radiation. Theoretical Basis

Derivation of Aerosol Properties From Satellite Measurements of Backscattered Ultraviolet Radiation. Theoretical Basis Derivation of Aerosol Properties From Satellite Measurements of Backscattered Ultraviolet Radiation. Theoretical Basis O. Torres 1, P.K. Bhartia 2, J.R.Herman 2, and Z. Ahmad 3 Abstract We discuss the

More information

1. Science question people Input Data instruments What determines the height for warm rain initiation and cloud glaciation?

1. Science question people Input Data instruments What determines the height for warm rain initiation and cloud glaciation? 1. Science question people Input Data instruments What determines the height for warm rain initiation and cloud glaciation? Smaller cloud drops cause colder glaciation temperatures, so factors reducing

More information

EAS1600 Spring 2014 Lab 06 ATMOSPHERIC AEROSOLS

EAS1600 Spring 2014 Lab 06 ATMOSPHERIC AEROSOLS Objectives EAS1600 Spring 2014 Lab 06 ATMOSPHERIC AEROSOLS During the course of this lab we will investigate some basic connections between aerosols and climate. We will look at the aerosol scattering

More information

Projects in the Remote Sensing of Aerosols with focus on Air Quality

Projects in the Remote Sensing of Aerosols with focus on Air Quality Projects in the Remote Sensing of Aerosols with focus on Air Quality Faculty Leads Barry Gross (Satellite Remote Sensing), Fred Moshary (Lidar) Direct Supervision Post-Doc Yonghua Wu (Lidar) PhD Student

More information

7. Aerosols and Climate

7. Aerosols and Climate 7. Aerosols and Climate I. Scattering 1. When radiation impinges on a medium of small particles, scattering of some of the radiation occurs in all directions. The portion scattered backward is called the

More information

European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution

European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution Werner Thomas Deutscher Wetterdienst (DWD) Hohenpeissenberg Meteorological Observatory www.dwd.de/ceilomap

More information

Why is the sky blue?

Why is the sky blue? Why is the sky blue? Volcanic: June 12, 1991: Mt Pinatubo ejected 20 million tons of sulfur dioxide. Aerosols spread globally Haze lowered a drop of global temperature by 1F Size parameter: Rayleigh

More information

Extinction. Aerosols

Extinction. Aerosols Extinction Extinction is the loss of energy out of a beam of radiation as it propagates. Extinction = absorption + scattering Extinction cross section analogous to the cross-sectional area of absorbers

More information

«Action Thématique Incitative sur Programme» CNRS/INSU

«Action Thématique Incitative sur Programme» CNRS/INSU Development and validation of a regional model of desert dust for the study of seasonal and interannual variations over Sahara and Sahel coupling with satellite observations «Action Thématique Incitative

More information

SATELLITE RETRIEVAL OF AEROSOL PROPERTIES OVER BRIGHT REFLECTING DESERT REGIONS

SATELLITE RETRIEVAL OF AEROSOL PROPERTIES OVER BRIGHT REFLECTING DESERT REGIONS SATELLITE RETRIEVAL OF AEROSOL PROPERTIES OVER BRIGHT REFLECTING DESERT REGIONS Tilman Dinter 1, W. von Hoyningen-Huene 1, A. Kokhanovsky 1, J.P. Burrows 1, and Mohammed Diouri 2 1 Institute of Environmental

More information

Slides partly by Antti Lauri and Hannele Korhonen. Liquid or solid particles suspended in a carrier gas Described by their

Slides partly by Antti Lauri and Hannele Korhonen. Liquid or solid particles suspended in a carrier gas Described by their Atmospheric Aerosols Slides partly by Antti Lauri and Hannele Korhonen Aerosol particles Liquid or solid particles suspended in a carrier gas Described by their Size Concentration - Number - Surface -

More information

Progress on Application of Modal Aerosol Dynamics to CAM

Progress on Application of Modal Aerosol Dynamics to CAM Progress on Application of Modal Aerosol Dynamics to CAM Xiaohong Liu, Steve Ghan, Richard Easter, Rahul Zaveri, Yun Qian (Pacific Northwest National Laboratory) Jean-Francois Lamarque, Peter Hess, Natalie

More information

Aerosol-type-dependent lidar ratios observed with Raman lidar

Aerosol-type-dependent lidar ratios observed with Raman lidar JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd008292, 2007 Aerosol-type-dependent lidar ratios observed with Raman lidar D. Müller, 1 A. Ansmann, 1 I. Mattis, 1 M. Tesche, 1 U. Wandinger,

More information

Regional dust model performance during SAMUM 2006

Regional dust model performance during SAMUM 2006 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L03812, doi:10.1029/2008gl036463, 2009 Regional dust model performance during SAMUM 2006 K. Haustein, 1 C. Pérez, 1 J. M. Baldasano, 1,2

More information

D15: Simulation of a Dust Event over Cyprus

D15: Simulation of a Dust Event over Cyprus D15: Simulation of a Dust Event over Cyprus An episode of low visibility was observed over Cyprus in late September 2011. It appears that it was caused by an increase in the atmospheric dust concentration

More information

Characterizing the role of diabatic processes for the modification of mid-latitude Rossby waves and Jetstream winds

Characterizing the role of diabatic processes for the modification of mid-latitude Rossby waves and Jetstream winds Characterizing the role of diabatic processes for the modification of mid-latitude Rossby waves and Jetstream winds Andreas Schäfler 1, George Craig 2, Andreas Dörnbrack 1, Florian Harnisch 4, Uwe Marksteiner

More information

SOP0 surface measurements at M Bour, Senegal

SOP0 surface measurements at M Bour, Senegal SOP0 surface measurements at M Bour, Senegal Groups involved LOA, Lille, Isabelle Chiapello, Didier Tanré, Jean-François Léon, Oleg Dubovik, Gérard Brogniez, Thierry Podvin and Frédérique Auriol ELICO,

More information

MODEL LIDAR COMPARISON OF DUST VERTICAL DISTRIBUTIONS OVER ROME (ITALY) DURING

MODEL LIDAR COMPARISON OF DUST VERTICAL DISTRIBUTIONS OVER ROME (ITALY) DURING MODEL LIDAR COMPARISON OF DUST VERTICAL DISTRIBUTIONS OVER ROME (ITALY) DURING - Pavel Kishcha (), Francesca Barnaba (), Giant P. Gobbi (), Pinhas Alpert (), Alon Shtivelman (), Simon Kricha (), and Joachin

More information

Applications of the SEVIRI window channels in the infrared.

Applications of the SEVIRI window channels in the infrared. Applications of the SEVIRI window channels in the infrared jose.prieto@eumetsat.int SEVIRI CHANNELS Properties Channel Cloud Gases Application HRV 0.7 Absorption Scattering

More information