Statistics in Volcanology: Uncertainty in Volcanology Data and Models

Size: px
Start display at page:

Download "Statistics in Volcanology: Uncertainty in Volcanology Data and Models"

Transcription

1 : Data and Models School of Geosciences University of South Florida February 2017

2 Volcanic s... Eruption of Shinmoe-dake volcano, Kirishima volcano complex, Japan.

3 Major research questions Tolbachik, Kamchatka, Russia 2013 Forecast the onset, size, duration and hazard of s by integrating observations with quantitative models of magma dynamics. Quantify the life cycles of volcanoes globally and overcome our biased understanding. Develop a coordinated volcano science community to maximize scientific returns from any volcanic event.

4 How volcanologists learn about volcanoes... Our schema dictates that we come upon key science questions with a set of prejudgments: an idea of what the problem is, what type of information we are looking for, and what will count as an answer. See Bob Frodeman, 2014 Hermeneutics in the field: The philosophy of geology.

5 Old volcanism on Mars distribution of vents and lava flows in the crater of

6 Overlapping lava flows show age relationships geologists classify images and interpret the relative ages Steno s Law

7 A directed graph of age relationships Ages estimated (with high uncertainty!) from crater density

8 MC simulation of event rate Randomly sample ages of all events using directed graph (M = times), Volcano i of total N formed by event ê i, For each set of age estimates, j, for N volcanoes, the cumulative distribution is: N X j (T ) = P [ê i,j, t < T ] i=1 where P [ê i,j, t < T ] = 0 if T < ê i,j and P [ê i,j, t < T ] = 1 if T ê i,j E(X) = 1 M M X j (T ) j=1 R(X) = E(X) t

9 MC simulation of event rate Based on Monte Carlo simulation using age estimates and stratigraphic information

10 Estimated distribution of event rate Age distribution of events improved by using directed graph with Monte Carlo simulation

11 stops air traffic from North america to Europe...at a cost of 1 billion euros. How often does this happen?

12 Volcanic ash preserved in bogs

13 Estimated rate of known events At least the known events are stationary in time

14 Models suggest 44 ± 7 yr Kaplan Meier estimate of the survivor function using data from last 1000 yr with fits for various statistical distributions (Weibull, log-logistic, exponential).

15 Monte Carlo simulation of longer data set Activity seems to cluster in time over last 7000 yr, average over last 1000 yr may not be representative of true uncertainty.

16 Missing events in the geologic record Kiyosugi et al., 2015, How many explosive s are missing from the geologic record? Analysis of the quaternary record of large magnitude explosive s in Japan, Journal of Applied

17 Missing events in the geologic record Kiyosugi et al., 2015, How many explosive s are missing from the geologic record? Analysis of the quaternary record of large magnitude explosive s in Japan, Journal of Applied

18 Tephra sedimentation model Model goal: Estimate the mass erupted Forward problem: Estimate the accumulation of tephra expected, given volcanic activity. Inverse problem: Given a tephra deposit, what were the parameters that produced this deposit? Tolbachik volcano, Russia, 1975

19 Tephra sedimentation model

20 Tephra sedimentation model Model algorithm Tephra2 Model Basics the implementation

21 Tephra sedimentation model Advection diffusion equation Single partial differential equation expresses tephra sedimentation C j t + w C j x x + w C j y y v C j l,j z = K 2 C j x 2 Expressed dimensionally: + K 2 C j y 2 M L 3 T + L M T L 4 + L M T L 4 L M T L 4 = L2 M T L 5 + L2 M T L 5 + M L 3 T + Φ

22 Tephra sedimentation model ADE Closed form Eulerian solution to the Advection-Diffusion equation (Suzuki, Macedonio, Lim) where and f i,j (x, y) = 1 2πσi,j 2 exp [ H i x i,j = x 0 + (x x i,j) 2 + (y ȳ i,j ) 2 2σ 2 i,j k=0 H i ȳ i,j = y 0 + k=0 w x,k z k v j, k w y,k z k v j, k ]

23 Tephra sedimentation model ADE Variable Reynold s number for particle settling (Bonadonna et al., 1998) ρ j gd 2 j 18µ if laminar, Re < 6, [ 4g v j = d 2 ρ 2 j j if intermediate, 6 Re < 500, [ 3.1ρj gd j 225µρ a ] 1/3 ρ a ] 1/2 if turbulent, Re 500,

24 Tephra sedimentation model Plume Geometry σ 2 i,j = t i,j = H i k=0 z k v j t i = [ 0.2h 2 ] 2/5 i { 4K(t i,j + t i ) if t i,j < τ, 8C 5 (t i,j + t i )5/2 if t i,j τ,

25 Tephra sedimentation model Example forward model results Maximum Column Height: m Total Mass: kg Median Grain Size: 0 φ STD Grain Size: 1 φ Wind from NOAA reanalysis

