Advanced characterization of aerosol properties through the combination of active/ passive ground-based remote sensing (and in situ measurements)

Size: px
Start display at page:

Download "Advanced characterization of aerosol properties through the combination of active/ passive ground-based remote sensing (and in situ measurements)"

Transcription

1 Advanced characterization of aerosol properties through the combination of active/ passive ground-based remote sensing (and in situ measurements) Test of new approaches to retrieve aerosol properties from Photometer- LiDAR joint measurements Q. Hu, P. Goloub, O. Dubovik, I. Vesselovskii, T. Podvin, A. Lopatin B. Torres, T. Lapyonok, Frascati 2-3 Dec. 207

2 Progress in Phase 2 (207) - Instrument upgrad (Triple polar. / Near Range) - GARRLIC/GRASP algorithm update - Validation against Daytime Raman - Uncertainty on aerosols properties Scheduled activities for Phase 3 (208 and 209 ) 2

3 LiDAR upgrade and Data Quality LILAS is a High Performance and Transportable Multi-wavelength Raman LiDAR Three emitting wavelengths: 355nm, 532nm, 064nm Raman channels: 387nm (VR), 408nm, 530nm (RR) Three depolarized channels: 355nm, 532nm, 064nm (since march 207). As EARLINET/ACTRIS station LILAS LIDAR follows EARLINET/ACTRIS QC/QA and calibration procedures (annual request to LICAL TNA) Example : Stratospheric «Smoke «layer (Aug/Sep. 207) Good example to have insight in the data quality! GRL paper in preparation

4 Average Aerosol profiles (20:00-22:00, 3 Aug, 207) LiDAR stand alone retrievals (3β+2α) Backscatter [km - sr - ] AOD (532 nm) = 0.0 That s a lot!! Height [km] 9 8 β 064, Klett β 532, Raman β 355, Raman β 532, Klett β 355, Klett 7 α 532, Klett α 355, Klett Extinction [km - ]

5 Spectral Volume and Particle Lin. Depolarisation Extinction and Backscatter Angström Exponent 20 EAE, BAE VLDR VLDR 532 VLDR 064 PLDR 532 BAE EAE Height [km] 8 PLDR 355 Part. Lin. Depolarisation nm Lille-LOA-LILAS % 7 Leipzig, TROPOS % PLDR, VLDR

6 Add-on Near-Field Range Capability (207- January 208) Decrease the blind zone range to 50 m Additionnal small telescope + additionnal detection channels (national fundings) Increase consistency between column (photometer) and profile (LiDAR) Better connect to in situ optical measurements (add groundbased data to cover 0-20 km range) for future integration in the retrieval- 6

7 GARRLIC/GRASP Algorithm update / improvments Many! Major one : inclusion of multispectral VDR in GARRLIC retrieval (sensitivity study made) 7

8 Aerosol Retrieval Raman & GARRLiC retrieval Profiles Night (LiDAR stand-alone) LS //, LS Calibration VLDR PLDR BAC Raman LS Raman retrieval LR EXT Elastic LS WVMR EXT: Extinction Coefficient BAC: Backscattering coefficient LR: LiDAR ratio PLDR/VLDR: Part./Vol. depol. ratio WVMR: Water vapor mixing ratio Day (Photometer+LIDAR) TOD/AOD +ALM GRASP/ GARRLiC SD AVC CRI SF SD: Size distribution SF: Spherical fraction AVC: Aerosol Vertical Concentration (profile CRI: Complex refractive index 8

9 What do we retrieve with GARRLIC + Uncertainty Reminder? AC f,c (h) + Uncertainty Vertical properties? (h) = i=f,c X ai AC i (h) Size Distribution (SD) (column) Aerosol Vertical Concentration (AVC) Examples: s(h) = f AC f (h)+ c AC c (h) Complex Refractive Indices (CRI) P ii ( ) =P ii,f ( ) f s + P ii,c ( ) c s,i + Uncertainties + Uncertainty ~2 Sphere Fractions (SF) Estimate (propagation) in progress (first results shown)

10 Primary Data (Cloud-Screened Level ) Sun/sky photometer (CIMEL) measurements & Uncertainty (via AE): ü Spectral Total/Aerosol Optical Depth (TOD/AOD) 0.0 (Abs.) ü Spectral angular sky radiances (ALM) 3 % ü Spectral angular sky polarization (POL) (Abs.) LiDAR measurements & their uncertainties : ü Elastic backscattering LiDAR Signal (LS), 355, 532, 064 ü Raman backscattering LS: 387, 408, 530 nm. ü Perpendicular & parallel polarized LS: 355, 532,064 nm, VDR 0% 0% 5-0% Conditions : (i) colocation between photometer and LiDAR (ii) LiDAR range (200m-20 km) (link with AOD and in situ) (iii) Cloud free profile => Apply LiDAR Stand-alone and GARRLIC retrievals and compare 0

