New results from sediment transport measurements in two Alpine torrents

Size: px
Start display at page:

Download "New results from sediment transport measurements in two Alpine torrents"

Transcription

1 Hydrology, Water Resources and Ecology in Headwaters (Proceedings of the HeadWater'98 Conference held at Meran/Merano, Italy, April 1998). IAHS Publ. no. 248, New results from sediment transport measurements in two Alpine torrents INTRODUCTION DIETER RICKENMANN Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland VINCENZO D'AGOSTINO, GIANCARLO DALLA FONTANA, MARIO LENZI Department of Land and Agro-Forest Environments, University ofpadova, Agripolis, Legnaro (Padova), Italy LORENZO MARCHI Research Institute for Hydrological and Geological Hazard Prevention, National Research Council, Corso Stati Uniti 4, Padova, Italy Abstract In the Erlenbach Torrent (Swiss Alps, 0.70 km 2 ), the intensity of bed-load transport is recorded indirectly and continuously by special sensors installed in the bottom of the channel. At the observation station in the Rio Cordon Torrent (eastern Italian Alps, 5 km 2 ) coarse bed load is separated from water and fine sediment, and the volume of both deposits is recorded. The Erlenbach shows a much more pronounced response to similar rainfall conditions. The geological conditions lead to a lower slope and channel stability in the Erlenbach than in the Rio Cordon. In both streams a relationship exists between the sediment load of a flood event and the corresponding runoff volume. A trend towards "equal mobility" is observed for higher discharges. Peak bed-load transport may occur before or after the flood peak. Small, steep headwater basins are of importance in the context of mountain watershed management, as most sediment transfer from slopes to the stream network takes place here. Nevertheless, a lack of experimental data still exists on hydrological and sediment transport processes in small mountain streams. In recent years new or improved approaches for bed-load measurement have been developed in some small instrumented watershed of the Alps. Such new techniques include the indirect measurement of bed-load rate by means of acoustic or seismic sensors (Bànziger & Burch, 1990; Govi et al, 1993) and the complete measurement of bed load and suspended transport in especially designed gauging stations (Fattorelli et al., 1988). The aim of this paper is to analyse results from bed-load measurements in two small Alpine basins of comparable size and equipped with different facilities for sediment transport monitoring. EXPERIMENTAL CATCHMENTS The Erlenbach stream is situated in central Switzerland, some 10 km south of Einsiedeln. The Rio Cordon lies in the eastern Italian Alps (Dolomites), some 35 km

2 284 Dieter Rickenmann et al. Fig. 1 Location of the experimental catchments. northwest of Belluno. The main characteristics of the studied basins (Fig. 1) are shown in Table 1. Regarding the geological characteristics, the Erlenbach basin is located in a flysch zone, whereas the Rio Cordon basin displays more complex settings: dolomites make up the highest parts of the catchment, volcaniclastic conglomerates, tuffs, sandstones and marly-calcareous rocks outcrop are found in its middle and lower parts; scree and morainic deposits are also widespread. In the Erlenbach stream, a debris basin allows the measurement of total sediment load transported during floods. Moreover, a system devised for continuously measuring the intensity of bed-load transport has been in operation since 1986 (Bànziger & Burch, 1990). It consists of a number of "hydrophones" installed at the bottom of the inlet channel to the sediment retention basin. The vibrations caused by coarse particles passing over the sensor are recorded in a simplified manner as the number of impulses per minute. The minimum grain size to produce an impulse is estimated to be about 1 cm. The hydrophone impulses have been found to correlate with the volume of the material deposited in the retention basin (Rickenmann, 1997). The system of measuring bed-load transport in the Rio Cordon has been in operation since 1986 (Fattorelli et al, 1988). It is based on the separation of coarse bed load (minimum size >20 mm) from water and fine sediment. Coarse bed load slides over an inclined grid and accumulates in a storage area. The volume of coarse bed load deposited is measured by means of ultrasonic sensors installed over the storage area. This recording system makes it possible to measure bed load at time intervals of minutes. Water and fine sediment pass through the grid and are directed to an outlet channel. Fine gravel (<20 mm) and coarse sand fractions have Table 1 The experimental catchments Erlenbach (Switzerland) and Rio Cordon (Italy). Erlenbach Rio Cordon Basin area (km 2 ) Maximum elevation (m) Minimum elevation (m) Average gradient of main stream (%) Mean annual precipitation (mm) Mean annual temperature ( C) Forest cover (%) 40 7 Wetland + grassland (%) Bare land (%) - 14

3 New results from sediment transport measurements in two Alpine torrents 285 Flow rate Q [m3/s] Rainfall R [mm/min.] m :_. i'rl 11 i \ /jk_ _ J i 7 ^^ m Rainfall R Flow rate Q -1! hi Time [min.] Fig. 2 Erlenbach: Flood event of 14 July 1995 (start time 15:10 h), the second largest event during the measuring period not been measured in the period In order to properly measure also fine bed load, a settling basin for fine material (fine gravel, sand and silt) was constructed in 1994 at the end of the outlet channel; the basin can trap a maximum sediment volume of about 500 m 3. ANALYSIS OF LARGE FLOODS Discharge measurements in the Erlenbach stream have been made since The second largest flood event occurred on 14 July Figure 2 shows the corresponding hydrograph recorded after an intense rainfall of short duration. The peak discharge of 10 m 3 s" 1 occurred about 40 min after the onset of the intense rainfall. Within the 40 min, the cumulative rainfall amounted to about 40 mm. The rapid response of the stream is mainly due to a high drainage density of 27 km km" 2 and to relatively shallow soils with clay-rich layers of very low infiltration permeability. The largest recorded flood event in the Rio Cordon is shown in Fig. 3. It presents two peaks caused by two bursts of high intensity rainfall which occurred during a storm event of 7 h. The first burst (3 mm per minute) shows the highest intensity, the second, less intense but more prolonged burst occurred over saturated soil and produced the higher peak of 10 m 3 s" 1. If a flood frequency analysis is performed for the Erlenbach data, the best Flow rate Q [m3/s] Rainfall R [mm/min.] Time [min.] Fig. 3 Rio Cordon: Flood event of 14 September 1994 (start time 11:00 h), the largest event during the measuring period