26 Kirishima 2011 PEST Model Inversion try modeling 1992 stages (A and B), and using grain size data collected from each sample pit Use the PEST inversion method to interpret the 2011 Kirishima source parameters: Singular value decomposition with Tikhonov regularization Bayesian procedure - specify prior information and output pdf of parameter model Using the open source, open access PEST code (Parameter Estimation, SVD, and Tikhonov)

27 PEST Model Inversion

28 PEST Model Inversion

29 PEST Model Inversion Prior (dashed) versus posterior (shaded) parameter estimates

30 PEST Model Inversion source term parameters seems to be reduced using the PEST inversion and Tephra2 forward model.

31 A logic tree for forecasts

32 Volcano science is about using observations (data) to improve our models of the timing of volcanic s, their magnitudes, and potential impacts. High uncertainty because volcanoes are difficult to observe, erupt infrequently and exhibit a huge range of behaviors. Great opportunity for the application of statistical methods in interpretation of past events and forecasting future events.

33 PEST Model Inversion estimated model

34 PEST Model Inversion model residuals

35 PEST Model Inversion estimated parameters

36 Missing events in the geologic record Kiyosugi et al., 2015, How many explosive s are missing from the geologic record? Analysis of the quaternary record of large magnitude explosive s in Japan, Journal of Applied

37 A Volcanic Event Age Model (VEAM) Age estimate of one lava flow in the Cima Volcanic field Wilson, Richardson and others

38 A Volcanic Event Model (VERRM) An age model for volcanic events in the Cima Volcanic Field Wilson, Richardson and others

39 A Volcanic Event Model (VERRM) A reccurrence rate model for the Cima volcanic field, emphasizing uncertainty in current event rates Wilson, Richardson and others

Probabilistic modelling of tephra dispersion

Probabilistic modelling of tephra dispersion Probabilistic modelling of tephra dispersion C. BONADONNA Department of Geology, University of South Florida, Tampa, FL 33620-5201, USA (e-mail: costanza@cas.usf.edu) Depending on their magnitude and location,

More information

Pyroclastic Deposits I: Pyroclastic Fall Deposits

Pyroclastic Deposits I: Pyroclastic Fall Deposits Pyroclastic Deposits I: Pyroclastic Fall Deposits EAS 458 Volcanology Introduction We have seen that physics is useful in understanding volcanic processes, but physical models must be constrained by and

More information

Sensitivity analysis and uncertainty estimation for tephra dispersal models

Sensitivity analysis and uncertainty estimation for tephra dispersal models JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2006jb004864, 2008 Sensitivity analysis and uncertainty estimation for tephra dispersal models Simona Scollo, 1 Stefano Tarantola, 2 Costanza Bonadonna,

More information

Tephra2 Tutorial Scripts By Leah Courtland

Tephra2 Tutorial Scripts By Leah Courtland Tephra2 Tutorial Scripts By Leah Courtland Tephra2 Tutorial 1: An Introduction This video will introduce you to the concepts behind the tephra2 online simulation tool. Tephra2 uses the advection diffusion

More information

Volcanism (Chapter 5)

Volcanism (Chapter 5) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Volcanism (Chapter 5) For this assignment, you will require: a calculator, colored pencils, string, protractor, stereoscopes (provided). Objectives

More information

Volcanic Eruptions (pages )

Volcanic Eruptions (pages ) Volcanic Eruptions (pages 209 216) Magma Reaches Earth s Surface (pages 210 211) Key Concept: When a volcano erupts, the force of the expanding gases pushes magma from the magma chamber through the pipe

More information

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 PROBABILITY ASSESSMENT OF POSSIBLE VOLCANIC ASH CONTAMINATION FOR THE BULGARIAN AIRSPACE BY DEVELOPING OF EVENT TREE AND RISK MATRIX FOR HYPOTHETICAL

More information

Directed Reading page

Directed Reading page Skills Worksheet Directed Reading page 185-190 Section: Determining Relative Age 1. How old is Earth estimated to be? 2. Who originated the idea that Earth is billions of years old? 3. On what did the

More information

Numerical Simulations of Turbulent Flow in Volcanic Eruption Clouds

Numerical Simulations of Turbulent Flow in Volcanic Eruption Clouds Numerical Simulations of Turbulent Flow in Volcanic Eruption Clouds Project Representative Takehiro Koyaguchi Authors Yujiro Suzuki Takehiro Koyaguchi Earthquake Research Institute, University of Tokyo

More information

Tephra2. This module explains how to use TEPHRA2. Tephra2 Manual

Tephra2. This module explains how to use TEPHRA2. Tephra2 Manual Tephra2 Manual Tephra2 Tephra2 uses the advection-diffusion equation to calculate tephra accumulation at locations about a volcano based on a pre-defined set of eruptive conditions. This module explains