11 Evaluation of GARRLIC retrievals : not so simple!! Several Methods : - M- Field campaign (Tsekeri et al., 207; aerosol concentration, absorption with inherent difficulty due to difference between in situ and remote sensing) - M2- Comparison between Raman technique (3β+2α) and GARRLIC results Difficulty : for comparison (M2) - D- Raman technique => nightime - D2- GARRLIC technique => daytime Solutions : - S- improve instrument to have better Raman signal during day (Rot. Raman) - S2- include all information in GARRLIC (like depolarisation) We considered both solutions We selected a complex case with Dust and Biomass burning smoke particles (AOD(440nm) = 0.60, day time period average 8h30-9h40)

12 Aerosol Retrieval Biomass Burning and Dust (SHADOW campaign, in Senegal, ) LILAS transportable Mie-Raman multi-wavelength LiDAR LiDAR Elastic and Depolarization Signals Hu et al., in preparation, LOA 2

13 Aerosol Retrieval Biomass Burning and Dust (SHADOW campaign, in Senegal, ) LILAS transportable Mie-Raman multi-wavelength LiDAR GARRLIC Retrievals 3

14 Aerosol Retrieval Biomass Burning and Dust (SHADOW campaign, in Senegal, ) LILAS transportable Mie-Raman multi-wavelength LiDAR Comparison LiDAR alone (Raman) versus GARRLIC retrievals + Impact of depolarisation 5 GARRLIC- no depolarisation & GARRLIC with 2δ-depolarisation Raman (08:30-09:44)-GARRLiC-no depol 5 Raman (08:30-09:44)-GARRLiC-depol 4 4 Height [km] 3 2 Height [km] 3 2 α 532 -GARRLiC α 355 -GARRLiC α 532 -Raman α 355 -Raman Extinction [km - ] Hu et al., in preparation, LOA Extinction [km - ] Coïncident Day time Raman and Day time GARRLIC Very good results (improvement of extinction with GARRLIC) 4

15 Aerosol Retrievals and uncertainty Extinction : GARRLIC with 2δ-depolarisation + error bars Still some bugs! Raman and GARRLIC technique uncertainty on extinction are comparable Near range missing 5

16 What about extinction-to-backscatter ratio (LiDAR ratio)??? GARRLIC- no depolarisation 5 5 GARRLIC with 2δ-depolarisation 4 4 Smoke Smoke Height [ km] 3 2 Dust 3 2 Dust LR 355 LR 532 Raman LR [sr] LR [sr] LR 355 LR 532 GARRLIC Inclusion of depolarisation improves LiDAR ratio also (value and spectral behavior)

17 Wavelength [nm] How well measurements are fitted? Optical Depth (photometer).4 Smoke + Dust Case Residual.2 error = % TOD Fit Meas

18 Radiance (photometer) How well measurements are fitted? Smoke + Dust Case (3 < scattering angle < 30 ) Uncertainty on radiance = 3 % Residual R 440nm 0. Total error = 4.63% meas fit R 675nm 0. R 870nm R 020nm Scattering angle [ o ]

19 LILAS profiles 6 5 How well measurements are fitted? error = 3.% Meas Fit Smoke + Dust Case Spectral RCS Signals and Depolarization 6 5 error = 9% error = 4.9% error = 0% Residuals error = 3.96% Height [km] LS 355nm VLDR 355nm LS 532nm VLDR 532nm LS 064nm

20 Too good? Only one case? => A second case, a pure dust case provides similar good results for GARRLIC 20

21 Conclusions / Perspectives Instrument LILAS contributing station to EARLINET/ACTRIS LILAS follows QC/QA and calibration procedures LILAS is high performance system (stratospheric aerosol can be detected and characterized) It will be improved again: - Three depolarisation channel (done) - Near Field range (in progress) - Automation of measurements and calibration (in progress) (Supported by national projects) 2

22 Conclusions Retrievals The LiDAR measured VLDR can be fitted by GRASP/ GARRLiC two mode retrieval with a certain residual. The inclusion of VLDR into GRASP/GARRLiC improves the retrieval of aerosol optical and microphysical properties, e.g. Angstrom Exponent, extinction, LiDAR ratio. Reliable Aerosol Profile Day Time! Modelling of the uncertainty (uncertainty is also a product 22 of the inversion, associated to each inversion)