4 286 Dieter Rickenmann et al. Bedload [m 3 ] _ m Erlenbach, summer A Erlenbach, winter x Rio Cordon XS A JE i!w J W^ A, ni» «r A <i@ 'TU o,, > Effective runoff volume [m 3 ] Fig. 4 Bed load per flood event (G E ) in relation to effective runoff volume (VJ during flood events in the Erlenbach and Rio Cordon. representation is found using a second extremal distribution (Gumbel distribution). The data for the two streams show a similar trend in the flood frequency diagram, although the unit discharge for the same recurrence interval is about 5 times smaller in the Rio Cordon than in the Erlenbach. It is estimated that the 100 year peak discharge is about m 3 s" 1 in the Erlenbach, and about m 3 s" 1 in the Rio Cordon. SEDIMENT TRANSPORT AND FLOOD PARAMETERS The analysis of about 150 flood events with bed-load transport in the Erlenbach shows that the total sediment load per event, G E, clearly depends on the runoff volume (Rickenmann, 1994). A further improvement of the correlation is obtained if the sediment load G E is related to the effective runoff volume (above the threshold for beginning of transport), V re, to the peak discharge, Q p, of the flood event, and to the threshold discharge for beginning of bed-load transport, Q c (Rickenmann & Dupasquier, 1994; Rickenmann, 1997). The effective runoff volume is the hydrograph volume computed above the threshold discharge for the beginning of transport. These findings are also supported by the analysis of the flood events in the Rio Cordon (Billi et al, 1994; D'Agostino & Lenzi, 1996). A comparison of the relationship between bed-load volumes and effective runoff volumes is shown on Fig. 4 for the Erlenbach and Rio Cordon field data. It is observed that the data groups show a similar slope on the diagram. The fewer data points for the Rio Cordon define a range similar to the scatter of the Erlenbach data points. Effect of increasing peak discharge In Fig. 5, the bed load is shown in relation to the peak discharge of each flood event. The data from the Erlenbach show a bend at a Q p value of about 1 m 3 s 1, the influence of Q p being smaller above this threshold value. This bend may be related to the range of fluctuations of the threshold discharge, between 0.4 and 0.8 m 3 s" 1 for flood events in summer (Rickenmann, 1997). It is assumed that within this range a large part of sediment grains are set in motion, considering the sizes which are

5 New results from sediment transport measurements in two Alpine torrents 287 Bedload [m 3 ] A». 4 + ' m % "W DCJ^E 4 O J»",t* * Tfl«Erienbach, summer A Erienbach, winter x flood x Rio Cordon + Missiaga 1 1 II HIM Peak discharge [m 3 /s] Fig. 5 Bed load per flood event (G E ) in relation peak discharge (Q p ) for flood events in the Erienbach, Rio Cordon and Missiaga Creek. transported at all during flood events. Consequently, up to a discharge of about 1 m 3 s" 1 the proportion of grains in motion contributing to the total sediment transport increases rapidly. When the discharge exceeds this level, larger sediment grains may be set in motion but may not contribute so much to the total sediment volume. A moderate increase of total transported sediment with increasing peak discharge is observed for the Missiaga Torrent in Fig. 5, an instrumented stream of the eastern Italian Alps that covers an area of 4.4 km 2 (Anselmo et al, 1989). Discharge thresholds for sediment transport in the Missiaga Creek are lower than in the Erienbach and Cordon and high sediment loads are transported during floods with peak discharges of about m 3 s" 1. For the highest peak discharges, differences among the considered creeks decrease and a sediment load of about 1000 m 3 is observed for the largest floods, with flood peaks of about 10 m 3 s' 1. (Measured sediment loads in the Missiaga Torrent have been divided by a factor of 2, in order to discount the fine material which is also deposited in the debris basin.) This general conclusion is in agreement with more detailed observations on grain sizes in transport that are available for the Rio Cordon (D'Agostino & Lenzi, 1996). In Fig. 6 the ratio of grain sizes in transport to those in the bed surface material are shown as a function of the peak discharge. It is seen that increasing particle sizes out of the bed are transported if the peak discharge is about twice or three times the critical discharge for beginning of bed-load motion, Q c. In other words, at the higher discharges the conditions of "equal mobility" are approached. Similarly, Wilcock m - ^ «" è"~~~~~~ ~ ~~ : w -0-- \ A i = 50% = 84% = 90% Qp/Qc Fig. 6 Rio Cordon: Ratio of transported to bed material grain size in relation to normalized peak discharge.

