Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China

Size: px
Start display at page:

Download "Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China"

Transcription

1 Journal of Earth Science, Vol. 5, No. 4, p , August 014 ISSN X Printed in China DOI: /s x Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China Yujiang Li* 1,, Lianwang Chen 1, Pei Tan 1, Hong Li 3 1. Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing , China. School of the Earth Sciences and Resources, China University of Geosciences, Beijing , China 3. Earthquake Administration of Beijing Municipality, Beijing , China ABSTRACT: The channel flow model was gradually being accepted with the more important multidisciplinary evidences from geology and geophysics, but how the lower crustal flow influenced the surface deformation quantitatively was unknown. Here, we develop a three-dimensional viscoelastic model to explore the mechanical relations between the lower crustal flow and the surface deformation in western Sichuan. Based on numerous tests, our results show that the modeled results fit well with the observed GPS data when the lower crust flows faster than the upper crust about 11 mm/a in the rhombic block, which can be useful to understand the possible mechanism of the surface deformation in western Sichuan. Moreover, taking the Xianshuihe fault as an example, we preliminarily analyze the relation between the active fault and stress field, according to the boundary constraints that deduced from the best model. The results show that the maximum shear stress on the Xianshuihe fault zone is mainly located in the fault terminal, intersections and the bend of the fault geometry, the stress level on the northwestern segment that has the high slip rate is relatively high. Additionally, with the reduction of the Young s modulus in the fault zone, it s conducive to generate the greater strain distribution, hence forming the high stress level. KEY WORDS: western Sichuan region, lower crustal flow, surface deformation, stress distribution, numerical simulation. 0 INTRODUCTION Located at the southeast border of the Tibetan Plateau, the western Sichuan region and its vicinity was a transitional zone between the Tibetan Plateau and the stable South China Block, which formed the special Y -shaped tectonic system. Due to the enormous gravitational potential energy that from the intense collision, the Tibetan Plateau demonstrated the mass extension in the eastward direction (Zhang et al., 003; England and Molnar, 1997; Zhong and Ding, 1996). There were also several faults including the Xianshuihe, Anninghe, Zemuhe and Longmenshan faults, which not only subdivided the western Sichuan and its vicinity into three active blocks such as the rhombic block, Barkam Block and South China Block, but also controlled the local stress division (Cui et al., 006; Wang et al., 1998). Since the 1970s, Molnar and Tapponnier (1975) had proposed the kinematics characteristics and dynamics mechanism of the lateral extrusion from the collision between India and Eurasia Plate, also the modern GPS data in the objective zone display the crustal rotation about the eastern syntaxis of the *Corresponding author: toleeyj@gmail.com China University of Geosciences and Springer-Verlag Berlin Heidelberg 014 Manuscript received September 8, 013. Manuscript accepted January 1, 014. Himalaya (Gan et al., 007; Shen et al., 005; Wang et al., 001). Recently, with the more important multidisciplinary evidences from geology and geophysics, the lower crustal flow is gradually accepted, which plays a crucial role in the surface deformation. Clark and Royden (000) compared the regional topographic gradients surrounding the Tibetan Plateau to the modeled results for flux of a Newtonian fluid through a lower crustal channel of uniform thickness, and found that the large-scale morphology of eastern plateau reflected the fluid flow within the lower crust. Flesch et al. (005) analyzed the GPS data, geologic data and the shear-wave splitting data in Central Asia, and demonstrated that the lower crust was so weak that the upper crustal deformation was decoupled from the motion of the underlying mantle, which made the relative velocity between crust-mantle reach 30 mm/a in Yunnan region, and finally controlled the clockwise rotation pattern in Sichuan- Yunnan region (Royden et al., 1997; Royden, 1996). Bai et al. (010) presented magnetotelluric data that imaged two major zones or channels of high electrical conductivity at a depth of 0 40 km in eastern Himalayan syntaxis. The channels extended horizontally from the Tibetan Plateau into Southwest China. Wang and He (01) employed the numerical methods to explore the relations between the lower crustal channel flow and the tectonic geomorphologic formation around the eastern Tibetan Plateau. The results showed that when the viscosity changed significantly from the eastern Tibetan Plateau to the stable Sichuan Basin, the tectonic geomorphologic features Li, Y. J., Chen, L. W., Tan, P., et al., 014. Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China. Journal of Earth Science, 5(4): doi: /s x

2 Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China 631 could be best explained. Moreover, the previous simulation results also indicated that the drag force of the lower crust on the upper crust was not negligible (Cao et al., 009; Wang et al., 007; Zhu and Shi, 004). However, it remains unclear as how the lower crustal flow may influence the surface deformation. To address these questions, we developed a threedimensional viscoelastic finite element model for western Sichuan and its adjacent region, according to the multidisciplinary data including geology, geophysics and geodesy. We first use this model to investigate the crustal deformation characteristics and local stress pattern in different boundary constraints. Then, referencing the results from the optimization model, and taking the Xianshuihe fault as an example, we preliminarily investigate how the active fault may impact on the local stress pattern. 1 THREE-DIMENSIONAL FINITE ELEMENT MODEL 1.1 Model Description According to the previous research about the active blocks, the Sichuan-Yunnan region can be divided into four first-order blocks, which are the Barkam Block, Sichuan-Yunnan Rhombic Block, western Yunnan Block and South China Block. Moreover, the Sichuan-Yunnan Rhombic Block can be further divided into the western Sichuan and the middle Yunnan blocks due to the northeastern trending Lijiang-Xiaojinhe fault. The finite element model encompasses most of the first-order faults as shown in Fig. 1. In order to minimize the artificial boundary effects, the model domain is determined as follows: from 98.5º to 105.5º in longitude, and 5º to 33º in latitude. The model includes 15-km upper crust, 15-km middle crust with an elastic medium, and the 10-km viscoelastic layer representing the lower crust. All the faults in the model are described as the weaken zone with width less than 3 km, they have a dip angle of 90º, except the Longmenshan and Lijiang- Xiaojinhe faults, the former has the listric shape including a high dip angle of 70º near surface and low angle of 30º at depth, the latter has a dip angle of 60º (Zhang et al., 008; Xu et al., 003). Finally, the finite element model is composed entirely of 0-node viscoelastic elements, which consists of elements with active nodes (Fig. ). 1. Material Properties Wang et al. (00) established the three-dimensional velocity structure of crust and upper mantle in Sichuan-Yunnan region by using the first arrival P and S data of regional earthquakes recorded at local disperse stations. Huang et al. (003) presented a tomographic study on the S wave velocity of China and adjacent regions basing the robust Occam s inversion method. Referencing the relationship between Young s modulus, wave velocity, density and the Poisson s ratio (Wang R et al., 1980), we determine the mean values of Young s modulus after Huang s work. The effective viscosities are followed by Shi and Cao (008). The details are as follows in Table 1. Additionally, we assume the Young modulus in the fault as one third of the ambient medium, and the Poisson ratio as 0.6. Most previous studies related to the visco-elastic analysis used the Maxwell body, the relaxation and creep characteristics of the Maxwell body have shown a similar fluid property in which the stress reduces to zero, or the strain increases infinitely versus time. However, the real crustal rheological characteristics still have the seismogenic ability in the unlimited time, not the fluid material; this body may not match the fact (Li et al., 01). So we choose the Prony model in this article, also this model face the uneasy convergence and need high computational cost, the constitutive equation can be written as Figure 1. Sketch geological model in western Sichuan and its adjacent region. ANHF. Anninghe fault; DLSF. Daliangshan fault; LJF. Lijiang-Xiaojinhe fault; LMSF. Longmenshan fault; LTDWF. Litang-Dewu fault; MBF. Mabian fault; XSHF. Xianshuihe fault; YNXF. Yunongxi fault; ZMHF. Zemuhe fault. Figure. Three-dimensional finite element model.

