Present, Past, and Future Climate Effects and Efficacy of Dirty Snow

Size: px
Start display at page:

Download "Present, Past, and Future Climate Effects and Efficacy of Dirty Snow"

Transcription

1 Present, Past, and Future Climate Effects and Efficacy of Dirty Snow Charlie Zender, Mark Flanner, and Jim Randerson Department of Earth System Science, University of California, Irvine Natalie Mahowald, Phil Rasch, and Masaru Yoshioka Climate and Global Dynamics Division, NCAR, Boulder, CO Ross Edwards and Joe McConnell Desert Research Institute, Reno, NV Contributions from: M. Andreae (MPI), T. Bond (UIUC), D. Bundy (NCAR), P. Khasibhatla (Duke) C. Luo (UCI), D. Muhs (USGS), T. Painter (NSIDC), T. Roush (NASA) IAMAS Earth System Interaction Symposium, Perugia, July 11, 2007

2 Figure 1: Photo unavailable for public viewing due to copyright restrictions.

3 1. Brief History of Dirty Snow Previous global studies focus on snowpack-mediated soot effects: 1. Jacobson (2004): FF/BF snowpack forcing warms climate 0.06 K 2. Hansen and Nazarenko (2004); Hansen et al. (2005): Soot-snowpack forcing 0.08 W m 2 warms climate K. Efficacy E a 1.7 CO 2 3. Krinner et al. (2006): Dusty snow helps keep LGM northern Asia icefree 4. Flanner et al. (2007): Soot-snowpack forcing Efficacy E a 3.0 CO 2 5. Zender et al. (2007): Dirty snow Efficacy E a 4.0 CO 2 How do soot and dust in snow affect climate as emissions change and snow cover decreases?

4 2. Global Dirty Snow Methods 1. SNow, ICe, and Aerosol Radiative model (SNICAR) (Flanner and Zender, 2005, 2006; Flanner et al., 2007) 2. Community Atmosphere Model with Slab Ocean Model (CAM/SOM) (a) Present Day (PD): Control (b) Pre-industrial (PI): 1870 GHGs, no FF/BF BC, 2000 BB (c) IPCC A2 Scenario: 2050 GHGs, BB = 1.5 PD (Flannigan et al., 2005) (d) Last Glacial Maximum (LGM): BB = 0.7 non-glacier PD (Thonicke et al., 2005), Glaciogenic dust sources (Mahowald et al., 2006) 3. Experiment(Control): Soot+Dust are (not) radiatively active in snowpack

5 Modeled BC in Snow (ng g 1 ) Greenland Arctic Continental Antarctica Observed BC in Snow (ng g 1 ) Figure 2: Observed and simulated BC concentrations (Flanner et al., 2007, JGR)

6 Figure 3: Snow extent for (a) Present, (b) 1870, (c) 2050, and (d) LGM climates.

7 Figure 4: Snow soot concentration [ng g 1 ] for (a) Present, (b) 1870, (c) 2050, and (d) LGM climates.

8 Figure 5: Snow dust concentration [ng g 1 ] for (a) Present, (b) 1870, (c) 2050, and (d) LGM climates.

9 Figure 6: Dirty snow surface forcing [W m 2 ] for (a) Present, (b) 1870, (c) 2050, and (d) LGM climates.

10 Latitude ( N) Latitude ( N) Present BC+Dust Snow Forcing (W m 2 ) 0 J F M A M J J A S O N D Month Pres. BC+Dust/Snow QMELT Change (mm day 1 ) J F M A M J J A S O N D Month Latitude ( N) Latitude ( N) Pres. BC+Dust/Snow ALBS Change 0 J F M A M J J A S O N D Month Pres. BC+Dust/Snow Temp. Change ( C) 0 J F M A M J J A S O N D Month

11 Figure 8: (a) Dirty snow surface forcing [W m 2 ] and (b) surface albedo, (c) snow melt, and (d) surface temperature responses for Present, 1870, and 2050 climates.

12 Figure 9: Predicted global mean temperature response [K] to snowpack heating by soot and dust during Pre-Industrial (1870), Present Day, and 2050 IPCC A2 climates.