6 288 Dieter Rickenmann et al. Hydrophone H3 [1000 impvmin.] 25 x event of July 2, event of July 14, Flow rate [m3/s] Fig. 7 Erlenbach: Time sequence of the variation of bed-load transport intensity (hydrophone impulses H3) with flow rate, shown for two flood events. Bedload transport rate [kg/s] I I Sep. 14, 1994 flood I x "ordinary" floods X X ^ /f- t - ^ p X Flow rate [m3/s] Fig. 8 Rio Cordon: Average hourly values of bed-load transport rate vs flow rate. (1992) found in flume experiments that "equal mobility" is reached when the shear stress is about times the critical shear stress for initiation of motion. Based on other field observations in gravel-bed streams it can be concluded that "equal mobility" is reached at discharges which are about 2-5 times the critical discharge for beginning of motion (e.g. Komar & Shih, 1992). The pulsing nature of bed-load transport in the Erlenbach stream is evident from the continuous hydrophone measurements since 1986 (Rickenmann, 1994). In Fig. 7, the time sequence of the variation of transport intensity (expressed by hydrophone impulses per minute) with flow rate is shown for two flood events. A trend for a hysteresis behaviour can be observed. When considering all flood events, no systematic pattern is found; the peak transport intensity may occur either before or after the flood peak. It may be noted that the total sediment volume deposited in the retention basin was 590 m 3 for the flood event of 14 July, and 170 m 3 for the flood of 2 July A scatterplot of average hourly values of bed-load transport rate vs water discharge (Fig. 8) compares data from some floods which occurred in the Rio Cordon from 1987 to 1992 and includes the largest recorded event of 14 September Bed-load transport rates range from 0.1 to 6 kg s" 1 during "ordinary" floods (discharge up to 5 m 3 s" 1 ). The mobilization of large amounts of bed material during the flood of 14 September 1994 caused sediment concentration in this flood to be

7 New results from sediment transport measurements in two Alpine torrents 289 higher than in other recorded floods: the observed intensity of bed-load transport exceeds by more than one order of magnitude those of "ordinary" floods, while peak discharge is only approximately twice. FINAL REMARKS The two experimental hydrological catchments Erlenbach and Rio Cordon are compared with respect to flood generation and sediment transport. The following conclusions can be drawn: (a) the Erlenbach shows a more pronounced response to intense rainfall due to a denser drainage network and soils of lower permeability; (b) the sediment production is stronger in the Erlenbach due to slope movements; (c) for similar flood parameters, bed-load transport is comparable in both streams; (d) a trend towards "equal mobility" is observed for higher discharges in both streams. Acknowledgement The research was partially supported by the European Commission, DGXII, Environment and Climate Programme, Climatology and Natural Hazards Unit, in the framework of Contract ENV4-CT REFERENCES Anselmo, V., Marchi, L., Tecca, P. R. & Villi, V. (1989) Sediment transport in a small watershed of Dolomite mountains (NE Italy). Quaderni di Idronomia Montana, no. 9, Bânziger, R. & Burch, H. (1990) Acoustic sensors as indicators for bed load transport in a mountain torrent. In: Hydrology in Mountainous Regions. I Hydrological Measurements; Tlie Water Cycle (ed. by H. Lang & A. Musy) (Proc. Lausanne Symp., August 1990), IAHS Publ. no Billi, P., D'Agostino, V., Lenzi, M. A. & Marchi, L. (1994) Geomorphological processes and sediment yield in a small basin of the Dolomites (north-eastern Italy). In: Proc. Int. Symp. on Forest Hydrology (Tokyo, lapan), D'Agostino, V. & Lenzi, M. A. (1996) La valutazione del trasporto solido di fondo nel bacino attrezzato del Rio Cordon (The validation of bed-load transport in the Rio Cordon catchment). L'Acqua 4, Fattorelli, S., Keller, H. M., Lenzi, M. & Marchi, L. (1988) An experimental station for the automatic recording of water and sediment discharge in a small alpine watershed. Hydrol. Sci. J. 33(6), Govi, M., Malaga, F. & Moia, F. (1993) Seismic detectors fo continous bed load monitoring in a gravel stream. Hydrol. Sci. J. 38(4), Komar, P. D. & Shih, S. M. (1992) Equal mobility versus changing bed load grain sizes in gravel bed streams. In: Dynamics of Gravel-Bed Rivers (ed. by P. Billi, R. D. Hey, C. R. Thorne & P. Tacconi), John Wiley, Chichester, UK. Rickenmann, D. (1994) Sediment load and discharge in the Erlenbach Stream. In: Dynamics and Geomorphology of Mountain Rivers (ed. by P. Ergenzinger & K.-H. Schmidt), Lecture Notes in Earth Sciences 52, Rickenmann, D. (1997) Sediment transport in Swiss torrents. Earth Surf. Processes andlandforms 22, Rickenmann, D. & Dupasquier, P. (1994) Messung des Feststofftransportes im Erlenbach (Measurement of sediment transport in the Erlenbach). Beitr. zur Hydrol. der Schweiz 35, Wilcock, P. (1992) Experimental investigation on the effect of mixture properties on transport dynamics. In: Dynamics of Gravel-Bed Rivers (ed. by P. Billi, R. D. Hey, C. R. Thorne & P. Tacconi), John Wiley, Chichester, UK.