23 Future plan (phase 3) 208 (Ph.D Defense, mi-december 208) 2 x publications as st author scheduled + Thesis report to write ( publication published, as co-author). Attempt to integrate ground-based data in the retrieval (more relevant with additionnal Near Field capability) before end of thesis or during post-doc 209 and after, searching for a post-doc support. Repeat the SHADOW campaign in the framework of EARTHCARE CAL/VAL: => include Dakar IRD observatory for Cal/Val in the Tropics (frequent cloud free situation, rich in aerosol and varibility in their properties, plus cirrus and very good technical staff there). See french proposal ACTRIS-FR to ESA EARTHCARE Cal/Val Call.. Field Campaign.5 month in China (Kashi),«Belt and Road Initiative», New Multi-pixel inversion challenge for Day, for Day and Night sun/photometer and LiDAR.. Contribution to DIVA (Phase 2, ) 23

24 Field Campaign at M bour station welcome! Abundant aerosol content Aerosol type variability (marine, dust, smoke, local pollution) Seasonal features Permanent AERONET obs. (22 yrs), Routine LiDAR obs. (2 yrs), Field Campaigns (, 203, 205, 206,..) M bour IRD Station of geophysics and oceanography (IMAGO), with qualified technical staff Multiple instruments are deployed during the campaign. 2-week measurements are collected in Mar, Apr, Dec 205 and Jan 206. Contribute to different studies: aerosol, wind, cloud 24

25 Thank you. 25

26

27 Aerosol Retrievals and uncertainty Raman technique (home made) versus SCC (Single Calculus Chain= official reference sofwtare for Level 0-> level EARLINET) 5 Raman (08:30-09:44)-GARRLiC-depol Height [km] Reference Extinction [km - ] α 532 -GARRLiC α 355 -GARRLiC α 532 -Raman α 355 -Raman Should I show this slide?? Possible difference in smoothing method between Home made Raman retrieval and SCC?

Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion

Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion ESA/IDEAS Project- WP 3440-2 Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion Q. Hu, P. Goloub, O. Dubovik, A. Lopatin, T. Povdin, T. Lopyonok,

More information

ACTRIS TNA Activity Report

ACTRIS TNA Activity Report ACTRIS TNA Activity Report Characterization of Aerosol mixtures of Dust And MArine origin by synergy of lidar, sunphotometer and surface/airborne in situ, ADAMA Natalia Kouremeti Introduction and motivation

More information

TESTS. GRASP sensitivity. Observation Conditions. Retrieval assumptions ISTINA-WP AERO. MODELS. B. Torres, O. Dubovik and D.

TESTS. GRASP sensitivity. Observation Conditions. Retrieval assumptions ISTINA-WP AERO. MODELS. B. Torres, O. Dubovik and D. TESTS Retrieval assumptions GRASP sensitivity ISTINA-WP3380-2 Observation Conditions AERO. MODELS B. Torres, O. Dubovik and D. Fuertes Introduction Scope of ISTINA-WP3380-2 To establish fundamental limits

More information

Validation of ADM-Aeolus L2 aerosol and cloud product employing advanced ground-based lidar measurements (VADAM)

Validation of ADM-Aeolus L2 aerosol and cloud product employing advanced ground-based lidar measurements (VADAM) Validation of ADM-Aeolus L2 aerosol and cloud product employing advanced ground-based lidar measurements (VADAM) V. Amiridis, National Observatory of Athens, Greece U. Wandinger, TROPOS-Leibniz Institute

More information

Recent lidar measurements from AWIPEV

Recent lidar measurements from AWIPEV Recent lidar measurements from AWIPEV By Christoph Ritter AWI Potsdam Aerosol and BL measurements Aims aerosol: (remote sensing sun/star-photometer, Raman lidar) Continue long-term measurements Participate

More information

Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City

Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City Yonghua Wu*, Chowdhury Nazmi, Cuiya Li, Daniel Hoyos, Barry Gross, Fred Moshary NOAA-CREST and

More information

Characterization of free-tropospheric aerosol layers from different source regions

Characterization of free-tropospheric aerosol layers from different source regions Leibniz Institute for Tropospheric Research Leipzig, Germany Characterization of free-tropospheric aerosol layers from different source regions Ina Mattis, Detlef Müller, Albert Ansmann, Ulla Wandinger,