13 D18104 HANSEN ET AL.: EFFICACY OF CLIMATE FORCINGS D18104 Efficacy E a : Response relative to response to equivalent CO 2 forcing Figure 25. Efficacy of various climate forcing agents for producing global temperature change relative Figureto10: the global Hansen temperature et al. (2005) change forcing produced efficacies. by an equal CO 2 forcing at today s CO 2 amount (mean for 1 CO 2 to 1.5 CO 2 ). The effective forcing is the product of the efficacy and the forcing. (a) Uses the standard definition of climate forcing, Fa, the adjusted forcing; (b) uses the fixed SST forcing, Fs. The fact that the different forcing agents cluster closer to the E = 1 line for fixed SST definition of forcing indicates that Fs provides a better measure of expected climate response than does Fa. The positive slope of efficacy curves for changes of solar irradiance or CO 2 amount indicates that (in our climate model, with fixed ice sheet area and fixed vegetation distribution) the 100-year climate response becomes more sensitive as the planet becomes warmer. Upturns in the efficacy at very small and very large solar irradiances or CO 2 amounts correspond to the snowball Earth and runaway greenhouse effects. E a λ(dirty snow) λ( CO 2 ) = ( T s/ F Trp ) R dirty snow (2.47 K)/(3.58 W m 2 ) = ( T s/ F Trp ) R dirty snow 0.69 K (W m 2 ) 1 Accounting for feedbacks between impurity concentration, heating, snow aging/metamorphism, and albedo increases dirty snow efficacy to 3 5 CO 2 definition (Table 1) and 2.37 W/m 2 for the tropopause used by Hansen et al. [2002]. Thus DTs/Fa C/W/m 2 for unforced variability in the calculation of Fs in a 100-year run with fixed SST is smaller than the variability in the

14 Figure 11: Predicted global mean forcing [W m 2 ], response [K], and efficacy of snowpack heating by soot and dust during Pre-Industrial (1870), Present Day, and 2050 IPCC A2 climates.

15 3. Conclusions: Climate Effects and Efficacy of Dirty Snow Present climate: Dirty snowpack forcing reversed from soot:dust 30:70% in Pre-industrial (1870) era to 70:30% currently Dust efficacy soot efficacy E a 3 5 Dirty snow warms climate K ( 60% by anthropogenic soot) Significant climate effects on NH albedo, melt seasonality, T Trends: Diminishing snowpack outweighs increased emissions, reduces forcing Temperature response largest in PD Efficacy increases monotonically to 2050 as snowpack warms, thins Overall: With forcing efficacy E a 3 5, Dirty snow is the most efficient climate forcing agent known. Reducing anthropogenic soot emissions may be an optimal strategy to mitigate cryospheric warming.

16 4. References References Flanner, M. G. and C. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32(6), L06501, doi: /2004gl Flanner, M. G. and C. S. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111(D12), D12208, doi: /2004gl Flanner, M. G., C. S. Zender, J. T. Randerson and P. J. Rasch, 2007: Presentday climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi: /2006jd Flannigan, M. D., K. A. Logan, B. D. Amiro, W. R. Skinner and B. J. Stocks, 2005: Future area burned in Canada. Climatic Change, 72(1 2), 1 16, doi: /s y.

17 Hansen, J. and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci., 101(2), Hansen, J., M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G. A. Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. D. Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, M. Kelley, N. Kiang, D. Koch, J. Lean, J. Lerner, K. Lo, S. Menon, R. Miller, P. Minnis, T. Novakov, V. Oinas, J. Perlwitz, J. Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao and S. Zhang, 2005: Efficacy of climate forcings. J. Geophys. Res., 110(D18104), doi: /2005jd Jacobson, M. Z., 2004: The climate response of fossil-fuel and biofuel soot, accounting for soot s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res., 109, D21201, doi: /2004jd Krinner, G., O. Boucher and Y. Balkanski, 2006: Ice-free glacial northern Asia due to dust deposition on snow. Clim. Dyn., 27, , doi: /s z.

18 Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender and C. Luo, 2006: Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res., 111(D10), D10202, doi: /2005jd Thonicke, K., I. C. Prentice and C. Hewitt, 2005: Modeling glacialinterglacial changes in global fire regimes and trace gas emissions. Global Biogeochem. Cycles, 19, GB3008, doi: /2004gb Zender, C. S., M. G. Flanner, J. T. Randerson, N. M. Mahowald, P. J. Rasch, M. Yoshioka and T. H. Painter, 2007: Climate effects of dust and soot in snow. In Preparation for Geophys. Res. Lett.

19 Figure 12: Predicted global mean temperature response [K] to snowpack heating by soot and dust during Last Glacial Maximum (LGM), Pre-Industrial (1870), Present Day, and 2050 IPCC A2 climates.