More information

Efficient Forecasting of Volcanic Ash Clouds. Roger P Denlinger Hans F Schwaiger US Geological Survey

Efficient Forecasting of Volcanic Ash Clouds. Roger P Denlinger Hans F Schwaiger US Geological Survey Efficient Forecasting of Volcanic Ash Clouds Roger P Denlinger Hans F Schwaiger US Geological Survey Two basic questions addressed in this talk: 1. How does uncertainty affect forecasts of volcanic ash

More information

Probabilistic modeling of tephra dispersion: hazard assessment of a multi-phase eruption at Tarawera Volcano, New Zealand

Probabilistic modeling of tephra dispersion: hazard assessment of a multi-phase eruption at Tarawera Volcano, New Zealand Probabilistic modeling of tephra dispersion: hazard assessment of a multi-phase eruption at Tarawera Volcano, New Zealand C. Bonadonna 1, C.B. Connor 2, B.F. Houghton 1, L. Connor 2, M. Byrne 3, A. Laing

More information

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain From Punchbowl to Panum: Leslie Schaffer E105 2002 Final Paper Long Valley Volcanism and the Mono-Inyo Crater Chain Figure 1. After a sequence of earthquakes during the late 1970 s to the early 1980 s

More information

Determining Earth's History Rocks and Ice Cores

Determining Earth's History Rocks and Ice Cores Earths History Reu2.notebook November 14, 2013 Determining Earth's History Rocks and Ice Cores One goal of geology is to develop a timeline of Earth's past, including both geological and biological events.

More information

Back to the Big Question

Back to the Big Question 5.1 Understand the 5.4 Question Explore Learning Set 5 Back to the Big Question What processes within Earth cause geologic activity? You now know a lot about patterns of volcanoes in your region and around

More information

Principles of Geology

Principles of Geology Principles of Geology Essential Questions What is Uniformitarianism? What is Catastrophism? What is Steno s s Law? What are the other geologic principles? How is relative age determined using these principles?

More information

Augustine Volcano, Calculating Ash Fallout

Augustine Volcano, Calculating Ash Fallout Augustine Volcano, 1986 - Calculating Fallout -What controls the fallout of particles through the atmosphere? -Can we predict when and where an erupted ash cloud will fall out on the Earth? Summit: 1260

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Intrusive and Effusive Rocks Effusive rocks: rapid cooling small crystalls or glas Lava & ash Magmatic

More information

Predicting the probability of Mount Merapi eruption using Bayesian Event Tree_Eruption Forecasting

Predicting the probability of Mount Merapi eruption using Bayesian Event Tree_Eruption Forecasting Predicting the probability of Mount Merapi eruption using Bayesian Event Tree_Eruption Forecasting Dyah Ika Rinawati *, Diana Puspita Sari, Naniek Utami Handayani, and Bramasta Raga Siwi Industrial Engineering

More information

INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF)

INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) International Civil Aviation Organization 16/7/10 WORKING PAPER INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) FIRST MEETING Montréal, 27 to 30 July 2010 Agenda Item 7: Improvement and harmonization of

More information

Volcanic Plumes. JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto

Volcanic Plumes. JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Volcanic Plumes R. S. J. SPARKS University of Bristol, UK M. I. BURSIK State University of New York, USA S. N. CAREY University of Rhode Island, USA J. S. GILBERT Lancaster University, UK L. S. GLAZE NASA/Goddard

More information

GEOLOGICAL AGE OF ROCKS. Absolute geological age

GEOLOGICAL AGE OF ROCKS. Absolute geological age GEOLOGICAL AGE OF ROCKS Absolute geological age The pioneer of nuclear physics discovered at the turn of centuries that atoms of certain elements, the radioactive ones, spontaneously disintegrate to form

More information

Ash Plumes. Teacher Instructions. Overview: Objectives: National Standards: Alaska Grade Level Expectations Addressed:

Ash Plumes. Teacher Instructions. Overview: Objectives: National Standards: Alaska Grade Level Expectations Addressed: Teacher Instructions Ash Plumes Overview: Composite volcanoes usually erupt with large clouds of ash, called ash plumes. Volcanologists track ash plumes and relay the information to air traffic controllers

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 2017-2016 Chapter (4) Volcanoes Chapter 4: Volcanoes and Other Igneous Activity cataclysmic relating to or denoting a violent natural even Eventually the entire

More information

Limitations of the advection-diffusion equation for modeling tephra fallout: 1992 eruption of Cerro Negro Volcano, Nicaragua.

Limitations of the advection-diffusion equation for modeling tephra fallout: 1992 eruption of Cerro Negro Volcano, Nicaragua. University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2004 Limitations of the advection-diffusion equation for modeling tephra fallout: 1992 eruption of Cerro Negro

More information

Virtual Design Center Deliverable 4-2: Three Levels of Assessment

Virtual Design Center Deliverable 4-2: Three Levels of Assessment Virtual Design Center Deliverable 4-2: Three Levels of Assessment Project Name Operation Montserrat Test Questions 1. Which of these is an immediate result of the movement of tectonic plates: a) Ocean

More information

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary.