More information

Ground-based Validation of spaceborne lidar measurements

Ground-based Validation of spaceborne lidar measurements Ground-based Validation of spaceborne lidar measurements Ground-based Validation of spaceborne lidar measurements to make something officially acceptable or approved, to prove that something is correct

More information

Spaceborne Aerosol and Ozone Lidars for Air Quality Applications

Spaceborne Aerosol and Ozone Lidars for Air Quality Applications Spaceborne Aerosol and Ozone Lidars for Air Quality Applications Rich Ferrare Chris Hostetler Ed Browell John Hair NASA Langley Research Center Detlef Müller Institute for Tropospheric Research, Leipzig

More information

ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach

ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach Lucia Mona CNR-IMAA, Potenza, Italy mona@imaa.cnr.it and EARLINET Team OUTLINE

More information

1 Fundamentals of Lidar

1 Fundamentals of Lidar 1 Fundamentals of Lidar The lidar profiling technique (Fiocco, 1963) is based on the study of the interaction between a laser radiation sent into the atmosphere and the atmospheric constituents. The interaction

More information

Projects in the Remote Sensing of Aerosols with focus on Air Quality

Projects in the Remote Sensing of Aerosols with focus on Air Quality Projects in the Remote Sensing of Aerosols with focus on Air Quality Faculty Leads Barry Gross (Satellite Remote Sensing), Fred Moshary (Lidar) Direct Supervision Post-Doc Yonghua Wu (Lidar) PhD Student

More information

Developments in CALIOP Aerosol Products. Dave Winker

Developments in CALIOP Aerosol Products. Dave Winker Developments in CALIOP Aerosol Products Dave Winker NASA Langley Research Center Hampton, VA Winker - 1 Outline Level 3 aerosol product (beta-version) Version 4 Level 1 product A few CALIOP assimilation

More information

EARLINET, the ACTRIS aerosol vertical profiling component

EARLINET, the ACTRIS aerosol vertical profiling component EARLINET, the ACTRIS aerosol vertical profiling component L. Mona* and the EARLINET team *CNR-IMAA, Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l Analisi Ambientale ITALY OUTLINE What

More information

EARLINET Observations of Saharan Dust Outbreaks over Europe

EARLINET Observations of Saharan Dust Outbreaks over Europe EARLINET Observations of Saharan Dust Outbreaks over Europe Ulla Wandinger Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany with contributions from the TROPOS Ground Based Remote

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

Improvement of the retrieval of aerosol optical properties over oceans using SEVIRI

Improvement of the retrieval of aerosol optical properties over oceans using SEVIRI Improvement of the retrieval of aerosol optical properties over oceans using SEVIRI A. Vermeulen 1, C. Moulin 2, F. Thieuleux 3, I. Chiapello 3, J. Descloitres 1, F. Ducos 3, J-M Nicolas 1, F.-M. Bréon

More information

Long-term aerosol and cloud database from correlative CALIPSO and EARLINET observations

Long-term aerosol and cloud database from correlative CALIPSO and EARLINET observations Long-term aerosol and cloud database from correlative CALIPSO and EARLINET observations Ulla Wandinger, Anja Hiebsch, Ina Mattis Leibniz Institute for Tropospheric Research, Leipzig, Germany Gelsomina

More information

SOP0 surface measurements at M Bour, Senegal

SOP0 surface measurements at M Bour, Senegal SOP0 surface measurements at M Bour, Senegal Groups involved LOA, Lille, Isabelle Chiapello, Didier Tanré, Jean-François Léon, Oleg Dubovik, Gérard Brogniez, Thierry Podvin and Frédérique Auriol ELICO,

More information

Low Arabian dust extinction-to-backscatter ratio

Low Arabian dust extinction-to-backscatter ratio GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 4762 4766, doi:10.1002/grl.50898, 2013 Low Arabian dust extinction-to-backscatter ratio R. E. Mamouri, 1 A. Ansmann, 2 A. Nisantzi, 1 P. Kokkalis, 3 A. Schwarz, 2

More information

Interactive comment on A new method for nocturnal aerosol measurements with a lunar photometer prototype by A. Barreto et al.