20 Figure 13: (a) Present climate snow cover and relative cover in (b) 1870, (c) 2050, and (d) LGM climates.

21 Figure 14: Snow cover response to dirty snow in (a) Present, (b) 1870, (c) 2050, and (d) LGM climates.

Dirty Snow and Arctic Climate

Dirty Snow and Arctic Climate Dirty Snow and Arctic Climate Charlie Zender and Mark Flanner Department of Earth System Science, University of California, Irvine Laboratoire de Glaciologie Géophysique de l Environnement, (LGGE), Grenoble,

More information

Solar Influence on climate: Particle precipitation effects on the southern hemisphere tropical/subtropical lower stratosphere temperature

Solar Influence on climate: Particle precipitation effects on the southern hemisphere tropical/subtropical lower stratosphere temperature Solar Influence on climate: Particle precipitation effects on the southern hemisphere tropical/subtropical lower stratosphere temperature Luis Eduardo Vieira and Ligia Alves da Silva SOHO observations

More information

Arctic climate: Unique vulnerability and complex response to aerosols

Arctic climate: Unique vulnerability and complex response to aerosols Arctic climate: Unique vulnerability and complex response to aerosols Mark Flanner November 2, 2011 Santa Fe Conference on Global and Regional Climate Change 1 / 18 Arctic: Unique vulnerability to positive

More information

Black carbon in snow and its radiative forcing over the Arctic and Northern China: uncertainty associated with deposition and in-snow processes

Black carbon in snow and its radiative forcing over the Arctic and Northern China: uncertainty associated with deposition and in-snow processes 1 2 3 Black carbon in snow and its radiative forcing over the Arctic and Northern China: uncertainty associated with deposition and in-snow processes 4 5 Yun Qian 1*, Hailong Wang 1, Rudong Zhang 2,1,

More information

Light Absorbing Carbonaceous Aerosols (BC and BrnC) and their Climate Impacts

Light Absorbing Carbonaceous Aerosols (BC and BrnC) and their Climate Impacts Light Absorbing Carbonaceous Aerosols (BC and BrnC) and their Climate Impacts J I U M E N G L I U E A S 8 8 0 2 : C L O U D S, A E R O S O L S A N D C L I M AT E M A R. 2 5, 2 0 1 3 Terminology Light absorbing

More information

Modeled response of Greenland snowmelt to the presence of biomass burning based absorbing aerosols

Modeled response of Greenland snowmelt to the presence of biomass burning based absorbing aerosols Modeled response of Greenland snowmelt to the presence of biomass burning based absorbing aerosols Jamie Ward University of Michigan Climate and Space Science 1 Introduction Black carbon (BC): aerosol

More information

Global Temperature. James Hansen, Makiko Sato, Reto Ruedy, Ken Lo

Global Temperature. James Hansen, Makiko Sato, Reto Ruedy, Ken Lo Global Temperature James Hansen, Makiko Sato, Reto Ruedy, Ken Lo November 3, 2005 This note responds to recent inquiries about 2005 global temperature, the inquiries stimulated by a 13 October Washington

More information

Arctic Climate Response to Forcing from Light-Absorbing Particles in Snow and Sea Ice in CESM

Arctic Climate Response to Forcing from Light-Absorbing Particles in Snow and Sea Ice in CESM Manuscript prepared for Atmos. Chem. Phys. Discuss. with version 3.5 of the LATEX class copernicus discussions.cls. Date: 30 December 11 Arctic Climate Response to Forcing from Light-Absorbing Particles

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

Atmospheric Aerosol in High Latitudes: Linkages to Radiative Energy Balance and Hydrological Cycle

Atmospheric Aerosol in High Latitudes: Linkages to Radiative Energy Balance and Hydrological Cycle Atmospheric Aerosol in High Latitudes: Linkages to Radiative Energy Balance and Hydrological Cycle Irina N. Sokolik School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, GA,

More information

Climate Change. April 21, 2009

Climate Change. April 21, 2009 Climate Change Chapter 16 April 21, 2009 Reconstructing Past Climates Techniques Glacial landscapes (fossils) CLIMAP (ocean sediment) Ice cores (layering of precipitation) p Otoliths (CaCO 3 in fish sensory

More information

Aspects of a climate observing system: energy and water. Kevin E Trenberth NCAR

Aspects of a climate observing system: energy and water. Kevin E Trenberth NCAR Aspects of a climate observing system: energy and water Kevin E Trenberth NCAR Tracking Earth s Global Energy Where has global warming from increased GHGs gone? Kevin E Trenberth NCAR Where did the heat

More information

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading Extremes of Weather and the Latest Climate Change Science Prof. Richard Allan, Department of Meteorology University of Reading Extreme weather climate change Recent extreme weather focusses debate on climate

More information

The Distribution of Cold Environments

The Distribution of Cold Environments The Distribution of Cold Environments Over 25% of the surface of our planet can be said to have a cold environment, but defining what we actually mean by that can be very challenging. This is because cold

More information

Springtime warming and reduced snow cover from carbonaceous particles

Springtime warming and reduced snow cover from carbonaceous particles Atmos. Chem. Phys., 9, 2481 2497, 29 www.atmos-chem-phys.net/9/2481/29/ Author(s) 29. This work is distributed under the Creative Commons Attribution 3. License. Atmospheric Chemistry and Physics Springtime