3 63 Yujiang Li, Lianwang Chen, Pei Tan and Hong Li Table 1 Physical parameters of the finite element model Blocks Layer Young modulus (10 4 MPa) Barkam Western Sichuan Middle Yunnan South China Poisson ratio Density (kg m -3 ) Viscosity (Pa s) Upper crust Middle crust Lower crust Upper crust Middle crust Lower crust Upper crust Middle crust Lower crust Upper crust Middle crust Lower crust t de t dδ Gt ( ) d I Kt ( ) d 0 d 0 d where σ=cauchy stress, e=deviatoric part of the strain, Δ=volumetric part of the strain, G(t)=shear relaxation kernel function, K(t)=bulk relaxation kernel function, t=current time, τ=past time, and I=unit tensor. For the elements solid 186, the kernel functions are represented in terms of Prony series, which assumes that n G t G= G Gi exp - G i=1 i nk t K= K Ki exp - K i=1 i In respect, G, G i =shear elastic moduli; K, K i =bulk elastic moduli; τ i G, τ i K =relaxation times for each Prony component; and n G, n K = number of Prony unit 1.3 Boundary Conditions and Loads The GPS observation is widely used which reveals the movement of tectonic deformation. Here, we employ the data of the two periods in 004 and 007, through the cubic spline interpolation, the annual velocities are determined, as shown in Fig. 3. Then, with the computation time into consideration, the boundary conditions are determined in the end. The upper surface is fully deformable, the bottom of the model domain is free horizontally but fixed vertically, as shown in Table in detail. Table Model Definition of the boundary conditions during the numerical tests Boundary conditions The lower crust flow Constitutive relation 1 Uniform in vertical No Prony series Uniform in vertical Yes Prony series 3ºN 6º 8º 30º 10 mm/a 98º 100º 10º Kunming Chengdu 104ºE Figure 3. Annual velocity of the finite element model. All modeling presented here was conducted using the ANSYS finite element program. The ANSYS employs the Newton-Raphson approach to solve nonlinear problems. In this method a load is subdivided into a series of increments applied over several steps. Before each solution this method evaluates the out of balance load vector. If the convergence criteria is not satisfied, the load vector is reevaluated, the stiffness matrix is updated, and a new solution is obtained until the problem converges.

4 Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China RESULTS In this article, we adopt 100 years as one sub-step, boundary constraints increase with time step, and we calculate 10 sub-steps in all. Since the total computation time is shorter than the relaxation time of the upper and middle crust, and longer than that of the lower crust, so the model in fact describe the motion and deformation of elastic upper and middle crust which underling by the viscoelastic lower crust. Displacement Fields In order to investigate the influence of the lower crust flow of the rhombic block on the deformation, we calculated the displacement in the two models. The Fig. 4 depicts the crustal motion image and comparison between the observed and modeled results in two different models. The two models unanimously show that the crustal deformation rotates about the eastern Himalaya syntaxis, but also the differences between the modeled and GPS observations in different subdivisions, as shown in Fig. 5 in detail. In the Model 1, the special geological background of the region is ignored, so the difference between them is conspicuous, the error statistics show that for the Barkam Block, the mean misfits is 0.91 mm/a in east-west direction and 0.78 mm/a in north-south direction; for the western Sichuan Block, the mean is.01 mm/a in east-west direction and 3.94 mm/a in north-south direction; for the middle Yunnan Block, the mean is 1.57 mm/a in east-west direction and 3.80 mm/a in north-south direction; and for the South China Block, the mean is 0.74 mm/a in east-west direction and 1.19 mm/a in north-south direction; also the orientation mean error reaches 7º. But in the Model, the lower crust of the rhombic block is faster than the upper crust about 11 mm/a, then the modeled and observed fit well than the Model 1. For the Barkam Block, the mean misfits is 0.49 mm/a in east-west direction and 0.40 mm/a in north-south direction; for the western Sichuan Block, the mean is 0.53 mm/a in east-west direction and 0.78 mm/a in 633 north-south direction; for the middle Yunnan Block, the mean is 0.58 mm/a in east-west direction and 0.83 mm/a in north-south direction; and for the South China Block, the mean is 0.36 mm/a in east-west direction and 0.68 mm/a in north-south direction; the orientation mean error reaches 3º. To qualify the agreement between the modeled and observed data, we further calculate the chi-square merit function χ.1 i i i i 1 N ( X Mod X GPS ) (YMod YGPS ) N i 1 ( X i ) ( Y i ) GPS GPS In respect, XModi, YModi and XGPSi, YGPSi are two velocity components of the modeled and GPS data along the east and north direction. ΔXGPSi and ΔYGPSi are the GPS data error, N is the number of GPS data. The χ test is a statistical approach that represents the deviation degree between the actual observation and the theoretical value, the small value explains the good accordance between them. From Fig. 5 we can conclude that, the modeled and observed data fit well when the lower crust flow is included, especially in the rhombic block.. Stress Fields From the analysis above, we can conclude that the modeled and the observed correspond well when the lower crust flow faster than the upper crust about 11 mm/a. In order to further investigate the influence of lower crust flow on the stress pattern, we compare the modeled crust stress field in Model with the previous results. As shown in Fig. 6, the maximum principal compressional stress presents the near EW or NWW direction in Barkam and northwestern Sichuan region; it rotates the SEE direction in middle Yunnan region; and finally the NNW or near NS direction in north Yunnan region. In general, the stress trend rotates from the near EW direction Figure 4. Comparison between the modeled and observed results in two models.