Interactive comment on A new method for nocturnal aerosol measurements with a lunar photometer prototype by A. Barreto et al. Atmos. Meas. Tech. Discuss., 5, C2450 C2459, 2012 www.atmos-meas-tech-discuss.net/5/c2450/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

Seasonal Aerosol Vertical Distribution and Optical Properties over North China Xing-xing GAO, Yan CHEN, Lei ZHANG * and Wu ZHANG

Seasonal Aerosol Vertical Distribution and Optical Properties over North China Xing-xing GAO, Yan CHEN, Lei ZHANG * and Wu ZHANG 2017 International Conference on Energy, Environment and Sustainable Development (EESD 2017) ISBN: 978-1-60595-452-3 Seasonal Aerosol Vertical Distribution and Optical Properties over North China Xing-xing

More information

Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements

Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements Review of single- and multi-channel aerosol lidars Principle of High Spectral Resolution Lidar (HSRL) HSRL instrumentation University of Wisconsin

More information

Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model

Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model Richard Ferrare, Chris Hostetler, John Hair, Anthony Cook, David Harper, Mike Obland, Ray Rogers, Sharon Burton,

More information

A study of long-range transported smoke aerosols in the Upper Troposphere/Lower Stratosphere

A study of long-range transported smoke aerosols in the Upper Troposphere/Lower Stratosphere A study of long-range transported smoke aerosols in the Upper Troposphere/Lower Stratosphere Qiaoyun Hu 1, Philippe Goloub 1, Igor Veselovskii 2, Juan-Antonio Bravo Aranda 3, Ioana Popovici 1,4, Thierry

More information

SYNERGETIC USE OF ACTIVE AND PASSIVE REMOTE SENSING INSTRUMENTS FOR THE SEASONAL VARIANCE OF AEROSOLS OVER CYPRUS

SYNERGETIC USE OF ACTIVE AND PASSIVE REMOTE SENSING INSTRUMENTS FOR THE SEASONAL VARIANCE OF AEROSOLS OVER CYPRUS CEST2013 Athens, Greece Ref no: XXX Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 Formatted: English (United States) SYNERGETIC

More information

Choosing the proper technique for measuring the particle light absorption

Choosing the proper technique for measuring the particle light absorption Sino-German Symposium on Soot and its Climatic, Environmental and Health Impacts Choosing the proper technique for measuring the particle light absorption Development of an absorption reference Beijing,

More information

Optical properties of atmospheric constituents

Optical properties of atmospheric constituents Optical properties of atmospheric constituents Direct effects of aerosols optical properties on climate Scattering Aerosols Absorbing Aerosols heat heat heat heat heat Cooling Clouds evaporation Graphics:

More information

Supplement of Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

Supplement of Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events Supplement of Atmos. Meas. Tech., 11, 2897 2910, 2018 https://doi.org/10.5194/amt-11-2897-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement

More information

Observatory of Environmental Safety Resource Center, Research Park. St.Petersburg. Russia.

Observatory of Environmental Safety Resource Center, Research Park. St.Petersburg. Russia. Correct atmospheric optics modelling: Theory and Experiment Irina Melnikova Observatory of Environmental Safety Resource Center, Research Park St.Petersburg State University St.Petersburg. Russia. irina.melnikova@pobox.spbu.ru

More information

Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and Sun photometer

Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and Sun photometer JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D12, 4345, doi:10.1029/2002jd002918, 2003 Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and Sun photometer

More information

Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010

Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd016815, 2012 Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010 Y. Derimian,

More information

An Analysis of Aerosol Optical Properties During Seasonal Monsoon Circulation

An Analysis of Aerosol Optical Properties During Seasonal Monsoon Circulation International Workshop on Land Use/Cover Changes and Air Pollution in Asia 4-7 August 2015 IPB ICC, Bogor, Indonesia An Analysis of Aerosol Optical Properties During Seasonal Monsoon Circulation Lim Hwee

More information

Global observations from CALIPSO

Global observations from CALIPSO Global observations from CALIPSO Dave Winker, Chip Trepte, and the CALIPSO team NRL, Monterey, 27-29 April 2010 Mission Overview Features: Two-wavelength backscatter lidar First spaceborne polarization

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa

A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa Ian Chang and Sundar A. Christopher Department of Atmospheric Science University of Alabama in Huntsville, U.S.A.