More information

Introduction to Climate Change

Introduction to Climate Change Ch 19 Climate Change Introduction to Climate Change Throughout time, the earth's climate has always been changing produced ice ages Hence, climate variations have been noted in the past what physical processes

More information

The ocean s overall role in climate

The ocean s overall role in climate The ocean s overall role in climate - moderates climate in time (diurnally, annually) - redistributes heat spatially in the largescale ocean circulation - lower albedo (sea ice higher albedo) - dry atmosphere

More information

Wrap-up of Lecture 2. Aerosol Forcing and a Critique of the Global Warming Consensus

Wrap-up of Lecture 2. Aerosol Forcing and a Critique of the Global Warming Consensus Wrap-up of Lecture 2 Massive research efforts over the past two decades have allowed aerosol scientists to put boundaries on the "direct" and "cloud-albedo" forcings. [IPCC 2007, Fig SPM.2] When climate

More information

MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas

MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and

More information

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... )

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... ) 4 Land, biosphere, cryosphere 1. Introduction 2. Atmosphere 3. Ocean 4. Land, biosphere, cryosphere 4.1 Land

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

Our Geologic Backdrop: Ice Age Cycles

Our Geologic Backdrop: Ice Age Cycles Introduction to Earth s Climate System Our Geologic Backdrop: Ice Age Cycles MODULE 2.4 2.4 Our Geologic Backdrop: Ice Age Cycles Lesson Goals»» Describe Earth s geologic variability over the past million

More information

TOPIC #12 NATURAL CLIMATIC FORCING

TOPIC #12 NATURAL CLIMATIC FORCING TOPIC #12 NATURAL CLIMATIC FORCING (Start on p 67 in Class Notes) p 67 ENERGY BALANCE (review) Global climate variability and change are caused by changes in the ENERGY BALANCE that are FORCED review FORCING

More information

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. Global Climate Change Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. If you live in an area such as the Mississippi delta (pictured)

More information

Lecture 8. The Holocene and Recent Climate Change

Lecture 8. The Holocene and Recent Climate Change Lecture 8 The Holocene and Recent Climate Change Recovery from the last ice age About 15,000 years ago, the earth began to warm and the huge ice sheets covering much of North America and Eurasia began

More information

Summary. The Ice Ages and Global Climate

Summary. The Ice Ages and Global Climate The Ice Ages and Global Climate Summary Earth s climate system involves the atmosphere, hydrosphere, lithosphere, and biosphere. Changes affecting it operate on time scales ranging from decades to millions

More information

Science of Global Warming and Climate Change

Science of Global Warming and Climate Change Science of Global Warming and Climate Change Part 1 Science Dr. David H. Manz, P. Eng. University of Calgary May 2015 Weather vs. Climate Weather happens day to day (moment to moment) best forecast is

More information

MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas

MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and

More information

Future Climate Change

Future Climate Change Future Climate Change How do you know whether to trust a prediction about the future? All predictions are based on global circulation models (GCMs, AOGCMs) - model accuracy is verified by its ability to

More information

Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes

Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 7788 7798, doi:10.1002/jgrd.50613, 2013 Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes Maria Sand,

More information

An Arctic Perspective on Climate Change

An Arctic Perspective on Climate Change An Arctic Perspective on Climate Change 23 Oct 2012 Gifford Miller (and many others) University of Colorado Boulder The Earth is warming How do we know? Temperature Anomaly ( C) It s a fact Global Land

More information

XV. Understanding recent climate variability

XV. Understanding recent climate variability XV. Understanding recent climate variability review temperature from thermometers, satellites, glacier lengths and boreholes all show significant warming in the 2th C+ reconstruction of past temperatures

More information

Glaciers on the Tibetan Plateau, sometimes called Earth s

Glaciers on the Tibetan Plateau, sometimes called Earth s Black soot and the survival of Tibetan glaciers Baiqing Xu a,b, Junji Cao b, James Hansen c,1, Tandong Yao a, Daniel R. Joswia a, Ninglian Wang d, Guangjian Wu a, Mo Wang a, Huabiao Zhao a, Wei Yang a,

More information

Origin and radiative forcing of black carbon transported. to the Himalayas and Tibetan Plateau

Origin and radiative forcing of black carbon transported. to the Himalayas and Tibetan Plateau Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau Kopacz, M. 1, Mauzerall, D.L. 1,2, Wang, J. 3, Leibensperger, E.M. 4, Henze, D.K. 5, Singh, K. 6 1. Woodrow

More information

The role of snow-darkening effect in the Asian monsoon region

The role of snow-darkening effect in the Asian monsoon region The third ACAM Workshop in 1 Guangzhou, China (June 5-9, 2017) Theme 2.1 Aerosols and Clouds The role of snow-darkening effect in the Asian monsoon region Faculty of Engineering & Arctic Research Center