5 634 Yujiang Li, Lianwang Chen, Pei Tan and Hong Li in the north region to the NWW-SEE in the central and NNW-SSE or near NS direction in the south region. Briefly, the characteristics are coincident well with the previous researches (Cui et al., 006; Xu et al., 1987; Kan et al., 1977)..3 Active Fault and Stress Field in the Xianshuihe Fault Zone The Xianshuihe fault was a highly active left-lateral strike-slip fault in the late quaternary, which was frequently prone to major earthquakes that had ruptured various segments of this fault in the past (Wen et al., 008; Allen et al., 1991). Consequently, we employ the three dimensional precise finite element model of Xianhuihe fault to explore the relation between stress field and active fault, according to the results in Model as the boundary condition. Moreover, we preliminary analysis the stress pattern in different Young modulus of the fault gauge. In previous research, the Young modulus in the fault gauge was commonly regarded as the ratio of 1/3 or 1/10 to the surrounding rock (Chen et al., 008; Xu and Chao, 1997). In order to explore how the Young modulus change will influence the stress pattern, we discuss the maximum shear stress change in different ratios of 1/, 1/5 and 1/10. From Figs. 7a to 7c, we can demonstrate that the high stress is mainly located in the fault terminal, intersections and the bend of the fault geometry. Also the stress shows the increase tendency as the ratio decreases. That is to say, with the reduction of the Young s modulus in the fault zone, it s conducive to generate the greater strain distribution, hence forming the high stress level. Moreover, in order to depict the relative size among these high stress regions, we assume the highest as one, and the relations among them is clearly shown in Fig. 7d, the highest stress pattern is independent of the ratio change. 3 CONCLUSIONS AND DISCUSSIONS The lower crustal flow is gradually accepted, and it plays a crucial role in the surface deformation in the western Sichuan. So in this study, we employ a three dimensional finite element model to explore how the lower crustal flow may influence on it. Then, taking the Xianshuihe fault as an example, we further Mean misfit of velocity in E-W direction (mm/a) Model 1 Model Mean misfit of velocity in N-S direction (mm/a) 0 BB WSB MYB SCB BB WSB MYB SCB Model 1 Model 10 5 Mean misfit of orientation angle (º) Model 1 Model Chi-square test Model 1 Model 0 0 BB WSB MYB SCB BB WSB MYB SCB Figure 5. Comparison between the modeled velocity and the GPS observation in two models. BB. Barkam Block; WSB. western Sichuan Block; MYB. Middle Yunnan Block; SCB. South China Block.

6 Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China Figure 6. Characteristics of the maximum principal stress after Model. 635 investigate how the active fault may impact on the local stress pattern, according to the results from the optimization model as the boundary constraints. The results showed that the dynamic model in the western Sichuan and its adjacent region may be controlled by the special dynamics conditions, also when the lower crust flows faster than the upper crust about 11 mm/a in the rhombic block, the modeled results fit well with the GPS observation data. Wang et al. (007) employed the finite element model to discuss the influence deduced from the lower crustal flow on the upper crust deformation, the results showed that the modeled fit well with the observed data when the lower crust flow fast than the upper crust about 10 mm/a, and the viscosity in the lower crust was assumed to 1018 Pa s. Nonetheless, the vertical heterogeneity was ignored in the model. However, we include the horizontal and vertical heterogeneity, and the viscosity was assumed to 1019 Pa s, which is consistent with the previous conclusion that the lower crust has a low viscosity of Pa s (Shi and Cao, 008). The maximum shear stress on the Xianshuihe fault is mainly located in the fault terminal, intersections and the bend of the fault geometry. Moreover, with the reduction of the Young s modulus in the fault zone, it s conducive to generate Figure 7. Stress distribution in different ratio and the relative size among them.

7 636 Yujiang Li, Lianwang Chen, Pei Tan and Hong Li the greater strain distribution, hence forming the high stress level. The relative high stress regions are mainly concentrating on the segments, which have the straight strike and simple structure, especially in these regions following the Qianning, Luhuo and Ganzi. In the numerical methods, determination of the boundary condition is a crucial issue. Commonly, the uniform model is adopted, but in fact, the boundary constraint is unequal, especially in the vertical direction. Here, we propose a new way to determine the local boundary constraint, and apply it to the Xianshuihe fault to explore the relation between the active fault and the stress pattern. Previously, the mechanical parameters in the fault gauge are commonly given by experience. In order to explore how these change will influence the stress pattern, we discuss the maximum shear stress change in different Young s modulus. The results demonstrate that the stress shows the increase tendency as the Young s modulus decreases. That is to say, with the reduction of the Young s modulus in the fault zone, it s conducive to generate the greater strain distribution, hence forming the high stress level. However, the highest stress pattern is independent of the ratio between the fault gauge and surrounding rock. Meanwhile, it should be noted that we treat the faults as the weaken zone, so the frictional mechanism is ignored. In the following, we will treat the fault as Coulomb-type frictional surface to explore the relation between fault geometry and stress distribution, and make a comparison between them. Additionally, the viscosity is also considered as the key factor that influences the deformation, so we will discuss the differences in different viscosities of the lower crust. ACKNOWLEDGMENTS We sincerely thank Profs. Z X Huang and Y Z Lu for proving the wave velocity data and instructive comments and suggestions. Most of the figures are prepared with the open source software Generic Mapping Tools (Wessel and Smith, 1998). This study was supported by the Basic Research Fund from the Institute of Crustal Dynamics, China Earthquake Administration (Nos. ZDJ01-09, ZDJ010-1) and the National Key Technology Research and Development Program (No. 01BAK19B03). REFERENCES CITED Allen, C. R., Luo, Z. L., Qian, H., et al., Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103: Bai, D. H., Martyn, J. U., Max, A. M., et al., 010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3: doi: /ngeo830 Cao, J. L., Shi, Y. L., Zhang, H., et al., 009. Numerical Simulation of GPS Observed Clockwise Rotation around the Eastern Himalayan Syntax in the Tibetan Plateau. Chinese Science Bulletin, 54(): doi: /s (in Chinese) Chen, L. W., Zhang, P. Z., Lu, Y. Z., et al., 008. Numerical Simulation of Loading/Unloading Effect on Coulomb Failure Stress among Strong Earthquakes in Sichuan- Yunnan Area. Chinese Journal of Geophysics, 51(5): (in Chinese with English Abstract) Clark, M. K., Royden, L. H., 000. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 8(8): doi: / Cui, X. F., Xie, F. R., Zhang, H. Y., 006. Recent Tectonic Stress Field Zoning in Sichuan-Yunnan Region and Its Dynamic Interest. Acta Seismologica Sinica, 8(5): (in Chinese with English Abstract) England, P., Molnar, P., Active Deformation of Asia: From Kinematics to Dynamics. Science, 78: doi:10.116/science Flesch, L. M., Holt, W. E., Silver, P. G., et al., 005. Constraining the Extent of Crust-Mantle Coupling in Central Asia Using GPS, Geologic, and Shear Wave Splitting Data. Earth and Planetary Science Letters, 38: doi: /j.epsl Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 007. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research, 11: B doi:10.109/005jb00410 Huang, Z. X., Su, W., Peng, Y. J., et al., 003. Rayleigh Wave Tomography of China and Adjacent Regions. Journal of Geophysical Research, 108: B. doi:10.109/001jb Kan, R. J., Zhang, S. C., Yan, F. T., et al., Present Tectonic Stress Field and Its Relation to the Characteristics of Recent Tectonic Activity in Southwestern China. Acta Geophsica Sinica, 0(): (in Chinese with English Abstract) Li, Y. J., Chen, L. W., Lu, Y. Z., 01. Numerical Simulation on the Influences of Wenchuan Earthquake on the Surrounding Faults. Earthq. Sci., 5: doi: /s Molnar, P., Tapponnier, P., Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189: Royden, L. H., Coupling and Decoupling of Crust and Mantle in Convergent Orogens: Implication for Strain Partitioning in the Crust. Journal of Geophysical Research, 101(B8): Royden, L. H., Burchfiel, B. C., King, R. E., et al., Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 76: doi:10.116/science Shen, Z. K., Lu, J., Wang, M., 005. Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B doi:10.109/004jb00341 Shi, Y. L., Cao, J. L., 008. Effective Viscosity of China Continental Lithosphere. Earth Science Frontiers, 15(3): 8 95 (in Chinese with English Abstract) Wang, C. Y., Mooney, W. D., Wang, X. L., et al., 00. Study on 3-D Velocity Structure of Crust and Upper Mantle in Sichuan-Yunnan Region, China. Acta Seismologica Sinica, 4(1): 1 16 (in Chinese with English Abstract) Wang, E., Burchfiel, B. C., Royden, L. H., et al., Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault of Southwestern Sichuan and Central Yunnan, China.