More information

European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution

European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution Werner Thomas Deutscher Wetterdienst (DWD) Hohenpeissenberg Meteorological Observatory www.dwd.de/ceilomap

More information

Scanning Raman Lidar Measurements During IHOP

Scanning Raman Lidar Measurements During IHOP Scanning Raman Lidar Measurements During IHOP David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC Paolo Di Girolamo/Univ. of Basilicata, Igor Veselovskii/General Physics Institute, Keith Evans/UMBC, Zhien Wang/UMBC,

More information

AEROSOL. model vs data. ECWMF vs AERONET. mid-visible optical depth of aerosol > 1 m diameter. S. Kinne. Max Planck Institute Hamburg, Germany

AEROSOL. model vs data. ECWMF vs AERONET. mid-visible optical depth of aerosol > 1 m diameter. S. Kinne. Max Planck Institute Hamburg, Germany AEROSOL model vs data ECWMF vs AERONET mid-visible optical depth of aerosol > 1 m diameter Max Planck Institute Hamburg, Germany S. Kinne Overview data-sets ECMWF simulations aerosol quality data reference

More information

Authors response to the reviewers comments

Authors response to the reviewers comments Manuscript No.: amtd-3-c1225-2010 Authors response to the reviewers comments Title: Satellite remote sensing of Asian aerosols: A case study of clean, polluted, and Asian dust storm days General comments:

More information

Lecture 33. Aerosol Lidar (2)

Lecture 33. Aerosol Lidar (2) Lecture 33. Aerosol Lidar (2) Elastic Scattering, Raman, HSRL q Elastic-scattering lidar for aerosol detection q Single-channel vs multi-channel aerosol lidars q Measurement of aerosol extinction from

More information

IAA. 1.9: Aerosol-UA - Satellite remote sensing of aerosols in the Earth atmosphere

IAA. 1.9: Aerosol-UA - Satellite remote sensing of aerosols in the Earth atmosphere IAA. 1.9: Aerosol-UA - Satellite remote sensing of aerosols in the Earth atmosphere Ya. Yatskiv (1), O. Degtyaryov (3), G. Milinevsky (1,2), I. Syniavskyi (1), A. Bovchaliuk (1), Yu. Ivanov (1), M. Sosonkin

More information

ESTIMATED DESERT-DUST ICE NUCLEI

ESTIMATED DESERT-DUST ICE NUCLEI ESTIMATED DESERT-DUST ICE NUCLEI PROFILES FROM CALIPSO Eleni Marinou *, Vassilis Amiridis, Albert Ansmann, Athanasios Nenes, Dimitris Balis, Rodanthi Mamouri, Alexandra Tsekeri, Ioannis Binietoglou, Dimitra

More information

Remote Sensing of Atmospheric Particles Using LIDAR, Calipso Satellite, & AERONET: Algorithm Development

Remote Sensing of Atmospheric Particles Using LIDAR, Calipso Satellite, & AERONET: Algorithm Development Remote Sensing of Atmospheric Particles Using LIDAR, Calipso Satellite, & AERONET: Algorithm Development JAVIER MÈNDEZ 1, HAMED PARSIANI, EMMANUEL SANCHEZ 3 Department of Electrical and Computer Engineer

More information

The EarthCARE mission: An active view on aerosols, clouds and radiation

The EarthCARE mission: An active view on aerosols, clouds and radiation The EarthCARE mission: An active view on aerosols, clouds and radiation T. Wehr, P. Ingmann, T. Fehr Heraklion, Crete, Greece 08/06/2015 EarthCARE is ESA s sixths Earth Explorer Mission and will be implemented

More information

Aerosol-type-dependent lidar ratios observed with Raman lidar

Aerosol-type-dependent lidar ratios observed with Raman lidar JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd008292, 2007 Aerosol-type-dependent lidar ratios observed with Raman lidar D. Müller, 1 A. Ansmann, 1 I. Mattis, 1 M. Tesche, 1 U. Wandinger,

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

Optical characterization of continental and biomass burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

Optical characterization of continental and biomass burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011jd016016, 2011 Optical characterization of continental and biomass burning aerosols over Bozeman, Montana: A case study of the aerosol direct

More information

Supplement of Recovering long-term aerosol optical depth series ( ) from an astronomical potassium-based resonance scattering spectrometer

Supplement of Recovering long-term aerosol optical depth series ( ) from an astronomical potassium-based resonance scattering spectrometer Supplement of Atmos. Meas. Tech., 7, 4103 4116, 2014 http://www.atmos-meas-tech.net/7/4103/2014/ doi:10.5194/amt-7-4103-2014-supplement Author(s) 2014. CC Attribution 3.0 License. Supplement of Recovering

More information

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Dave Turner University of Wisconsin-Madison Pacific Northwest National Laboratory 8 May 2003

More information

Lecture 31. Constituent Lidar (3)

Lecture 31. Constituent Lidar (3) Lecture 31. Constituent Lidar (3) otational Vibrational-otational (V) aman DIAL Multiwavelength DIAL Comparison of Constituent Lidar Techniques Summary for Constituent Lidar Conventional aman DIAL for