More information

Climate Sensitivity, Feedbacks, Tipping Points, Irreversible Effects & The Point of No Return

Climate Sensitivity, Feedbacks, Tipping Points, Irreversible Effects & The Point of No Return Climate Sensitivity, Feedbacks, Tipping Points, Irreversible Effects & The Point of No Return James Hansen 4 November 2013 Geneva, Switzerland Climate Sensitivity, Feedbacks, Tipping Points, Irreversible

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

Land Surface Sea Ice Land Ice. (from Our Changing Planet)

Land Surface Sea Ice Land Ice. (from Our Changing Planet) Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice (from Our Changing Planet) Earth s s Climate System Solar forcing Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry

More information

TEMPERATURE GRADIENTS AND GLACIATION. Chris Brierley & Alexey Fedorov

TEMPERATURE GRADIENTS AND GLACIATION. Chris Brierley & Alexey Fedorov TEMPERATURE GRADIENTS AND GLACIATION Chris Brierley & Alexey Fedorov Outline Recap on the warm early Pliocene (as we have reconstructed it) Methodology to compare meridional SST gradient impacts and zonal

More information

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice Lecture 5: Land Surface and Cryosphere (Outline) Earth s Climate System Solar forcing Land Surface Sea Ice Land Ice Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry Cycles (from Our Changing

More information

Overview of Dust in the Earth System

Overview of Dust in the Earth System AAAS Symposium 1 Overview of Dust in the Earth System Dr. Karen E. Kohfeld School of Resource and Environmental Management, Simon Fraser University, CANADA What is dust? Soil mineral fragments Quartz,

More information

Climate Roles of Land Surface

Climate Roles of Land Surface Lecture 5: Land Surface and Cryosphere (Outline) Climate Roles Surface Energy Balance Surface Water Balance Sea Ice Land Ice (from Our Changing Planet) Surface Albedo Climate Roles of Land Surface greenhouse

More information

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

2. Fargo, North Dakota receives more snow than Charleston, South Carolina. 2015 National Tournament Division B Meteorology Section 1: Weather versus Climate Chose the answer that best answers the question 1. The sky is partly cloudy this morning in Lincoln, Nebraska. 2. Fargo,

More information

Darkening of soot-doped natural snow: Measurements and model

Darkening of soot-doped natural snow: Measurements and model Darkening of soot-doped natural snow: Measurements and model C. S. Zender 1,2, F. Dominé 1, J.-C. Gallet 1, G. Picard 1 1 Laboratoire de Glaciologie et Géophysique de l Environnement, Grenoble, France

More information

Global climate change

Global climate change Global climate change What is climate change? This winter was really cold! Temp difference ( C): Jan 2004 vs. Jan 2002-2003 Make your own maps at: http://www.giss.nasa.gov/data/update/gistemp/maps/ 1 What

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

( 1 d 2 ) (Inverse Square law);

( 1 d 2 ) (Inverse Square law); ATMO 336 -- Exam 3 120 total points including take-home essay Name The following equations and relationships may prove useful. F d1 =F d2 d 2 2 ( 1 d 2 ) (Inverse Square law);! MAX = 0.29 " 104 µmk (Wien's

More information

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance Ice ages What is an ice age? Geological period of long-term reduction in the temperature of the Earth's surface and atmosphere which results in the formation and expansion of continental ice sheets, polar

More information

Global Climate Change Impacts in the World

Global Climate Change Impacts in the World Current World Environment Vol. 6(2), 217-223 (2011) Global Climate Change Impacts in the World TARUN M. PATEL, A.M.PATEL and DEEPAK KARDILE Shree M.R.Arts & Science College, Rajpipla, Gujarat (India).

More information

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS

TOPIC #12. Wrap Up on GLOBAL CLIMATE PATTERNS TOPIC #12 Wrap Up on GLOBAL CLIMATE PATTERNS POLE EQUATOR POLE Now lets look at a Pole to Pole Transect review ENERGY BALANCE & CLIMATE REGIONS (wrap up) Tropics Subtropics Subtropics Polar Extratropics

More information

When Did the Anthropocene Begin? Observations and Climate Model Simulations

When Did the Anthropocene Begin? Observations and Climate Model Simulations When Did the Anthropocene Begin? Observations and Climate Model Simulations by John Kutzbach University of Wisconsin-Madison March 31, 2011 Colleagues: W. Ruddiman, S. Vavrus, G. Philippon-Berrthier Main

More information

The Case for Anthropogenic Warming

The Case for Anthropogenic Warming Richard McGehee Seminar on the Mathematics of Climate Change School of Mathematics September 9, 8 The USA in the Ice Free Earth Computer Simulation, Clarence Lehman, Univ. Mn. 6 No ice fishing in Minnesota