8 Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China 637 Geol. Soc. Amer. Spec. Paper, 37: Wang, H., Cao, J. L., Zhang, H., et al., 007. Numerical Simulation of the Influence of Lower Crustal Flow on the Deformation of the Sichuan-Yunnan Region. Acta Seismologica Sinica, 9(6): (in Chinese with English Abstract) Wang, Q., Zhang, P. Z., Freymuller, J. T., et al., 001. Present- Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 94(554): doi:10.116/science Wang, R., He, G. Q., Yin, Y. Q., et al., A Mathematical Simulation for the Pattern of Seismic Transference in North China. Acta Seismologica Sinica, (1): 3 4 (in Chinese with English Abstract) Wang, X. F., He, J. K., 01. Channel Flow of the Lower Crust and Its Relations to Large-Scale Tectonic Geomorphology of the Eastern Tibetan Plateau. Science China Earth Sciences, 4(4): doi: /s Wen, X. Z., Ma, S. L., Xu, X. W., et al., 008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1 ): doi: /j.pepi Wessel, P., Smith, W., New Version of the Generic Mapping Tools (GMT) Version 3.0 Released. EOS Trans., AGU, 76(33): Xu, C. J., Chao, D. B., Division for Finite Element Grid in Faulted Zone. Crustal Deformation and Earthquake, 17(3): (in Chinese with English Abstract) Xu, X. W., Wen, X. Z., Zheng, R. Z., et al., 003. Pattern of Latest Tectonic Motion and Its Dynamics for Active Blocks in Sichuan-Yunnan Region, China. Science in China Series D: Earth Sciences, 46(Suppl.): doi: /03dz0017 Xu, Z. H., Wang, S. Y., Huang, Y. R., et al., Direction of Mean Stress Axes in Southwestern China Deduced from Microearthquake Data. Acta Geophysica Sinica, 30(5): (in Chinese with English Abstract) Zhang, P. Z., Deng, Q. D., Zhang, G. M., et al., 003. Active Tectonic Blocks and Strong Earthquakes in the Continent of China. Science in China Series D: Earth Sciences, 46(Suppl.): doi: /03dz000 Zhang, P. Z., Xu, X. W., Wen, X. Z., et al., 008. Slip Rates and Recurrence Intervals of the Longmen Shan Active Fault Zone, and Tectonic Implications for the Mechanism of the May 1 Wenchuan Earthquake, 008, Sichuan, China. Chinese Journal of Geophysics, 51(4): (in Chinese with English Abstract) Zhong, D. L., Ding, L., Uplift of the Tibetan Plateau and Its Mechanism Discussion. Science in China Series D: Earth Sciences, 6(4): (in Chinese) Zhu, S. B., Shi, Y. L., 004. Genetic Algorithm-Finite Element Inversion of Drag Forces Exerted by the Lower Crust in the Sichuan-Yunnan Area. Chinese Journal of Geophysics, 47(): 3 39 (in Chinese with English Abstract)

Specific gravity field and deep crustal structure of the Himalayas east structural knot

Specific gravity field and deep crustal structure of the Himalayas east structural knot 49 4 2006 7 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 4 Jul., 2006,,.., 2006, 49 (4) :1045 1052 Teng J W, Wang Q S, Wang GJ, et al. Specific gravity field and deep crustal structure of the Himalayas east

More information

SCIENCE CHINA Earth Sciences. Influence of fault geometry and fault interaction on strain partitioning within western Sichuan and its adjacent region

SCIENCE CHINA Earth Sciences. Influence of fault geometry and fault interaction on strain partitioning within western Sichuan and its adjacent region SCIENCE CHINA Earth Sciences RESEARCH PAPER January 2010 Vol.53 No.1: 1 15 doi: 10.1007/s11430-010-0062-7 Influence of fault geometry and fault interaction on strain partitioning within western Sichuan

More information

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02304, doi: /2009gl041835, 2010

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02304, doi: /2009gl041835, 2010 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2009gl041835, 2010 Seismic structure of the Longmen Shan region from S wave tomography and its relationship with the Wenchuan

More information

SCIENCE CHINA Earth Sciences

SCIENCE CHINA Earth Sciences SCIENCE CHINA Earth Sciences RESEARCH PAPER September 2011 Vol.54 No.9: 1386 1393 doi: 10.1007/s11430-011-4177-2 Crustal P-wave velocity structure of the Longmenshan region and its tectonic implications

More information

DEFORMATION KINEMATICS OF TIBETAN PLATEAU DETERMINED FROM GPS OBSERVATIONS

DEFORMATION KINEMATICS OF TIBETAN PLATEAU DETERMINED FROM GPS OBSERVATIONS DEFORMATION KINEMATICS OF TIBETAN PLATEAU DETERMINED FROM GPS OBSERVATIONS Jinwei Ren Institute of Geology, China Seismological Bureau, Beijing 100029 China Tel: (10)62009095; Fax: (10)62009003; email:

More information

A viscoelastic model for time-dependent simulating analysis of the Wenchuan earthquake fault Cheng Hua, Jin Cheng and Qi-fu Chen

A viscoelastic model for time-dependent simulating analysis of the Wenchuan earthquake fault Cheng Hua, Jin Cheng and Qi-fu Chen Journal of Math-for-Industry, Vol. 4 (2012A-10), pp. 79 83 A viscoelastic model for time-dependent simulating analysis of the Wenchuan earthquake fault Cheng Hua, Jin Cheng and Qi-fu Chen Received on February

More information

Tomographic imaging of P wave velocity structure beneath the region around Beijing

Tomographic imaging of P wave velocity structure beneath the region around Beijing 403 Doi: 10.1007/s11589-009-0403-9 Tomographic imaging of P wave velocity structure beneath the region around Beijing Zhifeng Ding Xiaofeng Zhou Yan Wu Guiyin Li and Hong Zhang Institute of Geophysics,

More information

Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics

Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics Earthq Sci (2011)24: 107 113 107 doi:10.1007/s11589-011-0774-6 Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics Bo Zhao Yutao Shi and Yuan Gao Institute

More information

Is the deformation rate of the Longmenshan fault zone really small? Insight from seismic data at the two-decade time scale

Is the deformation rate of the Longmenshan fault zone really small? Insight from seismic data at the two-decade time scale LETTER Earth Planets Space, 62, 887 891, 2010 Is the deformation rate of the Longmenshan fault zone really small? Insight from seismic data at the two-decade time scale Yizhe Zhao 1, Zhongliang Wu 1,2,

More information

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA 3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA Li Xiaofan MEE09177 Supervisor: Bunichiro Shibazaki ABSTRACT We perform 3D modeling of earthquake generation of the Xianshuihe

More information

Modeling of co- and post-seismic surface deformation and gravity changes of M W 6.9 Yushu, Qinghai, earthquake