Experience from Sediment Transport Monitoring and Investigations in the Rio Cordon

Experience from Sediment Transport Monitoring and Investigations in the Rio Cordon Geophysical Research Abstracts, Vol. 7, 06419, 2005 SRef-ID: 1607-7962/gra/EGU05-A-06419 European Geosciences Union 2005 Experience from Sediment Transport Monitoring and Investigations in the Rio Cordon

More information

Internationales Symposion INTERPRAEVENT 2004 RIVA / TRIENT

Internationales Symposion INTERPRAEVENT 2004 RIVA / TRIENT Internationales Symposion INTERPRAEVENT 2004 RIVA / TRIENT ANALYSIS OF SEDIMENT TRANSPORT IN EXPERIMENTAL ANALYSIS ALPINE OF SEDIMENT AND ANDEAN TRANSPORT CATCHMENTS IN EXPERIMENTAL ALPINE AND ANDEAN CATCHMENTS

More information

Internationales Symposion INTERPRAEVENT 2004 RIVA / TRIENT

Internationales Symposion INTERPRAEVENT 2004 RIVA / TRIENT Internationales Symposion INTERPRAEVENT 2004 RIVA / TRIENT IMPACT OF SEDIMENT SUPPLY ON BED LOAD TRANSPORT IN A HIGH-ALTITUDE ALPINE TORRENT Lenzi Mario Aristide 1, Mao Luca 1, Asti Gionata 1, Comiti Francesco

More information

Debris flows + sediment transport in torrents. Debris flows and sediment. transport in steep catchments

Debris flows + sediment transport in torrents. Debris flows and sediment. transport in steep catchments International Workshop "Erosion, Transport Debris flows and sediment transport in steep catchments Dieter Rickenmann WSL - Swiss Federal Research Institute, Mountain Hydrology and Torrents, Birmensdorf,

More information

Long-term monitoring of bedload and debris flows in two small catchments of the Eastern Italian Alps

Long-term monitoring of bedload and debris flows in two small catchments of the Eastern Italian Alps Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows 147 Long-term monitoring of bedload and debris flows in two small catchments of the Eastern Italian Alps L. Mao 1, M. Cavalli

More information

Measurement of bed load with the use of hydrophones in mountain torrents

Measurement of bed load with the use of hydrophones in mountain torrents 222 Erosion ami Sediment Transport Measurement in Rivers: Technological and Methodological Advances (Proceedings ol'lhe Oslo Workshop. June 2002). IAHS Publ. 283. 2003. Measurement of bed load with the

More information

Analysis of sediment transport from recorded signals of sediments in a gravel-bed river: role of sediment availability

Analysis of sediment transport from recorded signals of sediments in a gravel-bed river: role of sediment availability Analysis of sediment transport from recorded signals of sediments in a gravel-bed river: role of sediment availability Eric Travaglini 1, Eric Bardou 1, Christophe Ancey 2, Patricio Bohorquez 3 1 CREALP

More information

Magnitude-frequency analysis of bed load data in an Alpine boulder bed stream

Magnitude-frequency analysis of bed load data in an Alpine boulder bed stream WATER RESOURCES RESEARCH, VOL. 40, W07201, doi:10.1029/2003wr002961, 2004 Magnitude-frequency analysis of bed load data in an Alpine boulder bed stream M. A. Lenzi, L. Mao, and F. Comiti Department of

More information

Rainfall intensity duration thresholds for bedload transport initiation in small Alpine watersheds

Rainfall intensity duration thresholds for bedload transport initiation in small Alpine watersheds Nat. Hazards Earth Syst. Sci., 12, 3091 3108, 2012 doi:10.5194/nhess-12-3091-2012 Author(s) 2012. CC Attribution 3.0 License. Natural Hazards and Earth System Sciences Rainfall intensity duration thresholds

More information

SEDIMENT TRANSPORT IN SWISS TORRENTS

SEDIMENT TRANSPORT IN SWISS TORRENTS EARTH SURFACE PROCESSES AND LANDFORMS, VOL 22, 937 951 (1997) SEDIMENT TRANSPORT IN SWISS TORRENTS DIETER RICKENMANN Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

Physical modelling of sediment transport in mountain torrents upstream of open check dams

Physical modelling of sediment transport in mountain torrents upstream of open check dams Physical modelling of sediment transport in mountain torrents upstream of open check dams Authors: Sebastian SCHWINDT Dr. Mário J. FRANCA Check dam in the region of Trent (Italy) Paper Code: EGU2015-6166

More information

Diego Burgos. Geology 394. Advisors: Dr. Prestegaard. Phillip Goodling

Diego Burgos. Geology 394. Advisors: Dr. Prestegaard. Phillip Goodling Sediment Transport into an Urban Tributary Junction Diego Burgos Geology 394 Advisors: Dr. Prestegaard Phillip Goodling 1 Abstract Tributary junctions are an important component of stream morphology and

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

Watershed concepts for community environmental planning

Watershed concepts for community environmental planning Purpose and Objectives Watershed concepts for community environmental planning Dale Bruns, Wilkes University USDA Rural GIS Consortium May 2007 Provide background on basic concepts in watershed, stream,

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

Non-commercial use only

Non-commercial use only Journal of Agricultural Engineering 2012; volume XLIII:e17 An update of the sediment fluxes investigation in the Rio Cordon (Italy) after 25 years of monitoring Lorenzo Picco, 1 Luca Mao, 2 Emanuel Rigon,

More information

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement Surface Water SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. 1. An excessive amount of water flowing downslope

More information

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

Tarbela Dam in Pakistan. Case study of reservoir sedimentation Tarbela Dam in Pakistan. HR Wallingford, Wallingford, UK Published in the proceedings of River Flow 2012, 5-7 September 2012 Abstract Reservoir sedimentation is a main concern in the Tarbela reservoir

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Analysis of coarse sediment connectivity in semiarid river channels

Analysis of coarse sediment connectivity in semiarid river channels Sediment Transfer tlirongh the Fluviai System (Proceedings of a symposium held in Moscow, August 2004). IAHS Publ. 288, 2004 269 Analysis of coarse sediment connectivity in semiarid river channels J. M.