More information

Parameterization for Atmospheric Radiation: Some New Perspectives

Parameterization for Atmospheric Radiation: Some New Perspectives Parameterization for Atmospheric Radiation: Some New Perspectives Kuo-Nan Liou Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) and Atmospheric and Oceanic Sciences Department

More information

Climate Sensitivity Estimates From Paleoclimate (LGM) Data

Climate Sensitivity Estimates From Paleoclimate (LGM) Data Climate Sensitivity Estimates From Paleoclimate (LGM) Data Andreas Schmittner Oregon State University College of Earth, Ocean, and Atmospheric Sciences May 22, 2013 Lamont Doherty Earth Observatory Columbia

More information

Characterization and Direct Radiative Impact of Arctic Aerosols: observed and modeled

Characterization and Direct Radiative Impact of Arctic Aerosols: observed and modeled Third Santa Fe Conference on Global and Regional Climate Change Santa Fe, New Mexico, October 31 November 2, 2011 Characterization and Direct Radiative Impact of Arctic Aerosols: observed and modeled R.

More information

Monitoring Climate Change from Space

Monitoring Climate Change from Space Monitoring Climate Change from Space Richard Allan (email: r.p.allan@reading.ac.uk twitter: @rpallanuk) Department of Meteorology, University of Reading Why Monitor Earth s Climate from Space? Global Spectrum

More information

What is Climate? Climate Change Evidence & Causes. Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing?

What is Climate? Climate Change Evidence & Causes. Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? What is Climate? 1 Climate Change Evidence & Causes Refers to the average environmental conditions (i.e. temperature, precipitation, extreme events) in a given location over many years Climate is what

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

ATM S 111 Global Warming Exam Review. Jennifer Fletcher Day 31, August 3, 2010

ATM S 111 Global Warming Exam Review. Jennifer Fletcher Day 31, August 3, 2010 ATM S 111 Global Warming Exam Review Jennifer Fletcher Day 31, August 3, 2010 Earth gets most of its energy from the sun. Solar Radiation Solar radiation is mostly in visible, near infrared, and near UV

More information

Equation for Global Warming

Equation for Global Warming Equation for Global Warming Derivation and Application Contents 1. Amazing carbon dioxide How can a small change in carbon dioxide (CO 2 ) content make a critical difference to the actual global surface

More information

XVI. Warming and the cryosphere

XVI. Warming and the cryosphere XVI. Warming and the cryosphere review temperature from thermometers, satellites, glacier lengths and boreholes all show significant warming in the 20th C+ reconstruction of past temperatures from corals,

More information

Global Warming and Changing Sea Level. Name: Part 1: Am I part of the problem?!

Global Warming and Changing Sea Level. Name: Part 1: Am I part of the problem?! Part 1: Am I part of the problem?! Name: The consumption of energy in the form of fossil fuel combustion is the largest single contributor to anthropogenic greenhouse gas emissions in the U.S. and the

More information

Introduction to HadGEM2-ES. Crown copyright Met Office

Introduction to HadGEM2-ES. Crown copyright Met Office Introduction to HadGEM2-ES Earth System Modelling How the climate will evolve depends on feedbacks Ecosystems Aerosols Chemistry Global-scale impacts require ES components Surface temperature Insolation

More information

Global Paleogeography

Global Paleogeography Global Paleogeography Overview of Global Paleogeography Paleogeography is the study of how the Earth s geography has changed during the course of history. Using geological data, scientists reconstruct

More information

Why the hiatus in global mean surface temperature trends in the last decade?

Why the hiatus in global mean surface temperature trends in the last decade? Why the hiatus in global mean surface temperature trends in the last decade? G. Bala Divecha Center for Climate Change Indian Institute of Science, Bangalore (Email: gbala@caos.iisc.ernet.in) On 27 September

More information

Effect of Solar Activity on Earth's Climate during Solar Cycles 23 and 24

Effect of Solar Activity on Earth's Climate during Solar Cycles 23 and 24 Effect of Solar Activity on Earth's Climate during Solar Cycles 3 and 4 Abstract 1 1 Bharti Nigam, Prithvi Raj Singh, Pramod Kumar Chamadia, Ajay Kumar Saxena, Chandra Mani Tiwari 1 Govt. Autonomous P.

More information

Introduction to Global Warming

Introduction to Global Warming Introduction to Global Warming Cryosphere (including sea level) and its modelling Ralf GREVE Institute of Low Temperature Science Hokkaido University Sapporo, 2010.09.14 http://wwwice.lowtem.hokudai.ac.jp/~greve/

More information

Present-day climate forcing and response from black carbon in snow

Present-day climate forcing and response from black carbon in snow Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd008003, 2007 Present-day climate forcing and response from black carbon in snow Mark G. Flanner, 1 Charles S. Zender,

More information

The Earth. The Earth. Policy on absences. Processes that shape earth. Test 1 will be released on Wed afternoon.