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary. Magma Objectives Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary viscosity Magma Magma The ash that spews from some volcanoes can form

More information

Directed Reading. Section: Volcanic Eruptions. light in color is called a. felsic. b. oceanic. c. mantle. d. mafic. dark in color is called

Directed Reading. Section: Volcanic Eruptions. light in color is called a. felsic. b. oceanic. c. mantle. d. mafic. dark in color is called Skills Worksheet Directed Reading Section: Volcanic Eruptions 1. Lava provides an opportunity for scientists to study a. the nature of Earth s inner core. b. the nature of Earth s tectonic plates. c. temperatures

More information

State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks.

State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks. Objectives State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks. Compare three types of unconformities. Apply the law of crosscutting

More information

Part I. Mt. St. Helens

Part I. Mt. St. Helens Name: Date: This contains material adapted from Richard Abbot (Appalachian State University, Department of Geology) and from the USGS Volcanoes! 1997 Teacher packet. Part I. Mt. St. Helens In the illustration

More information

FINAL EXAM December 20 th, here at 1:00 3:00 pm

FINAL EXAM December 20 th, here at 1:00 3:00 pm FINAL EXAM December 20 th, here at 1:00 3:00 pm REVIEW SESSION December 11 th at 6:00-7:30 pm Morrill I Auditorium (Room N375) Same as last time Don t forget your online course evaluations! Major Volcanic

More information

A bowl shaped depression formed by the collapse of a volcano is called a. Magma that has left the vent of a volcano is known as. Lava.

A bowl shaped depression formed by the collapse of a volcano is called a. Magma that has left the vent of a volcano is known as. Lava. Magma that has left the vent of a volcano is known as Lava A bowl shaped depression formed by the collapse of a volcano is called a Caldera This can form in a caldera when magma starts to come back up

More information

Chapter 5 9/10/2011. Introduction. Volcanoes and Volcanism. Volcanism. Introduction. Introduction. Introduction

Chapter 5 9/10/2011. Introduction. Volcanoes and Volcanism. Volcanism. Introduction. Introduction. Introduction Introduction Chapter 5 Volcanism is the eruption of magma, and associated gases at the surface. Some magma erupts explosively as pyroclastic (fire-broken) rock and other erupts as lava flows. Volcanoes

More information

Determining the relationship between the summit and Pu u Ō ō on Kilauea

Determining the relationship between the summit and Pu u Ō ō on Kilauea Name: Determining the relationship between the summit and Pu u Ō ō on Kilauea After completing this activity, you will be able to: 1. summarize the physical events that produce the data volcanologists

More information

What is the threat? Sue Loughlin and Julia Crummy British Geological Survey. NERC All rights reserved NERC All rights reserved

What is the threat? Sue Loughlin and Julia Crummy British Geological Survey. NERC All rights reserved NERC All rights reserved What is the threat? Sue Loughlin and Julia Crummy British Geological Survey BATA Conference, London 15 th October 2013 What is a volcano? Where and how many? There are more than 1500 known potentially

More information

Statistics in Volcanology. TError: towards a better quantification of the uncertainty propagated during the characterization of tephra deposits

Statistics in Volcanology. TError: towards a better quantification of the uncertainty propagated during the characterization of tephra deposits Volume 1 November 18, 214 TError: towards a better quantification of the uncertainty propagated during the characterization of tephra deposits S. Biass 1, G. Bagheri 1, W. H. Aeberhard 2, C. Bonadonna

More information

Coupling of turbulent and non-turbulent flow

Coupling of turbulent and non-turbulent flow SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2794 Coupling of turbulent and non-turbulent flow Eric C. P. Breard, Gert Lube, Jim R. Jones, Josef Dufek, Shane J. Cronin, Greg A. Valentine and Anja Moebis

More information

Constructive & Destructive Forces

Constructive & Destructive Forces Constructive & Destructive Forces Intro: Constructive Forces Processes that create landforms. Destructive Forces Processes that destroy landforms. Intro: Constructive Forces Volcanoes Deposition Landslides

More information

Tracking Ash Plumes. Teacher Instructions. Overview: Objectives: Materials: Answers to Student Worksheet:

Tracking Ash Plumes. Teacher Instructions. Overview: Objectives: Materials: Answers to Student Worksheet: Teacher Instructions Tracking Ash Plumes Overview: Composite volcanoes usually erupt with large clouds of ash, called ash plumes. Volcanologists track ash plumes and relay the information to air traffic

More information

GLG Ch 6: Volcanoes & Volcanic Hazards. 3. Name, describe (DSC) and draw the three types of volcanoes from smallest to largest.