More information

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan Erosion, Debris Mows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209, 1992. 423 The effectiveness of check dams in controlling upstream channel

More information

Swift Creek Sediment Management Action Plan (SCSMAP)

Swift Creek Sediment Management Action Plan (SCSMAP) Swift Creek Sediment Management Action Plan (SCSMAP) PHASE 2 PROJECT PLAN PROPOSAL Whatcom County Public Works Department 322 N. Commercial Street, Suite 210 Bellingham, WA 98225 (360) 676-6692 June 2013

More information

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation.

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation. River Response River Response Sediment Water Wood Confinement Valley slope Channel morphology Bank material Flow obstructions Riparian vegetation climate catchment vegetation hydrological regime channel

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

The relationship between catchment characteristics and the parameters of a conceptual runoff model: a study in the south of Sweden

The relationship between catchment characteristics and the parameters of a conceptual runoff model: a study in the south of Sweden FRIEND: Flow Regimes from International Experimental and Network Data (Proceedings of the Braunschweie _ Conference, October 1993). IAHS Publ. no. 221, 1994. 475 The relationship between catchment characteristics

More information

Monitoring bed load transport using acoustic and magnetic devices

Monitoring bed load transport using acoustic and magnetic devices Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances (Proceedings of the Oslo Workshop. June 2002). IAHS Publ. 283. 2003. 201 Monitoring bed load transport using

More information

Sediment transport and erosion in mountain streams

Sediment transport and erosion in mountain streams Modelling Soil Erosion, Sediment Transport and Closely Related Hydroloeical Processes (Proceedings of a symposium held at Vienna, July 1998). IAHS Publ. no. 249, 1998. Sediment transport and erosion in

More information

Do you think sediment transport is a concern?

Do you think sediment transport is a concern? STREAM RESTORATION FRAMEWORK AND SEDIMENT TRANSPORT BASICS Pete Klingeman 1 What is Your Restoration Project Like? k? Do you think sediment transport is a concern? East Fork Lewis River, WA Tidal creek,

More information

A distributed runoff model for flood prediction in ungauged basins

A distributed runoff model for flood prediction in ungauged basins Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 2 22 November 22). IAHS Publ. 39, 27. 267 A distributed runoff model for flood prediction in ungauged

More information

DEBRIS FLOW MONITORING AND WARNING SYSTEMS: A NEW STUDY SITE IN THE ALPS

DEBRIS FLOW MONITORING AND WARNING SYSTEMS: A NEW STUDY SITE IN THE ALPS DEBRIS FLOW MONITORING AND WARNING SYSTEMS: A NEW STUDY SITE IN THE ALPS Comiti F 1, Macconi P 2, Marchi L 3, Arattano M 4, Borga M 5, Brardinoni F 6, Cavalli M 3, D Agostino V 5, Hellweger S 3, Trevisani

More information

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation DRAINAGE BASINS A drainage basin or watershed is defined from a downstream point, working upstream, to include all of the hillslope & channel areas which drain to that point Each basin is surrounded &

More information

(3) Sediment Movement Classes of sediment transported

(3) Sediment Movement Classes of sediment transported 9/17/15 (3) Sediment Movement Classes of sediment transported Dissolved load Suspended load Important for scouring algae Bedload (5-10% total load) Moves along bed during floods Source of crushing for

More information

Summary. Streams and Drainage Systems

Summary. Streams and Drainage Systems Streams and Drainage Systems Summary Streams are part of the hydrologic cycle and the chief means by which water returns from the land to the sea. They help shape the Earth s surface and transport sediment

More information

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 Geomorphology Geology 450/750 Spring 2004 Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 This exercise is intended to give you experience using field data you collected

More information

Steep flume experiments with large immobile boulders and wide grain size distribution as encountered in alpine torrents

Steep flume experiments with large immobile boulders and wide grain size distribution as encountered in alpine torrents River Flow 2012 Murillo (Ed.) 2012 Taylor & Francis Group, London, ISBN 978-0-415-62129-8 Steep flume experiments with large immobile boulders and wide grain size distribution as encountered in alpine

More information

Determination of the geomorphological instantaneous unit hydrograph using tracer experiments in a headwater basin

Determination of the geomorphological instantaneous unit hydrograph using tracer experiments in a headwater basin Hydrology, Water Resources and Ecology in Headwaters (Proceedings of the HeadWater'98 Conference held at Meran/Merano, Italy, April 1998). 1AHS Publ. no. 248, 1998. 327 Determination of the geomorphological

More information

Land-use impacts on catchment erosion for the Waitetuna catchment, New Zealand

Land-use impacts on catchment erosion for the Waitetuna catchment, New Zealand Sediment Dynamics in Changing Environments (Proceedings of a symposium held in Christchurch, New Zealand, December 2008). IAHS Publ. 325, 2008. 453 Land-use impacts on catchment erosion for the Waitetuna

More information

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water.

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water. Aggradation raising of the streambed by deposition that occurs when the energy of the water flowing through a stream reach is insufficient to transport sediment conveyed from upstream. Alluvium a general

More information

Stream Entrainment, Erosion, Transportation & Deposition

Stream Entrainment, Erosion, Transportation & Deposition Lecture 12 Zone 2 of the Fluvial System, Continued Stream Entrainment, Erosion, Transportation & Deposition Erosion in a Fluvial Landscape Corrosion Chemical Erosion Corrasion Mechanical Weathering Cavitation

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

FLORA: FLood estimation and forecast in complex Orographic areas for Risk mitigation in the Alpine space

FLORA: FLood estimation and forecast in complex Orographic areas for Risk mitigation in the Alpine space Natural Risk Management in a changing climate: Experiences in Adaptation Strategies from some European Projekts Milano - December 14 th, 2011 FLORA: FLood estimation and forecast in complex Orographic

More information

8 Current Issues and Research on Sediment Movement in the River Catchments of Japan

8 Current Issues and Research on Sediment Movement in the River Catchments of Japan 8 Current Issues and Research on Sediment Movement in the River Catchments of Japan YUTAKA ICHIKAWA INTRODUCTION Prediction of sediment movement is one of the challenging tasks in water-related research.