The Earth. The Earth. Policy on absences. Processes that shape earth. Test 1 will be released on Wed afternoon. The Earth Processes that shape earth Plate tectonics Volcanism Energy trapping: Greenhouse effect Carbon dioxide cycle Effects of increased CO 2 Erosion (you already know this) Loss of gases (Thurs) Policy

More information

Black carbon in seasonal snow across northern Xinjiang in northwestern China

Black carbon in seasonal snow across northern Xinjiang in northwestern China IOP PUBLISHING Environ. Res. Lett. 7 (2012) 044002 (9pp) ENVIRONMENTAL RESEARCH LETTERS doi:10.1088/1748-9326/7/4/044002 Black carbon in seasonal snow across northern Xinjiang in northwestern China Hao

More information

Climate in the Future AOSC 200 Tim Canty. Increase in temperature is correlated with increase in GHGs (and population)

Climate in the Future AOSC 200 Tim Canty. Increase in temperature is correlated with increase in GHGs (and population) Climate in the Future AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Evidence of a changing climate Possible issues associated with a changing climate Lecture

More information

GEOL/ENVS 3520 Spring 2009 Hour Exam #2

GEOL/ENVS 3520 Spring 2009 Hour Exam #2 GEOL/ENVS 3520 Spring 2009 Hour Exam #2 Enter your name, the date, your ID number, and a made-up 4-digit code (for later recall and identification of your test results) on the separate test sheet. Carefully

More information

Figure 1.1. Schematic overview of the primary blackcarbon emission sources and the processes that control the distribution of black carbon in the

Figure 1.1. Schematic overview of the primary blackcarbon emission sources and the processes that control the distribution of black carbon in the Figure 1.1. Schematic overview of the primary blackcarbon emission sources and the processes that control the distribution of black carbon in the atmosphere and determine its role in the climate system.

More information

NSF: Natural and Anthropogenic Climate Impacts as Evidenced in Ice Cores

NSF: Natural and Anthropogenic Climate Impacts as Evidenced in Ice Cores LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSF: Natural and Anthropogenic Climate Impacts as Evidenced in Ice Cores Presented by: Dr. Joseph McConnell and Linda Morris May 2, 2012 Natural and Anthropogenic

More information

May Global Warming: Recent Developments and the Outlook for the Pacific Northwest

May Global Warming: Recent Developments and the Outlook for the Pacific Northwest Global Warming: Recent Developments and the Outlook for the Pacific Northwest Pat Bartlein Department of Geography University of Oregon (bartlein@uoregon.edu) http://geography.uoregon.edu/envchange/gwhr/

More information

Climate change: How do we know?

Climate change: How do we know? Climate change: How do we know? This graph, based on the comparison of atmospheric samples contained in ice cores and more recent direct measurements, provides evidence that atmospheric CO2 has increased

More information

Interactive comment on The impact of Saharan dust and black carbon on albedo and long-term glacier mass balance by J. Gabbi et al.

Interactive comment on The impact of Saharan dust and black carbon on albedo and long-term glacier mass balance by J. Gabbi et al. The Cryosphere Discuss., 9, C553 C564, 2015 www.the-cryosphere-discuss.net/9/c553/2015/ Author(s) 2015. This work is distributed under the Creative Commons Attribute 3.0 License. The Cryosphere Discussions

More information

Milankovitch Theory of the Ice Ages

Milankovitch Theory of the Ice Ages Ruddiman CHAPTER 10 Insolation Control of Ice Sheets Milankovitch Theory of the Ice Ages margin of Greenland ice sheet Today s main points: 1) Review of glaciology basics. 2) Orbital changes affecting

More information

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Science

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Science To Characterize the Black Carbon Using Single Particle Incandescence Technique: Instrumentation Development, Data Analysis Techniques and Quantitative Measurements A thesis submitted to the University

More information

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today.