GLG Ch 6: Volcanoes & Volcanic Hazards. 3. Name, describe (DSC) and draw the three types of volcanoes from smallest to largest. GLG 101 - Ch 6: Volcanoes & Volcanic Hazards Name 6.1 What Is and and Is Not a Volcano? 1. Three common characteristics of a volcano include A B C 2. How did the Hopi Buttes (figure 06 01.b1) form? 3.

More information

Directed Reading. Section: Volcanic Eruptions

Directed Reading. Section: Volcanic Eruptions Skills Worksheet Directed Reading Section: Volcanic Eruptions 1. Lava provides an opportunity for scientists to study a. the nature of Earth s inner core. b. the nature of Earth s tectonic plates. c. temperatures

More information

Vulcanicity. Objectives to identify the basic structure of volcanoes and understand how they form.

Vulcanicity. Objectives to identify the basic structure of volcanoes and understand how they form. Vulcanicity Objectives to identify the basic structure of volcanoes and understand how they form. Some key terms to start.. Viscosity how well a substance (lava) flows. Acid lavas have a high viscosity,

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

Tephra2 Users Manual

Tephra2 Users Manual Tephra2 Users Manual Spring 2011 Tephra2 uses the advection-diffusion equation to calculate tephra accumulation at locations about a volcano based on a pre-defined set of eruptive conditions. This manual

More information

Igneous magma cools crystals, holes Metamorphic heat & pressure wavy layers, foliation Sedimentary straight layers, rough, dull, fossils

Igneous magma cools crystals, holes Metamorphic heat & pressure wavy layers, foliation Sedimentary straight layers, rough, dull, fossils First Semester Final Exam Study Guide Question Answer Illustration/Example List the three main types of rocks and draw a picture of each. Label the significant features. (Layers, crystals, holes, grains,

More information

Erupted and killed approximately 15,000 people 200 years ago

Erupted and killed approximately 15,000 people 200 years ago 1 2 3 4 5 6 7 8 Introduction to Environmental Geology, 5e Chapter 8 Volcanic Activity Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic. Case History: Mt.

More information

Climate forcing volcanic eruptions: future extreme event occurrence likelihoods

Climate forcing volcanic eruptions: future extreme event occurrence likelihoods Climate Change and Extreme Events: Managing Tail Risks Workshop 2 3 February 2010 Washington DC Climate forcing volcanic eruptions: future extreme event occurrence likelihoods Willy Aspinall with apologies

More information

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes. Earth s History Date: Been There, Done That What is the principle of uniformitarianism? The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

More information

GO ON. Directions: Use the diagram below to answer question 1.

GO ON. Directions: Use the diagram below to answer question 1. d i a g n o s t i c t e s t : e a r t h a n d s p a c e s c i e n c e question 1. 1. What is the correct order (starting from the surface) of Earth s layers? A crust, outer core, inner core, mantle B mantle,

More information

Ground-based imaging of volcanic plumes for mass flux

Ground-based imaging of volcanic plumes for mass flux Ground-based imaging of volcanic plumes for mass flux Sébastien Valade 1,(2) A. Harris 2, F. Donnadieu 2, M. Cerminara 3, M. Gouhier 2 1 University of Florence (Laboratorio di Geofisica Sperimentale, Italy)

More information

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Probability theory and statistical analysis: a review Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Concepts assumed known Histograms, mean, median, spread, quantiles Probability,

More information

Geology of the Hawaiian Islands

Geology of the Hawaiian Islands Geology of the Hawaiian Islands Class 12 19 February 2004 A B C D F 97 94 92 91 88 87 86 85 85 84 82 77 73 73 mean 66 64 60 69 60 57 51 29 Exam Scores Mean = 71 Median = 82/77 Any Questions? Sedimentary

More information

The degassing fluctuation concerning sealing process before eruptions at Sakurajima volcano, Japan.

The degassing fluctuation concerning sealing process before eruptions at Sakurajima volcano, Japan. The degassing fluctuation concerning sealing process before eruptions at Sakurajima volcano, Japan. Ryunosuke Kazahaya, Toshiya Mori (The University of Tokyo, Tokyo, Japan. ) Masato Iguchi (Kyoto University,

More information

68. Izu-Torishima. Summary. Latitude: 30 29'02" N, Longitude: '11" E, Elevation: 394 m (Ioyama) (Elevation Point) (68.

68. Izu-Torishima. Summary. Latitude: 30 29'02 N, Longitude: '11 E, Elevation: 394 m (Ioyama) (Elevation Point) (68. 68. Izu-Torishima Latitude: 30 29'02" N, Longitude: 140 18'11" E, Elevation: 394 m (Ioyama) (Elevation Point) Izu-Torishima taken from southeast side on August 12, 2002. Courtesy of the Maritime Safety

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Virtual Fieldwork Experience (VFE): SP Crater near Flagstaff, Arizona

Virtual Fieldwork Experience (VFE): SP Crater near Flagstaff, Arizona Virtual Fieldwork Experience (VFE): SP Crater near Flagstaff, Arizona Before you start Review what you already know about volcanoes (knowledge needed to complete this VFE): If you don t know these off

More information

A Volcano is An opening in Earth s crust through

A Volcano is An opening in Earth s crust through Volcanoes A Volcano is An opening in Earth s crust through which molten rock, gases, and ash erupt. Also, the landform that develops around this opening. Kinds of Eruptions Geologists classify volcanic

More information

2/25/2013. Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic.