More information

What do you need for a Marathon?

What do you need for a Marathon? What do you need for a Marathon? Water and a snack? What about just a normal day? 1 flush = 3.5 gallons 1 flush = 3.5 gallons 10 minute shower = 20 gal 1 flush = 3.5 gallons 10 minute shower = 20 gal Jeans

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

BZ471, Steam Biology & Ecology Exam

BZ471, Steam Biology & Ecology Exam BZ471, Eam1, p.1 BZ471, Steam Biology & Ecology Eam Name Multiple choice When benthic organisms enter the water column with a regular diel periodicity: a) catastrophic drift b) behavioral drift c) constant

More information

Recent changes of suspended sediment yields in the Upper Yangtze River and its headwater tributaries

Recent changes of suspended sediment yields in the Upper Yangtze River and its headwater tributaries Sediment Dynamics from the Summit to the Sea 297 (Proceedings of a symposium held in New Orleans, Louisiana, USA, 11 14 December 2014) (IAHS Publ. 367, 2014). Recent changes of suspended sediment yields

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

ENGINEERING HYDROLOGY

ENGINEERING HYDROLOGY ENGINEERING HYDROLOGY Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

Appendix O. Sediment Transport Modelling Technical Memorandum

Appendix O. Sediment Transport Modelling Technical Memorandum Appendix O Sediment Transport Modelling Technical Memorandum w w w. b a i r d. c o m Baird o c e a n s engineering l a k e s design r i v e r s science w a t e r s h e d s construction Final Report Don

More information

Basin characteristics

Basin characteristics Basin characteristics From hydrological processes at the point scale to hydrological processes throughout the space continuum: point scale à river basin The watershed characteristics (shape, length, topography,

More information

PRECIPITATION. Assignment 1

PRECIPITATION. Assignment 1 Assignment 1 PRECIPIAION Due: 25.10.2017 Monitoring of precipitation is based on an almost worldwide network of measuring stations (point measurements). However, for the investigation of fundamental questions

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

Suspended sediment yields of rivers in Turkey

Suspended sediment yields of rivers in Turkey Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996). IAHS Publ. no. 236, 1996. 65 Suspended sediment yields of rivers in Turkey FAZLI OZTURK Department

More information

Sediment Traps. CAG Meeting May 21, 2012

Sediment Traps. CAG Meeting May 21, 2012 Sediment Traps CAG Meeting May 21, 2012 Agenda Background Fundamentals of Sediment Transport Sediment Trap Existing Information Next Steps 2 The Site Saginaw River 22 mile river beginning at confluence

More information

Landscape Development

Landscape Development Landscape Development Slopes Dominate Natural Landscapes Created by the interplay of tectonic and igneous activity and gradation Deformation and uplift Volcanic activity Agents of gradation Mass wasting

More information

Environmental Geology Chapter 9 Rivers and Flooding

Environmental Geology Chapter 9 Rivers and Flooding Environmental Geology Chapter 9 Rivers and Flooding Flooding in Pakistan 2010-1600 killed/20000 affected The hydrologic cycle is powered by the Sun The cycle includes evaporation, precipitation, infiltration,

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Flood and Flood Hazards Dr. Patrick Asamoah Sakyi Department of Earth Science, UG, Legon College of Education School of Continuing and Distance Education

More information

Monitoring of suspended sediment concentration in discharge from regulated lakes in glacial deposits

Monitoring of suspended sediment concentration in discharge from regulated lakes in glacial deposits Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, August 1992). IAHS Publ. no. 210, 1992. 269 Monitoring of suspended sediment concentration in discharge

More information

Testing various constitutive equations for debris flow modelling

Testing various constitutive equations for debris flow modelling Hydrology, Water Resources and Ecology in Headwaters (Proceedings of the HeadWater'98 Conference held at Meran/Merano, Italy, April 1998). IAHS Publ. no. 48, 1998. 49 Testing various constitutive equations

More information

Sediment Transport V: Estimating Bed-Material Transport in Gravel-Bed Rivers. UC Berkeley January 2004 Peter Wilcock

Sediment Transport V: Estimating Bed-Material Transport in Gravel-Bed Rivers. UC Berkeley January 2004 Peter Wilcock Sediment Transport V: Estimating Bed-Material Transport in Gravel-Bed Rivers UC Berkeley January 2004 Peter Wilcock Target: sediment rating curve Q s = ƒ(q) Approaches Predict from a flow & transport model

More information

Lectures Hydrology & Fluvial Geomorphology. Gauley River Images. Ancients' (= Biblical) Model of Water (Hydrologic) Cycle

Lectures Hydrology & Fluvial Geomorphology. Gauley River Images. Ancients' (= Biblical) Model of Water (Hydrologic) Cycle Lectures 11-13 13 Hydrology & Fluvial Geomorphology Gauley River Images http://www.youtube.com/watch?v=eulmuyegtz4&feature=related Ancients' (= Biblical) Model of Water (Hydrologic) Cycle Stream Water