WELCOME TO PERIOD 14:CLIMATE CHANGE. Homework #13 is due today. WELCOME TO PERIOD 14:CLIMATE CHANGE Homework #13 is due today. Note: Homework #14 due on Thursday or Friday includes using a web site to calculate your carbon footprint. You should complete this homework

More information

CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS

CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS CLIMATE CHANGE IN ARCTIC AND ALPINE AREAS 1. Introduction 2. Data sources: glaciers 3. Data sources: ice cores 4. Patterns and mechanisms 5. Feedbacks and surprises Striations (evidence of glacial erosion)

More information

Climate Sensitivity to Increasing Greenhouse Gases

Climate Sensitivity to Increasing Greenhouse Gases Chapter 2 Climate Sensitivity to Increasing Greenhouse Gases James E. Hansen, Andrew A. Lacis, David H. Rind, and Gary L. Russell INTRODUCTION Climate changes occur on all time scales, as illustrated in

More information

Andreas Stohl Norwegian Institute for Air Research (NILU) and

Andreas Stohl Norwegian Institute for Air Research (NILU) and Andreas Stohl Norwegian Institute for Air Research (NILU) and E. Andrews, T. Berg, J. F. Burkhart, A. M. Fjæraa, C. Forster, A. Herber, S. Hoch, Ø. Hov, D. Kowal, C. Lunder, T. Mefford, W. W. McMillan,

More information

MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas

MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and

More information

Chapter 14: The Changing Climate

Chapter 14: The Changing Climate Chapter 14: The Changing Climate Detecting Climate Change Natural Causes of Climate Change Anthropogenic Causes of Climate Change Possible Consequences of Global Warming Climate Change? -Paleo studies

More information

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold.

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change The Archean is thought to have been warmer,

More information

How will Earth s surface temperature change in future decades?

How will Earth s surface temperature change in future decades? Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L15708, doi:10.1029/2009gl038932, 2009 How will Earth s surface temperature change in future decades? Judith L. Lean 1 and David H. Rind

More information

What is the IPCC? Intergovernmental Panel on Climate Change

What is the IPCC? Intergovernmental Panel on Climate Change IPCC WG1 FAQ What is the IPCC? Intergovernmental Panel on Climate Change The IPCC is a scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1144856/dc1 Supporting Online Material for 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing Joseph R. McConnell,* Ross Edwards, Gregory

More information

The contribution of snow condition trends to future ground climate

The contribution of snow condition trends to future ground climate The contribution of snow condition trends to future ground climate David Lawrence 1 Andrew Slater 2 1 NCAR / CGD Boulder, CO 2 NSIDC / CIRES Boulder, CO Snow vs T air influence on T soil trends There is

More information

Recent weakening of northern East Asian summer monsoon: A possible response to global warming

Recent weakening of northern East Asian summer monsoon: A possible response to global warming GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051155, 2012 Recent weakening of northern East Asian summer monsoon: A possible response to global warming Congwen Zhu, 1 Bin Wang, 2 Weihong Qian,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Radiative forcing and albedo feedback from the northern hemisphere cryosphere between 1979 and 2008 M. G. Flanner 1 *, K. M. Shell 2, M. Barlage 3, D. K. Perovich 4, & M. A. Tschudi

More information

Weather and Climate Change

Weather and Climate Change Weather and Climate Change What if the environmental lapse rate falls between the moist and dry adiabatic lapse rates? The atmosphere is unstable for saturated air parcels but stable for unsaturated air

More information

Climatic attribution at the regional scale: a case study on the role of circulation patterns and external forcings

Climatic attribution at the regional scale: a case study on the role of circulation patterns and external forcings ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 14: 301 305 (2013) Published online 19 September 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/asl2.463 Climatic attribution at the regional

More information

Global and Regional Climate Changes due to Black Carbon

Global and Regional Climate Changes due to Black Carbon Global and Regional Climate Changes due to Black Carbon V. Ramanathan and G. Carmichael Submitted to Nature-Geoscience as a Review Article November 16, 2007 Next to Carbon Dioxide, black carbon (BC) in

More information

Natural Climate Variability: Longer Term

Natural Climate Variability: Longer Term Natural Climate Variability: Longer Term Natural Climate Change Today: Natural Climate Change-2: Ice Ages, and Deep Time Geologic Time Scale background: Need a system for talking about unimaginable lengths

More information

Climate Change: Global Warming Claims

Climate Change: Global Warming Claims Climate Change: Global Warming Claims Background information (from Intergovernmental Panel on Climate Change): The climate system is a complex, interactive system consisting of the atmosphere, land surface,

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

!"#$%&'()*+,-./ I!"#$%&

!#$%&'()*+,-./ I!#$%& www.climatechange.cn Q = O OMMU P ADVANCES IN CLIMATE CHANGE RESEARCH Vol.4, No.2 March, 2 8!"673-79 (28) 2--6 &'()*+,-./ I & NIO == N N=&' =NMMMUN O= &'()*+, =RNMSRR = NCAR! GCM CAM3. &'()*+,-&'()*+,

More information

Climate vs Weather J. J. Hack/A. Gettelman: June 2005

Climate vs Weather J. J. Hack/A. Gettelman: June 2005 Climate vs Weather J. J. Hack/A. Gettelman: June 2005 What is Climate? J. J. Hack/A. Gettelman: June 2005 Characterizing Climate Climate change and its manifestation in terms of weather (climate extremes)

More information