Modeling of co- and post-seismic surface deformation and gravity changes of M W 6.9 Yushu, Qinghai, earthquake Earthq Sci (2011)24: 177 183 177 doi:10.1007/s11589-010-0782-y Modeling of co- and post-seismic surface deformation and gravity changes of M W 6.9 Yushu, Qinghai, earthquake Chengli Liu 1,2 Bin Shan 1,2

More information

Contemporary tectonic stress field in China

Contemporary tectonic stress field in China Earthq Sci (2010)23: 377 386 377 Doi: 10.1007/s11589-010-0735-5 Contemporary tectonic stress field in China Yongge Wan 1,2, 1 Institute of Disaster-Prevention Science and Technology, Yanjiao, Sanhe 065201,

More information

Study on the feature of surface rupture zone of the west of Kunlunshan pass earthquake ( M S 811) with high spatial resolution satellite images

Study on the feature of surface rupture zone of the west of Kunlunshan pass earthquake ( M S 811) with high spatial resolution satellite images 48 2 2005 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 48, No. 2 Mar., 2005,,. M S 811.,2005,48 (2) :321 326 Shan X J, Li J H, Ma C. Study on the feature of surface rupture zone of the West of Kunlunshan Pass

More information

Response Analysis of a Buried Pipeline Considering the

Response Analysis of a Buried Pipeline Considering the Response Analysis of a Buried Pipeline Considering the process Process of fault Fault movement Movement A.W. Liu, X.H. Jia Institute of Geophysics, CEA, China SUMMARY: For the seismic design of a pipeline

More information

Research on the Spatial Distribution Characteristics of b-value in Southwest Yunnan

Research on the Spatial Distribution Characteristics of b-value in Southwest Yunnan International Symposium on Computers & Informatics (ISCI 2015) Research on the Spatial Distribution Characteristics of b-value in Southwest Yunnan XIE ZHUOJUAN1, a, LU YUEJUN1, b 1Institute of Crustal

More information

The Quaternary Dextral Shearing in the Southeastern. Tibetan Plateau

The Quaternary Dextral Shearing in the Southeastern. Tibetan Plateau The Quaternary Dextral Shearing in the Southeastern Tibetan Plateau SHEN Jun Wang Yipeng REN Jinwei CAO Zhongquan Institute of Geology of China Seismological Bureau, Beijing 100029, China Tel:8610-62009121,

More information

Summary so far. Geological structures Earthquakes and their mechanisms Continuous versus block-like behavior Link with dynamics?

Summary so far. Geological structures Earthquakes and their mechanisms Continuous versus block-like behavior Link with dynamics? Summary so far Geodetic measurements velocities velocity gradient tensor (spatial derivatives of velocity) Velocity gradient tensor = strain rate (sym.) + rotation rate (antisym.) Strain rate tensor can

More information

Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake

Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake Judith Hubbard 1,* & John H. Shaw 1 1 Department of Earth and Planetary Sciences, Harvard University, 20 Oxford

More information

Mantle anisotropy across the southwestern boundary of the Ordos block, North China

Mantle anisotropy across the southwestern boundary of the Ordos block, North China Earthq Sci (200)23: 549 553 549 Doi: 0.007/s589-00-0754-2 Mantle anisotropy across the southwestern boundary of the Ordos block, North China, Yongcai Tang Yongshun John Chen Yuanyuan V. Fu 2 Haiyang Wang

More information

Three-dimensional numerical simulation on the coseismic deformation of the 2008 M S 8.0 Wenchuan earthquake in China

Three-dimensional numerical simulation on the coseismic deformation of the 2008 M S 8.0 Wenchuan earthquake in China Earthq Sci (2010)23: 191 200 191 Doi: 10.1007/s11589-009-0091-5 Three-dimensional numerical simulation on the coseismic deformation of the 2008 M S 8.0 Wenchuan earthquake in China Feng Li and Jinshui

More information

SCIENCE CHINA Earth Sciences

SCIENCE CHINA Earth Sciences SCIENCE CHINA Earth Sciences RESEARCH PAPER September 2014 Vol.57 No.9: 2036 2044 doi: 10.1007/s11430-014-4827-2 A rupture blank zone in middle south part of Longmenshan Faults: Effect after Lushan M s

More information

The Kangding earthquake swarm of November, 2014

The Kangding earthquake swarm of November, 2014 Earthq Sci (2015) 28(3):197 207 DOI 10.1007/s11589-015-0-2 RESEARCH PAPER The Kangding earthquake swarm of November, 2014 Wen Yang. Jia Cheng. Jie Liu. Xuemei Zhang Received: 9 April 2015 / Accepted: 19

More information

Effects of fault movement and material properties on deformation and stress fields of Tibetan Plateau

Effects of fault movement and material properties on deformation and stress fields of Tibetan Plateau Earthq Sci (2011)24: 185 197 185 doi:10.1007/s11589-011-0783-5 Effects of fault movement and material properties on deformation and stress fields of Tibetan Plateau Yong Zheng 1, Xiong Xiong 1 Yong Chen

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies P AND S WAVE VELOCITY STRUCTURE OF THE CRUST AND UPPER MANTLE UNDER CHINA AND SURROUNDING AREAS FROM BODY AND SURFACE WAVE TOMOGRAPHY M. Nafi Toksöz, Robert D. Van der Hilst, Youshun Sun, and Chang Li

More information

Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis II. Crustal and upper-mantle structure

Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis II. Crustal and upper-mantle structure Geophys. J. Int. (2008) doi: 10.1111/j.1365-246X.2007.03696.x Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis II. Crustal and upper-mantle structure Huajian

More information

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No.

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No. A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA Wenjie Jiao, 1 Winston Chan, 1 and Chunyong Wang 2 Multimax Inc., 1 Institute of Geophysics, China Seismological Bureau 2 Sponsored by Defense

More information

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. In the process zone, stress amplitudes are poorly determined and much

More information

Songlin Li 1, Xiaoling Lai 1 Zhixiang Yao 2 and Qing Yang 1. 1 Introduction

Songlin Li 1, Xiaoling Lai 1 Zhixiang Yao 2 and Qing Yang 1. 1 Introduction Earthq Sci (2009)22: 417 424 417 Doi: 10.1007/s11589-009-0417-3 Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone

More information

The Application of GNSS to Monitoring Fault Deformation

The Application of GNSS to Monitoring Fault Deformation The Application of GNSS to Monitoring Fault Deformation Shengtao FENG, Wanju BO, Jianfeng SU, Haitao ZHOU, Xuesong DU, Wenni WAN, Tianhai LIU, China Key words: GNSS, fault deformation, baseline, crustal

More information

The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications

The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications Earthq Sci (2014) 27(1):15 25 DOI 10.1007/s11589-013-0045-9 RESEARCH PAPER The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications Jianshe Lei Guangwei Zhang Furen

More information

Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet

Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet www.nature.com/scientificreports OPEN received: 23 April 2015 accepted: 16 October 2015 Published: 09 November 2015 Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet Cédric

More information

Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography

Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jb007142, 2010 Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography Huajian Yao, 1,2 Robert D. van