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Evaluating extreme flood characteristics of small mountainous basins of the Black Sea coastal area, Northern Caucasus

Evaluating extreme flood characteristics of small mountainous basins of the Black Sea coastal area, Northern Caucasus Proc. IAHS, 7, 161 165, 215 proc-iahs.net/7/161/215/ doi:1.5194/piahs-7-161-215 Author(s) 215. CC Attribution. License. Evaluating extreme flood characteristics of small mountainous basins of the Black

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Mike Rudd (Project Manager), Charley Miller & Chad Krofta Declines in Tahoe s Water Clarity The

More information

Lab 7: Sedimentary Structures

Lab 7: Sedimentary Structures Name: Lab 7: Sedimentary Structures Sedimentary rocks account for a negligibly small fraction of Earth s mass, yet they are commonly encountered because the processes that form them are ubiquitous in the

More information

Squaw Creek. General Information

Squaw Creek. General Information General Information is a tributary to the Salmon River. It enters the north side of the river about 0 miles downstream of North Fork, Idaho. The study reach is about a 30 ft length of stream about 2 miles

More information

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D)

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D) 1. During a heavy rainstorm, soil samples A and B both became saturated with water. However, 10 minutes after the storm ended, the soils appeared as shown below. Which statement best explains the observed

More information

Characteristics of Step-Pool Morphology in the Mountain Streams of Japan

Characteristics of Step-Pool Morphology in the Mountain Streams of Japan Disaster Mitigation of Debris Flows, Slope Failures and Landslides 379 Characteristics of Step-Pool Morphology in the Mountain Streams of Japan Tatsuya Okazaki, 1) Yutaka Gonda, 2) Yohei Nishii 3) and

More information

COUPLING A DISTRIBUTED HYDROLOGICAL MODEL TO REGIONAL CLIMATE MODEL OUTPUT: AN EVALUATION OF EXPERIMENTS FOR THE RHINE BASIN IN EUROPE

COUPLING A DISTRIBUTED HYDROLOGICAL MODEL TO REGIONAL CLIMATE MODEL OUTPUT: AN EVALUATION OF EXPERIMENTS FOR THE RHINE BASIN IN EUROPE P.1 COUPLING A DISTRIBUTED HYDROLOGICAL MODEL TO REGIONAL CLIMATE MODEL OUTPUT: AN EVALUATION OF EXPERIMENTS FOR THE RHINE BASIN IN EUROPE Jan Kleinn*, Christoph Frei, Joachim Gurtz, Pier Luigi Vidale,

More information

L.O: SLOWING STREAMS DEPOSIT (SORT) SEDIMENT HORIZONTALLY BY SIZE.

L.O: SLOWING STREAMS DEPOSIT (SORT) SEDIMENT HORIZONTALLY BY SIZE. L.O: SLOWING STREAMS DEPOSIT (SORT) SEDIMENT HORIZONTALLY BY SIZE. 1. Base your answer to the following question on the profile shown below, which shows the pattern of horizontal sorting produced at a

More information

The contribution of gully erosion to the sediment budget of the River Leira

The contribution of gully erosion to the sediment budget of the River Leira Variability in Stream Erosion and Sediment Transport (Proceedings of the Canberra Symposium, December 1994). IAHS Publ. no. 224, 1994. 307 The contribution of gully erosion to the sediment budget of the

More information

The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology

The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology Available online at www.sciencedirect.com Catena 73 (2008) 249 260 www.elsevier.com/locate/catena The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology Marco Cavalli a,,

More information

Sediment yield estimation from a hydrographic survey: A case study for the Kremasta reservoir, Western Greece

Sediment yield estimation from a hydrographic survey: A case study for the Kremasta reservoir, Western Greece Sediment yield estimation from a hydrographic survey: A case study for the Kremasta reservoir, Western Greece 5 th International Conference Water Resources Management in the Era of Transition,, Athens,

More information

Geog Lecture 19

Geog Lecture 19 Geog 1000 - Lecture 19 Fluvial Geomorphology and River Systems http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 346 355) 1. What is Fluvial Geomorphology? 2. Hydrology and the Water

More information

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle STREAM SYSTEMS Earth Science: Chapter 5 Reading pages 114-124 The Hydrologic Cycle Oceans not filling up Evaporation = precipitation System is balanced Earth s Water and the Hydrologic Cycle Earth s Water

More information

Disentangling Impacts of Climate & Land Use Changes on the Quantity & Quality of River Flows in Southern Ontario

Disentangling Impacts of Climate & Land Use Changes on the Quantity & Quality of River Flows in Southern Ontario Disentangling Impacts of Climate & Land Use Changes on the Quantity & Quality of River Flows in Southern Ontario by Trevor Dickinson & Ramesh Rudra, Water Resources Engineering University of Guelph Acknowledgements

More information

Data assimilation in the MIKE 11 Flood Forecasting system using Kalman filtering

Data assimilation in the MIKE 11 Flood Forecasting system using Kalman filtering Water Resources Systems Hydrological Risk, Management and Development (Proceedings of symposium IlS02b held during IUGG2003 al Sapporo. July 2003). IAHS Publ. no. 281. 2003. 75 Data assimilation in the

More information

Monitoring Headwater Streams for Landscape Response to

Monitoring Headwater Streams for Landscape Response to Monitoring Headwater Streams for Landscape Response to Climate Change Matthew Connor, PhD Connor nvironmental, nc. www.oe-i.com icom Healdsburg, California verview Headwater stream geomorphology Response

More information

Influence of the timing of flood events on sediment yield in the north-western Algeria