2/25/2013. Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic. Introduction to Environmental Geology, 5e Edward A. Keller Chapter 8 Volcanic Activity Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic. Lecture Presentation

More information

Hawaiian Submarine Volcanism. Stages of Hawaiian Volcanoes:

Hawaiian Submarine Volcanism. Stages of Hawaiian Volcanoes: Hawaiian Submarine Volcanism November 1, 2011 Mary Tardona GG 711 Stages of Hawaiian Volcanoes: Typically, three main stages: Pre shield Shield Post shield Sometimes followed by: Rejuvenation Stage GG

More information

6. Relative and Absolute Dating

6. Relative and Absolute Dating 6. Relative and Absolute Dating Adapted by Sean W. Lacey & Joyce M. McBeth (2018) University of Saskatchewan from Deline B, Harris R, & Tefend K. (2015) "Laboratory Manual for Introductory Geology". First

More information

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary.

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary. Magma Objectives Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary viscosity Magma Magma The ash that spews from some volcanoes can form

More information

Critical Thinking 1. Contrast How could you tell the difference between a mafic rock and a felsic rock by looking at them?

Critical Thinking 1. Contrast How could you tell the difference between a mafic rock and a felsic rock by looking at them? CHAPTER 13 2 SECTION Volcanoes Volcanic Eruptions KEY IDEAS As you read this section, keep these questions in mind: How does the composition of magma affect volcanic eruptions and lava flow? What are the

More information

Mount St. Helens changed the way we look at things!

Mount St. Helens changed the way we look at things! Mount St. Helens, a turning point in studies of, and perceptions about explosive volcanoes Mount St. Helens changed the way we look at things! Plinian column during the cataclysmic eruption of May 18,

More information

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 27: Planetary Geology [3/26/07] Announcements.

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 27: Planetary Geology [3/26/07] Announcements. ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 27: Planetary Geology [3/26/07] Announcements Planetary Geology Planetary

More information

Unit V Volcanoes. Q-2 Use the scale bar to determine approximately how wide (in miles) Mt. Shasta is at is widest point. miles

Unit V Volcanoes. Q-2 Use the scale bar to determine approximately how wide (in miles) Mt. Shasta is at is widest point. miles Unit V Volcanoes Name: California Geology Questions 1-9 Figure 1 is a shaded relief map from the USGS showing the area surrounding Mt. Shasta. Mt. Shasta itself is in the center of the map. Note that there

More information

Volcanic Eruptions (pp )

Volcanic Eruptions (pp ) Name Date Class Volcanic Eruptions (pp. 221 228) This section explains how volcanoes erupt and describes types of volcanic eruptions as well as other types of volcanic activity. The section also describes

More information

Kīlauea Volcano: Be a Volcanologist. Image Credit: Julien Millet / Unsplash. Final Project

Kīlauea Volcano: Be a Volcanologist. Image Credit: Julien Millet / Unsplash. Final Project The Kīlauea Volcano: Be a Volcanologist Image Credit: Julien Millet / Unsplash Final Project Final Project The Kīlauea Volcano: Be a Volcanologist In this two-day project, students apply their previous

More information

Chapter 11 Section 2 VOLCANOES TB 337

Chapter 11 Section 2 VOLCANOES TB 337 Chapter 11 Section 2 VOLCANOES TB 337 http://www.brainpop.com/science/earthsystem/volcanoes/ I. How do volcanoes form? Rising Magma leads to eruptions. Magma (solids and gases) are spewed out to form cone-shape

More information

EAS 116 Earthquakes and Volcanoes

EAS 116 Earthquakes and Volcanoes EAS 116 Earthquakes and Volcanoes J. Haase Forecasting Volcanic Eruptions Assessment of Volcanic Hazard Is that volcano active? Mount Lassen: 12000 BP and 1915 Santorini, IT: 180,000 BP, 70,000 BP, 21000

More information

Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old)

Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old) Radiometric Dating Relative dating techniques are based on principles can be used to differentiate the relative age rock units and landforms. Relative dating techniques by themselves cannot be used to

More information

Volcanoes. Volcanic eruptions can be more powerful than the explosion of an atomic bomb.