More information

DANIEL PÉREZ RAMÍREZ. Ficha de investigador. Ficha del Directorio. Producción 42. Proyectos dirigidos 1. Actividades 0

DANIEL PÉREZ RAMÍREZ. Ficha de investigador. Ficha del Directorio. Producción 42. Proyectos dirigidos 1. Actividades 0 Ficha de investigador DANIEL PÉREZ RAMÍREZ Grupo de Investigación: FÍSICA DE LA ATMÓSFERA (Cod.: RNM119) Departamento: Universidad de Granada. Física Aplicada Código ORCID: http://orcid.org/0000-0002-7679-6135

More information

V. Danylevsky Astronomical observatory of National Taras Shevchenko university. Kyiv, Ukraine.

V. Danylevsky Astronomical observatory of National Taras Shevchenko university. Kyiv, Ukraine. V. Danylevsky Astronomical observatory of National Taras Shevchenko university Kyiv, Ukraine vdanylevsky@gmail.com Astronomy and space physics in Kyiv university conference May 24 27, 2016 Kyiv, Ukraine

More information

Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2

Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2 PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (2011), 63B, 635 648 Printed in Singapore. All rights reserved C 2011 The Authors

More information

Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation

Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation Thanks to: Rebecca Sheesley and Sascha Usenko, Baylor Barry Lefer, U. Houston, AQRP Sarah D. Brooks T. Ren,

More information

Inaugural University of Michigan Science Olympiad Tournament

Inaugural University of Michigan Science Olympiad Tournament Inaugural University of Michigan Science Olympiad Tournament The test may be taken apart. Ties will be broken based on predetermined questions and quality of response. Remote Sensing Test length: 50 Minutes

More information

Raman and elastic lidar techniques for aerosol observation at CIAO

Raman and elastic lidar techniques for aerosol observation at CIAO Raman and elastic lidar techniques for aerosol observation at CIAO F. Madonna, A. Amodeo, I. Binietoglou, G. D Amico, A. Giunta, L. Mona, G. Pappalardo Consiglio Nazionale delle Ricerche, Istituto di Metodologie

More information

STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE

STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE Guangyao Dai 1, 2*, Songhua Wu 1, 3, Xiaoquan Song 1, 3, Xiaochun Zhai 1 1 Ocean University

More information

AERONET An Internationally Federated Network

AERONET An Internationally Federated Network AERONET An Internationally Federated Network Presented by Tom Eck (GSFC & UMBC) AERONET Project Head Brent Holben (NASA/GSFC) NASA AERONET Team Giles, Schafer, Scully, Sinyuk, Slutsker, Sorokin, Smirnov,

More information

Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements

Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements Atmos. Meas. Tech. Discuss., https://doi.org/.194/amt-18-3 Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements Ioana Elisabeta Popovici 1,2,

More information

Lessons Learned with the AIRS Hyperspectral Sensor. L.Larrabee Strow

Lessons Learned with the AIRS Hyperspectral Sensor. L.Larrabee Strow AS and Lessons Learned with the AS Sensor L.Larrabee Strow Atmospheric Spectroscopy Laboratory (ASL) UMBC Physics Department and the Joint Center for Earth Systems Technology April 26, 2006 Thanks to:

More information

Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds.

Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds. Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds. 1. Optical interactions of relevance to lasers. 2. General principles of lidars. 3. Lidar equation.

More information

PHEOS - Weather, Climate, Air Quality

PHEOS - Weather, Climate, Air Quality Aerosol & cloud remote sensing over the Arctic : perspectives for the PHEMOS and meteorological imager payloads on the PCW mission Norm O Neill, Auromeet Saha, U. de Sherbrooke Chris E. Sioris, Jack McConnell,

More information

ACTRIS TNA Activity Report

ACTRIS TNA Activity Report ACTRIS TNA Activity Report Quality Assurance Training for Lidar operation at University of Warsaw (QAT4LUW) Project leader: Iwona Stachlewska Participants: Iwona Stachlewska and Montserrat Costa-Surós

More information

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products V. Cuomo, G. Pappalardo, A. Amodeo, C. Cornacchia, L. Mona, M. Pandolfi IMAA-CNR Istituto di Metodologie per

More information

APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING

APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING P1.14 APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING Leona A. Charles*, Shuki Chaw, Viviana Vladutescu, Yonghua Wu, Fred Moshary, Barry Gross, Stanley