More information

Characteristics of seismic activity before the M S 8.0 Wenchuan earthquake

Characteristics of seismic activity before the M S 8.0 Wenchuan earthquake Earthq Sci (2009)22: 519 529 519 Doi: 10.1007/s11589-009-0519-4 Characteristics of seismic activity before the M S 8.0 Wenchuan earthquake Yan Xue 1,2, Jie Liu 2 Shirong Mei 3 and Zhiping Song 4 1 Institute

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary online material for Bai et al., (2). EHS3D MT data collection Broadband magnetotelluric (MT) data were recorded on profiles P, P2 and P4 in the frequency band -.5

More information

SCIENCE CHINA Earth Sciences. Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected by GPS observations

SCIENCE CHINA Earth Sciences. Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected by GPS observations SCIENCE CHINA Earth Sciences RESEARCH PAPER September 2015 Vol.58 No.9: 1592 1601 doi: 10.1007/s11430-015-5128-0 Preseismic deformation in the seismogenic zone of the Lushan M S 7.0 earthquake detected

More information

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Surface changes caused by erosion and sedimentation were treated by solving: (2) GSA DATA REPOSITORY 214279 GUY SIMPSON Model with dynamic faulting and surface processes The model used for the simulations reported in Figures 1-3 of the main text is based on two dimensional (plane strain)

More information

Tidal triggering of earthquakes in Longmen Shan region: the relation to the fold belt and basin structures

Tidal triggering of earthquakes in Longmen Shan region: the relation to the fold belt and basin structures LETTER Earth Planets Space, 64, 771 776, 2012 Tidal triggering of earthquakes in Longmen Shan region: the relation to the fold belt and basin structures Qiang Li and Gui-Ming Xu Research Center for Earthquake

More information

Research Article Seismic Structure of Local Crustal Earthquakes beneath the Zipingpu Reservoir of Longmenshan Fault Zone

Research Article Seismic Structure of Local Crustal Earthquakes beneath the Zipingpu Reservoir of Longmenshan Fault Zone International Geophysics Volume 11, Article ID 773, pages doi:.11/11/773 Research Article Seismic Structure of Local Crustal Earthquakes beneath the Zipingpu Reservoir of Longmenshan Fault Zone Haiou Li,

More information

Link between the Great Faults of Asia, con7nental plate tectonics and con7nental subduc7on Anne Replumaz

Link between the Great Faults of Asia, con7nental plate tectonics and con7nental subduc7on Anne Replumaz Great Earthquakes: Observa1ons and modeling Link between the Great Faults of Asia, con7nental plate tectonics and con7nental subduc7on Anne Replumaz 1 Great Earthquakes, Great Faults cu

More information

New Progress of SinoProbe:

New Progress of SinoProbe: New Progress of SinoProbe: Deep Exploration in China, 2008-2012 Shuwen DONG, Tingdong LI, et al. Chinese Academy of Geological Sciences Beijing 100037 China Background of Deep Exploration in World USA

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo739 Supplementary Information to variability and distributed deformation in the Marmara Sea fault system Tobias Hergert 1 and Oliver Heidbach 1,* 1 Geophysical

More information

A GROUND-TRUTH DATABASE FOR CENTRAL CHINA. W. Winston Chan and Xiaoxi Ni Multimax, Inc.

A GROUND-TRUTH DATABASE FOR CENTRAL CHINA. W. Winston Chan and Xiaoxi Ni Multimax, Inc. A GROUND-TRUTH DATABASE FOR CENTRAL CHINA W. Winston Chan and Xiaoxi Ni Multimax, Inc. Sponsored by U.S. Department of Energy Office of Nonproliferation Research and Engineering Office of Defense Nuclear

More information

Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements

Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2005jb004120, 2007 Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements Weijun Gan, 1,2

More information

STATE KEY LABORATORY OF EARTHQUAKE DYNAMICS

STATE KEY LABORATORY OF EARTHQUAKE DYNAMICS STATE KEY LABORATORY OF EARTHQUAKE DYNAMICS Workshop on Tectonic Deformation and Earthquake Mechanism May 9-10, 2018, Meeting Hall (3 rd floor) at Institute of Geology, CEA Wednesday May 9 Morning Chair:

More information

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a DETAILS ABOUT THE TECHNIQUE We use a global mantle convection model (Bunge et al., 1997) in conjunction with a global model of the lithosphere (Kong and Bird, 1995) to compute plate motions consistent

More information

Crustal structure in Xiaojiang fault zone and its vicinity

Crustal structure in Xiaojiang fault zone and its vicinity Earthq Sci (2009)22: 347 356 347 Doi: 10.1007/s11589-009-0347-0 Crustal structure in Xiaojiang fault zone and its vicinity 1, 1 1 Chunyong Wang Hai Lou Xili Wang 2 2 2 Jiazheng Qin Runhai Yang and Jinming

More information

EXAMINATION ON CONSECUTIVE RUPTURING OF TWO CLOSE FAULTS BY DYNAMIC SIMULATION

EXAMINATION ON CONSECUTIVE RUPTURING OF TWO CLOSE FAULTS BY DYNAMIC SIMULATION EXAMINATION ON CONSECUTIVE RUPTURING OF TWO CLOSE FAULTS BY DYNAMIC SIMULATION M. Muto 1, K. Dan 1, H. Torita 1, Y. Ohashi 1, and Y. Kase 2 1 Ohsaki Research Institute, Inc., Tokyo, Japan 2 National Institute

More information

Lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography: Recent advances and perspectives

Lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography: Recent advances and perspectives Earthq Sci (2012)25: 371 383 371 doi:10.1007/s11589-012-0863-1 Lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography: Recent advances and perspectives

More information

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Project Representative Mitsuhiro Matsu'ura Graduate School of Science, The University of Tokyo Authors Mitsuhiro

More information

Asish Karmakar 1, Sanjay Sen 2 1 (Corresponding author, Assistant Teacher, Udairampur Pallisree Sikshayatan (H.S.), Udairampur, P.O.

Asish Karmakar 1, Sanjay Sen 2 1 (Corresponding author, Assistant Teacher, Udairampur Pallisree Sikshayatan (H.S.), Udairampur, P.O. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 3 99, p-issn: 3 98.Volume 4, Issue 5 Ver. III (Sep. - Oct. 6), PP 39-58 www.iosrjournals.org A Sudden Movement across an Inclined Surface

More information

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building 1) A(n) fault has little or no vertical movements of the two blocks. A) stick slip B) oblique slip C) strike slip D) dip slip 2) In a(n) fault,

More information

Ground motion attenuation relations of small and moderate earthquakes in Sichuan region

Ground motion attenuation relations of small and moderate earthquakes in Sichuan region Earthq Sci (2009)22: 277 282 277 Doi: 10.1007/s11589-009-0277-x Ground motion attenuation relations of small and moderate earthquakes in Sichuan region Lanchi Kang 1, and Xing Jin 1,2 1 Fuzhou University,

More information

D DAVID PUBLISHING. Deformation of Mild Steel Plate with Linear Cracks due to Horizontal Compression. 1. Introduction

D DAVID PUBLISHING. Deformation of Mild Steel Plate with Linear Cracks due to Horizontal Compression. 1. Introduction Journal of Control Science and Engineering 1 (2015) 40-47 doi: 10.17265/2328-2231/2015.01.005 D DAVID PUBLISHING Deformation of Mild Steel Plate with Linear Cracks due to Horizontal Compression Mitsuru