Volcanoes. Volcanic eruptions can be more powerful than the explosion of an atomic bomb. Ch. 13 Volcanoes Volcanoes Volcanic eruptions can be more powerful than the explosion of an atomic bomb. Many of these eruptions are caused by the movement of tectonic plates. Volcanism Volcanism-any activity

More information

3.2 Notes: Volcanoes Form as Molten Rock Erupts

3.2 Notes: Volcanoes Form as Molten Rock Erupts 3.2 Notes: Volcanoes Form as Molten Rock Erupts Think about What happens when a volcano erupts? Volcanoes erupt many types of material Earth s thin outer layer is, but most of Earth is extremely hot rock

More information

SCIENCE TEST1 (VWILLIAMSSCIENCETEST1)

SCIENCE TEST1 (VWILLIAMSSCIENCETEST1) Name: Date: 1. In which of the following areas would soil erosion MOST LIKELY occur if they received the same amount of rainfall? A. a forest B. flat agricultural lands C. agricultural lands on steep slopes

More information

Earth s Interior HW Packet HW #1 Plate Tectonics (pages )

Earth s Interior HW Packet HW #1 Plate Tectonics (pages ) Name Earth s Interior HW Packet HW #1 Plate Tectonics (pages 676 683) 1. Is the following sentence true or false? According to the theory of plate tectonics, Earth s plates move about quickly on top of

More information

CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS

CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS CERTAIN THOUGHTS ON UNCERTAINTY ANALYSIS FOR DYNAMICAL SYSTEMS Puneet Singla Assistant Professor Department of Mechanical & Aerospace Engineering University at Buffalo, Buffalo, NY-1426 Probabilistic Analysis

More information

When Mount St. Helens erupted, trapped gases caused the north side of the mountain to explode. Volcanic ash was ejected high into the atmosphere.

When Mount St. Helens erupted, trapped gases caused the north side of the mountain to explode. Volcanic ash was ejected high into the atmosphere. When Mount St. Helens erupted, trapped gases caused the north side of the mountain to explode. Volcanic ash was ejected high into the atmosphere. A volcano is a mountain that forms when magma reaches the

More information

VAAC Operational Dispersion Model Configuration Snap Shot Version 2. March 2016

VAAC Operational Dispersion Model Configuration Snap Shot Version 2. March 2016 VAAC Operational Dispersion Model Configuration Snap Shot Version 2 March 2016 Introduction The VAACs are responsible for producing volcanic ash cloud analysis and forecasts to assist the aviation community

More information

Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening.

Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening. Chapter 9 Volcano an opening in Earth s crust through which molten rock, gases, and ash erupt and the landform that develops around this opening. 3 Conditions Allow Magma to Form: Decrease in pressure

More information

Directed Reading. Section: Volcanoes and Plate Tectonics

Directed Reading. Section: Volcanoes and Plate Tectonics Skills Worksheet Directed Reading Section: Volcanoes and Plate Tectonics 1. Some volcanic eruptions can be more powerful than a(n) a. hand grenade. b. earthquake. c. geyser. d. atomic bomb. 2. The cause

More information

Earth, the Lively* Planet. * not counting the life on the planet!

Earth, the Lively* Planet. * not counting the life on the planet! Earth, the Lively* Planet * not counting the life on the planet! What We Will Learn Today What are planet Earth s features? What processes shape planetary surfaces? How does Earth s surface move? How did

More information

Earth Science Unit 1 Review

Earth Science Unit 1 Review Name: Date: 1. The picture below shows a model of the rock cycle. 2. rock cycle diagram is shown below. During which part of the rock cycle does water break rocks apart?. part 1 B. part 2. part 3 D. part

More information

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 9 Volcanism and Other Igneous Processes Volcanoes types and effects of eruption Chapter Overview Melting and cooling of rocks Geological

More information

Mount St. Helens. Copyright 2010 LessonSnips

Mount St. Helens. Copyright 2010 LessonSnips Mount St. Helens Washington State is home to the Cascade Mountains, a range of mountains that extends from the Canadian province of British Columbia to northern California. Many of these mountains are

More information

3/7/17. #16 - Case Studies of Volcanoes II. Announcements Monday 2/27

3/7/17. #16 - Case Studies of Volcanoes II. Announcements Monday 2/27 Announcements Monday 2/27 Exam #1: Monday Feb. 27 th, 7:15-8:15 (see web site) Last Names A - N Loomis 141 Last Names O - Z Loomis 151 Bring your student ID An old exam is posted in Compass If you are

More information

Iowa s Tectonic Future * Created by Kyle N. Hoffman, Geology, Linn-Mar High School, Marion Iowa. 2009

Iowa s Tectonic Future * Created by Kyle N. Hoffman, Geology, Linn-Mar High School, Marion Iowa. 2009 Iowa s Tectonic Future * Created by Kyle N. Hoffman, Geology, Linn-Mar High School, Marion Iowa. 2009 Teachers Notes Objectives: - Students will demonstrate knowledge of the rock cycle - Students will