Influence of the timing of flood events on sediment yield in the north-western Algeria Calabria, 5-7 Septembre 2 4th International Workshop on Hydrological Extremes Session A : Modelling and forecast of hydrological extreme event Influence of the timing of flood events on sediment yield

More information

(3) Sediment Movement Classes of sediment transported

(3) Sediment Movement Classes of sediment transported (3) Sediment Movement Classes of sediment transported Dissolved load Suspended (and wash load ) Important for scouring algae Bedload (5-10% total load Moves along bed during floods Source of crushing for

More information

The impact of hill land clearance and urbanization on runoff and sediment yield of small catchments in Pulau Pinang, Malaysia

The impact of hill land clearance and urbanization on runoff and sediment yield of small catchments in Pulau Pinang, Malaysia Human Impact on Erosion and Sedimentation (Proceedings of Rabat Symposium S6, April 1997). IAHS Publ. no. 245, 1997 91 The impact of hill land clearance and urbanization on runoff and sediment yield of

More information

Technical Memorandum No

Technical Memorandum No Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.10 Task: Evaluation of Four Watershed Conditions - Sediment To: PRWFPA Staff Working Group Prepared by: Gregory Morris and

More information

FOREST RESEARCH INSTITUTE, DEHRADUN

FOREST RESEARCH INSTITUTE, DEHRADUN PROJECT REPORT DRAINAGE AND REPLENISHMENT STUDY OF MINED AREA OF GANGA SHYAMPUR RIVER HARIDWAR Submitted to UTTARAKHAND FOREST DEVELOPMENT CORPORATION (UFDC) 73, Nehru Road, Deharadun Prepared&Submitted

More information

Fresh Water: Streams, Lakes Groundwater & Wetlands

Fresh Water: Streams, Lakes Groundwater & Wetlands Fresh Water:, Lakes Groundwater & Wetlands Oct 27 Glaciers and Ice Ages Chp 13 Nov 3 Deserts and Wind and EXAM #3 Slope hydrologic cycle P = precip I = precip intercepted by veg ET = evapotranspiration

More information

SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION. By Renee Vandermause & Chun-Yao Yang

SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION. By Renee Vandermause & Chun-Yao Yang SPECIFIC DEGRADATION AND RESERVOIR SEDIMENTATION By Renee Vandermause & Chun-Yao Yang Outline Sediment Degradation - Erosion vs Sediment Yield - Sediment Yield - Methods for estimation - Defining Sediment

More information

C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil?

C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil? 1. Which earth material covering the surface of a landfill would permit the least amount of rainwater to infiltrate the surface? A) silt B) clay C) sand D) pebbles 2. Which graph best represents the relationship

More information

WP 5 Sediment Transport Monitoring. WPL: Helmut Habersack - BOKU, PP11

WP 5 Sediment Transport Monitoring. WPL: Helmut Habersack - BOKU, PP11 WP 5 Sediment Transport Monitoring WPL: Helmut Habersack - BOKU, PP11 WP5 - Content 1. Background 2. Aims and actions 3. Monitoring Methods 4. Study Sites 5. Results and Output 6. Main Achievements/Key

More information

low turbidity high turbidity

low turbidity high turbidity What is Turbidity? Turbidity refers to how clear the water is. The greater the amount of total suspended solids (TSS) in the water, the murkier it appears and the higher the measured turbidity. Excessive

More information

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS Routing MODULE - ROUTING METHODS Routing is the process of find the distribution of flow rate and depth in space and time along a river or storm sewer. Routing is also called Flow routing or flood routing.

More information

4. THE HBV MODEL APPLICATION TO THE KASARI CATCHMENT

4. THE HBV MODEL APPLICATION TO THE KASARI CATCHMENT Application of HBV model to the Kasari River, 1994 Page 1 of 6 Application of the HBV model to the Kasari river for flow modulation of catchments characterised by specific underlying features by R. Vedom,

More information

Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting

Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting Mass Wasting Movement of earth materials downslope, driven by Gravitational Forces. Landslides - general term for rock or soil movement. In U.S., on average, mass wasting causes 1 to 2 billion dollars

More information

27. Running Water I (p ; )

27. Running Water I (p ; ) 27. Running Water I (p. 424-436; 440-444) Hydrosphere How much of the Earth s surface is covered by water? Earth's water is collectively called the and is stored in a number of so-called as follows: 1.

More information

Continuing Education Associated with Maintaining CPESC and CESSWI Certification

Continuing Education Associated with Maintaining CPESC and CESSWI Certification Continuing Education Associated with Maintaining CPESC and CESSWI Certification Module 2: Stormwater Management Principles for Earth Disturbing Activities Sponsors: ODOTs Local Technical Assistance Program

More information

HYDRAULIC MODELING OF SOIL ERORION

HYDRAULIC MODELING OF SOIL ERORION 18-21 August 28, Daejeon, Korea HYDRAULIC MODELING OF SOIL ERORION Liu Qing-quan Institute of Mechanics, Chinese Academy of Sciences, Beijing 18, China. Email: qqliu@imech.ac.cn ABSTRACT: The prediction

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Impact of the Danube River on the groundwater dynamics in the Kozloduy Lowland

Impact of the Danube River on the groundwater dynamics in the Kozloduy Lowland GEOLOGICA BALCANICA, 46 (2), Sofia, Nov. 2017, pp. 33 39. Impact of the Danube River on the groundwater dynamics in the Kozloduy Lowland Peter Gerginov Geological Institute, Bulgarian Academy of Sciences,

More information