More information

Kinematics of the Southern California Fault System Constrained by GPS Measurements

Kinematics of the Southern California Fault System Constrained by GPS Measurements Title Page Kinematics of the Southern California Fault System Constrained by GPS Measurements Brendan Meade and Bradford Hager Three basic questions Large historical earthquakes One basic question How

More information

Wang Shifeng a, Wang Erchie a, Fang Xiaomin a & Fu Bihong a a Chinese Academy of Sciences, Beijing, China

Wang Shifeng a, Wang Erchie a, Fang Xiaomin a & Fu Bihong a a Chinese Academy of Sciences, Beijing, China This article was downloaded by: [Institute of Tibetan Plateau Research] On: 17 April 2013, At: 19:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions Seismotectonics of intraplate oceanic regions Thermal model Strength envelopes Plate forces Seismicity distributions Cooling of oceanic lithosphere also increases rock strength and seismic velocity. Thus

More information

CURRICULUM VITAE WEISEN SHEN EDUCATION

CURRICULUM VITAE WEISEN SHEN EDUCATION CURRICULUM VITAE WEISEN SHEN Center for Imaging the Earth s Interior, Department of Physics, CU Boulder Boulder, CO, 80309 Research ID: J-3969-2012 http://www.researcherid.com/rid/j-3969-2012 Citizenship:

More information

Effect Of The In-Situ Stress Field On Casing Failure *

Effect Of The In-Situ Stress Field On Casing Failure * Effect Of The In-Situ Stress Field On Casing Failure * Tang Bo Southwest Petroleum Institute, People's Republic of China Lian Zhanghua Southwest Petroleum Institute, People's Republic of China Abstract

More information

A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China

A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2011, VOL. 4, NO. 1, 41 46 A Preliminary Analysis of the Relationship between Precipitation Variation Trends and Altitude in China YANG Qing 1, 2, MA Zhu-Guo 1,

More information

SCIENCE CHINA Earth Sciences

SCIENCE CHINA Earth Sciences SCIENCE CHINA Earth Sciences RESEARCH PAPER July 2013 Vol.56 No.7: 1158 1168 doi: 10.1007/s11430-013-4641-2 Crustal and upper mantle structure and the deep seismogenic environment in the source regions

More information

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT *D.S. Subrahmanyam National Institute of Rock Mechanics, Bangalore

More information

North America subducted under Rubia. Are there modern analogs for Hildebrand s model of North America subducting under Rubia?

North America subducted under Rubia. Are there modern analogs for Hildebrand s model of North America subducting under Rubia? North America subducted under Rubia Are there modern analogs for Hildebrand s model of North America subducting under Rubia? In the Geological Society of America Special Papers Did Westward Subduction

More information

Active Tectonics and Erosional Unloading at the Eastern Margin of the Tibetan Plateau

Active Tectonics and Erosional Unloading at the Eastern Margin of the Tibetan Plateau Journal of Mountain Science Vol 2 No 2 (2005): 146~154 http://www.imde.ac.cn/journal Article ID: 1672-6316 (2005) 02-0146-09 Active Tectonics and Erosional Unloading at the Eastern Margin of the Tibetan

More information

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION STRUCTURE OF THE SICHUAN-YUNNAN REGION, SOUTHWEST CHINA, USING SEISMIC CATALOG AND WAVEFORM DATA Haijiang Zhang 1, Yunfeng Liu 1, Zhen Xu 2, Xiaodong Song

More information

Christine M. Puskas. Objective: A geophysical position where a background in geophysical modeling, data processing, and GPS studies can be applied.

Christine M. Puskas. Objective: A geophysical position where a background in geophysical modeling, data processing, and GPS studies can be applied. Christine M. Puskas 777 E South Temple 9C Salt Lake City, UT 84102 www.uusatrg.utah.edu/people/christine (801) 581-7856 Office (801) 521-4107 Home c.puskas@utah.edu Education Ph.D. in Geophysics, University

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies FINITE-FREQUENCY SEISMIC TOMOGRAPHY OF BODY WAVES AND SURFACE WAVES FROM AMBIENT SEISMIC NOISE: CRUSTAL AND MANTLE STRUCTURE BENEATH EASTERN EURASIA Yong Ren 2, Wei Zhang 2, Ting Yang 3, Yang Shen 2,and

More information

1. classic definition = study of deformed rocks in the upper crust

1. classic definition = study of deformed rocks in the upper crust Structural Geology I. Introduction 1. classic definition = study of deformed rocks in the upper crust deformed includes translation, rotation, and strain (change of shape) All rocks are deformed in some

More information

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise Strain Analysis Introduction Name: The earthquake cycle can be viewed as a process of slow strain accumulation

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

Research Article Structural Heterogeneities in Southeast Tibet: Implications for Regional Flow in the Lower Crust and Upper Mantle

Research Article Structural Heterogeneities in Southeast Tibet: Implications for Regional Flow in the Lower Crust and Upper Mantle International Geophysics Volume 212, Article ID 975497, 12 pages doi:1.1155/212/975497 Research Article Structural Heterogeneities in Southeast Tibet: Implications for Regional Flow in the Lower Crust

More information

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No.

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No. A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA Wenjie Jiao, 1 Winston Chan, 1 and Chunyong Wang 2 Multimax Inc., 1 Institute of Geophysics, China Seismological Bureau 2 Sponsored by Defense

More information

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Rheology III Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Ideal materials fall into one of the following categories:

More information

Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT

Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT CHANGING GEOMORPHOLOGY OF THE KOSI RIVER SYSTEM IN THE INDIAN SUBCONTINENT Nupur Bose,

More information

The continental lithosphere

The continental lithosphere Simplicity to complexity: The continental lithosphere Reading: Fowler p350-377 Sampling techniques Seismic refraction Bulk crustal properties, thickness velocity profiles Seismic reflection To image specific

More information

Research Article The Evolution of Stress and Strain around the Bayan Har Block in the Tibetan Plateau

Research Article The Evolution of Stress and Strain around the Bayan Har Block in the Tibetan Plateau Earthquakes Volume 2015, Article ID 971628, 10 pages http://dx.doi.org/10.1155/2015/971628 Research Article The Evolution of Stress and Strain around the Bayan Har Block in the Tibetan Plateau Yujun Sun,

More information

GPS measurements of present-day uplift in the Southern Tibet

GPS measurements of present-day uplift in the Southern Tibet LETTER Earth Planets Space, 52, 735 739, 2000 GPS measurements of present-day uplift in the Southern Tibet Caijun Xu, Jingnan Liu, Chenghua Song, Weiping Jiang, and Chuang Shi School of Geoscience and

More information

Shear-wave splitting beneath Yunnan area of Southwest China

Shear-wave splitting beneath Yunnan area of Southwest China Earthq Sci (2012)25: 25 34 25 doi:10.1007/s11589-012-0828-4 Shear-wave splitting beneath Yunnan area of Southwest China Yutao Shi 1,2, Yuan Gao 1,2 Youjin Su 3 and Qiong Wang 2 1 Institute of Geophysics,

More information

Strong, Wen (Shih Chung Wen, 溫士忠 ) TEL: ext FAX:

Strong, Wen (Shih Chung Wen, 溫士忠 ) TEL: ext FAX: Strong, Wen (Shih Chung Wen, 溫士忠 ) TEL: +886-5-2720411 ext. 61212 FAX: +886-6-2720807 E-mail: strong@eq.ccu.edu.tw strong6212@gmail.com [Education] Ph.D., Institute of Seismology, National Chung Cheng

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Crustal Deformation and Mountain Building Chapter 17 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Jennifer

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies STRUCTURE OF THE KOREAN PENINSULA FROM WAVEFORM TRAVEL-TIME ANALYSIS Roland Gritto 1, Jacob E. Siegel 1, and Winston W. Chan 2 Array Information Technology 1 and Harris Corporation 2 Sponsored by Air Force

More information

Data Repository Hampel et al., page 1/5

Data Repository Hampel et al., page 1/5 GSA DATA REPOSITORY 2138 Data Repositor Hampel et al., page 1/5 SETUP OF THE FINITE-ELEMENT MODEL The finite-element models were created with the software ABAQUS and consist of a 1-km-thick lithosphere,

More information

Crustal structure beneath the Indochina peninsula from teleseismic receiver functions

Crustal structure beneath the Indochina peninsula from teleseismic receiver functions GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044874, 2010 Crustal structure beneath the Indochina peninsula from teleseismic receiver functions Ling Bai, 1 Xiaobo Tian, 2 and Jeroen Ritsema

More information

REGIONAL CHARACTERISTICS OF STRESS FIELD AND ITS DYNAMICS IN AND AROUND THE NANKAI TROUGH, JAPAN

REGIONAL CHARACTERISTICS OF STRESS FIELD AND ITS DYNAMICS IN AND AROUND THE NANKAI TROUGH, JAPAN 46 4 2003 7 CHINESE JOURNAL OF GEOPHYSICS Vol. 46, No. 4 July, 2003 1 1 2 3 1, 100037 2, 920-1192 3, 237-0061,,, : -. (10 22 ), (60 85km) ; (40 ), (160km)..,. GPS,, -,,.,,,.. 0001-5733(2003) 04-0488 -

More information

USU 1360 TECTONICS / PROCESSES

USU 1360 TECTONICS / PROCESSES USU 1360 TECTONICS / PROCESSES Observe the world map and each enlargement Pacific Northwest Tibet South America Japan 03.00.a1 South Atlantic Arabian Peninsula Observe features near the Pacific Northwest

More information

Distribution and magnetic features of igneous rocks in the Gaize-Nima area of Tibet plateau based on magnetic data

Distribution and magnetic features of igneous rocks in the Gaize-Nima area of Tibet plateau based on magnetic data Bulgarian Chemical Communications, Special Edition H, (pp. 14 18) 2017 14 Distribution and magnetic features of igneous rocks in the Gaize-Nima area of Tibet plateau based on magnetic data C.G. Zhang 1

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

Dynamics of continental deformation in Asia

Dynamics of continental deformation in Asia Dynamics of continental deformation in Asia Mathilde Vergnolle, E. Calais, L. Dong To cite this version: Mathilde Vergnolle, E. Calais, L. Dong. Dynamics of continental deformation in Asia. Journal of

More information

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction H. Sekiguchi Disaster Prevention Research Institute, Kyoto University, Japan Blank Line 9 pt Y. Kase Active Fault and Earthquake

More information

Deformation Forecasting of Huangtupo Riverside Landslide in the Case of Frequent Microseisms

Deformation Forecasting of Huangtupo Riverside Landslide in the Case of Frequent Microseisms Journal of Earth Science, Vol. 27, No. 1, p. 160 166, February 2016 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-016-0617-4 Deformation Forecasting of Huangtupo Riverside Landslide in the Case of

More information

Source rupture process inversion of the 2013 Lushan earthquake, China

Source rupture process inversion of the 2013 Lushan earthquake, China Geodesy and Geodynamics 2013,4(2) :16-21 http://www. jgg09. com Doi:10.3724/SP.J.1246.2013.02016 Source rupture process inversion of the 2013 Lushan earthquake, China Zhang Lifen 1 ' 2, lman Fatchurochman

More information

S-wave velocity structure beneath Changbaishan volcano inferred from receiver function

S-wave velocity structure beneath Changbaishan volcano inferred from receiver function Earthq Sci (2009)22: 409 416 409 Doi: 10.1007/s11589-009-0409-3 S-wave velocity structure beneath Changbaishan volcano inferred from receiver function Jianping Wu Yuehong Ming Lihua Fang Weilai Wang Institute

More information

Seismic hazard analysis of Tianjin area based on strong ground motion prediction

Seismic hazard analysis of Tianjin area based on strong ground motion prediction Earthq Sci (2010)23: 369 375 369 Doi: 10.1007/s11589-010-0734-6 Seismic hazard analysis of Tianjin area based on strong ground motion prediction Zhao Boming School of Civil Engineering, Beijing Jiaotong

More information

Oblique convergence between India and Eurasia

Oblique convergence between India and Eurasia JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B5, 10.1029/2001JB000636, 2002 Oblique convergence between India and Eurasia Muhammad A. Soofi and Scott D. King Department of Earth and Atmospheric Sciences,

More information

Introduction to Displacement Modeling

Introduction to Displacement Modeling Introduction to Displacement Modeling Introduction Deformation on the Earth surface informs us about processes and material properties below surface Observation tools: GPS (static-dynamic) InSAR (static)

More information

Course Business. Today: isostasy and Earth rheology, paper discussion

Course Business. Today: isostasy and Earth rheology, paper discussion Course Business Today: isostasy and Earth rheology, paper discussion Next week: sea level and glacial isostatic adjustment Email did you get my email today? Class notes, website Your presentations: November

More information

GEO-DEEP9300 Lithosphere and Asthenosphere: Composition and Evolution

GEO-DEEP9300 Lithosphere and Asthenosphere: Composition and Evolution GEO-DEEP9300 Lithosphere and Asthenosphere: Composition and Evolution Summary Presentation The Structural Evolution of the Deep Continental Lithosphere Focused on the Junction of Arabian, Eurasian and

More information

Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications

Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications Bulletin of the Seismological Society of America, Vol. 85, No. 5, pp. 1513-1517, October 1995 Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications by

More information

THE VERTICAL COSEISMIC DEFORMATION FIELD OF THE WENCHUAN EARTHQUAKE BASED ON THE COMBINATION OF GPS AND INSAR

THE VERTICAL COSEISMIC DEFORMATION FIELD OF THE WENCHUAN EARTHQUAKE BASED ON THE COMBINATION OF GPS AND INSAR THE VERTICAL COSEISMIC DEFORMATION FIELD OF THE WENCHUAN EARTHQUAKE BASED ON THE COMBINATION OF GPS AND INSAR SHAN Xin-jian (1), QU Chun-yan (1), GUO Li-min (1,2), ZHANG Guo-hong (1), SONG Xiao-gang (1),

More information

INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA

INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA Li Xiaojun 1, Zhou Zhenghua 1, Huang Moh 3, Wen Ruizhi 1, Yu Haiyin 1, Lu Dawei

More information

Elizabeth H. Hearn modified from W. Behr

Elizabeth H. Hearn modified from W. Behr Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones Elizabeth H. Hearn hearn.liz@gmail.com modified

More information