More information

The Eyjafjallajokull Volcanic Ash Cloud and its Effects on Scottish Air Quality. Update 06 May 2010

The Eyjafjallajokull Volcanic Ash Cloud and its Effects on Scottish Air Quality. Update 06 May 2010 The Eyjafjallajokull Volcanic Ash Cloud and its Effects on Scottish Air Quality. Update 06 May 2010 The volcanic ash cloud from the Eyjafjallakull volcano once again grounded flights from Scottish airports

More information

Introduction to volcanoes. Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt

Introduction to volcanoes. Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt Introduction to volcanoes Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt Origin of Volcanoes 1. Magma 50-100 miles below the earth s surface slowly begins

More information

Unit 6: Interpreting Earth s History

Unit 6: Interpreting Earth s History Unit 6: Interpreting Earth s History How do we know that the Earth has changed over time? Regent s Earth Science Name: Topics Relative Dating Uniformitarianism Superposition Original Horizontality Igneous

More information

LECTURE #11: Volcanoes: Monitoring & Mitigation

LECTURE #11: Volcanoes: Monitoring & Mitigation GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #11: Volcanoes: Monitoring & Mitigation Date: 15 February 2018 I. What is volcanic monitoring? the continuous collection of one or more data sources

More information

!!!!! STOP!!!!! What is environmental geology? Earth as a closed system implies nearly everything is cycled, recycled

!!!!! STOP!!!!! What is environmental geology? Earth as a closed system implies nearly everything is cycled, recycled What is environmental geology?!!!!! STOP!!!!! Geology Study of rocks and minerals that comprise earth s surface and interior and the natural processes that shape the earth s surface and interior over all

More information

!!!!! STOP!!!!! What is environmental geology?

!!!!! STOP!!!!! What is environmental geology? !!!!! STOP!!!!! What is environmental geology? Geology Study of rocks and minerals that comprise earth s surface and interior and the natural processes that shape the earth s surface and interior over

More information

Infer relationships among three species: Outgroup:

Infer relationships among three species: Outgroup: Infer relationships among three species: Outgroup: Three possible trees (topologies): A C B A B C Model probability 1.0 Prior distribution Data (observations) probability 1.0 Posterior distribution Bayes

More information

INTERNATIONAL AIRWAYS VOLCANO WATCH OPERATIONS GROUP (IAVWOPSG)

INTERNATIONAL AIRWAYS VOLCANO WATCH OPERATIONS GROUP (IAVWOPSG) IAVWOPSG/6-IP/8 30/8/11 INTERNATIONAL AIRWAYS VOLCANO WATCH OPERATIONS GROUP (IAVWOPSG) SIXTH MEETING Dakar, Senegal, 19 to 23 September 2011 Agenda Item 6: Development of the IAVW 6.1: Improvement of

More information

GEOLOGY MEDIA SUITE Chapter 12

GEOLOGY MEDIA SUITE Chapter 12 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 12 Volcanoes 2010 W.H. Freeman and Company Plate tectonics explains the global pattern of volcanism. Key Figure 12.20 (page

More information

1 Volcanoes and Plate Tectonics

1 Volcanoes and Plate Tectonics CHAPTER 13 SECTION Volcanoes 1 Volcanoes and Plate Tectonics KEY IDEAS As you read this section, keep these questions in mind: What three conditions can cause magma to form? What is volcanism? What are

More information

Module 7: Plate Tectonics and Earth's Structure Topic 3 Content: Volcanoes - The Basics Notes. Volcanoes The Basics

Module 7: Plate Tectonics and Earth's Structure Topic 3 Content: Volcanoes - The Basics Notes. Volcanoes The Basics Volcanoes The Basics 1 Hello, my name is Dr. Simpson, and I am a volcanologist. I am here to explain some basic information about volcanoes to you. 3 I think we should get started by taking a look at the

More information

Question #1: What are some ways that you think the climate may have changed in the area where you live over the past million years?

Question #1: What are some ways that you think the climate may have changed in the area where you live over the past million years? Reading 5.2 Environmental Change Think about the area where you live. You may see changes in the landscape in that area over a year. Some of those changes are weather related. Others are due to how the

More information

Fate and Transport of Fine Volcanic Ash

Fate and Transport of Fine Volcanic Ash Fate and Transport of Fine Volcanic Ash William I Rose Michigan Tech University HOUGHTON, MI 49931 USA raman@mtu.edu www.geo.mtu.edu/~raman 26 May 2010 ESRIN Frascati MODIS Aqua 17 April 2010 fine ash

More information

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Neural Networks and Learning Machines (Haykin) Lecture Notes on Self-learning Neural Algorithms Byoung-Tak Zhang School of Computer Science

More information