More information

Deriving aerosol scattering ratio using range-resolved lidar ratio

Deriving aerosol scattering ratio using range-resolved lidar ratio PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 391 395 Deriving aerosol scattering ratio using range-resolved lidar ratio REJI K DHAMAN 1, V KRISHNAKUMAR 1, V

More information

NASA/GSFC Raman Lidar Instrumentation Available for COPS

NASA/GSFC Raman Lidar Instrumentation Available for COPS NASA/GSFC Raman Lidar Instrumentation Available for COPS David Whiteman, Belay Demoz, NASA/GSFC Zhien Wang, UMBC Paolo Di Girolamo, Univ. of Basillicata Eugenia Kalnay, Univ. of Maryland Zhao Xia Pu, Univ.

More information

TEMPO Aerosols. Need for TEMPO-ABI Synergy

TEMPO Aerosols. Need for TEMPO-ABI Synergy TEMPO Aerosols Need for TEMPO-ABI Synergy Omar Torres, Hiren Jethva, Changwoo Ahn CEOS - 2018 NOAA-College Park May 04, 2018 Use of near UV Satellite Observations for retrieving aerosol properties over

More information

CATS GSFC TEAM Matt McGill, John Yorks, Stan Scott, Stephen Palm, Dennis Hlavka, William Hart, Ed Nowottnick, Patrick Selmer, Andrew Kupchock

CATS GSFC TEAM Matt McGill, John Yorks, Stan Scott, Stephen Palm, Dennis Hlavka, William Hart, Ed Nowottnick, Patrick Selmer, Andrew Kupchock The Cloud-Aerosol Transport System (CATS) CATS GSFC TEAM Matt McGill, John Yorks, Stan Scott, Stephen Palm, Dennis Hlavka, William Hart, Ed Nowottnick, Patrick Selmer, Andrew Kupchock CATS LaRC Team Chip

More information

Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center

Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center Sea of Okhotsk, MODIS image Feb. 6, 2007, NASA Earth Observatory Arctic Aerosol Remote Sensing Overview

More information

Aerosol forecasting and assimilation at ECMWF: overview and data requirements

Aerosol forecasting and assimilation at ECMWF: overview and data requirements Aerosol forecasting and assimilation at ECMWF: overview and data requirements Angela Benedetti Luke Jones ECMWF Acknowledgements: Jean-Jacques Morcrette, Carole Peubey, Olaf Stiller, and Richard Engelen

More information

CALIPSO Data Products: progress and status

CALIPSO Data Products: progress and status ICAP 13 July 2016 CALIPSO Data Products: progress and status Dave Winker, Jason Tackett NASA Langley Research Center With help from: Mark Vaughan, Stuart Young, Jay Kar, Ali Omar, Zhaoyan Liu, Brian Getzewich,

More information

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( )

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( ) 10 th Anniversary Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project (2000-2010) 2010) Alex PAPAYANNIS (Coordinator) and the EARLINET Team Outline Role of aerosols

More information

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer Comparison of inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer Peter DeCarlo Remote Sensing Project April 28, 23 Introduction The comparison of direct in-situ

More information

VERTICAL PROFILING OF AEROSOL TYPES OBSERVED ACROSS MONSOON SEASONS WITH A RAMAN LIDAR IN PENANG ISLAND, MALAYSIA

VERTICAL PROFILING OF AEROSOL TYPES OBSERVED ACROSS MONSOON SEASONS WITH A RAMAN LIDAR IN PENANG ISLAND, MALAYSIA VERTICAL PROFILING OF AEROSOL TYPES OBSERVED ACROSS MONSOON SEASONS WITH A RAMAN LIDAR IN PENANG ISLAND, MALAYSIA Presentation by: Assoc Prof Dr. Lim Hwee San School of Physics, Universiti Sains Malaysia

More information

Stratospheric and Upper Tropospheric Aerosols over 22 Years at 45 South

Stratospheric and Upper Tropospheric Aerosols over 22 Years at 45 South Stratospheric and Upper Tropospheric Aerosols over 22 Years at 45 South J Ben Liley National Institute of Water & Atmospheric Research, Lauder, NZ Tomohiro Nagai, Tetsu Sakai Meteorological Research Institute,

More information

GLAS Atmospheric Products User Guide November, 2008

GLAS Atmospheric Products User Guide November, 2008 GLAS Atmospheric Products User Guide November, 2008 Overview The GLAS atmospheric measurements utilize a dual wavelength (532 nm and 1064 nm) transmitting laser to obtain backscattering information on

More information

Integrazione di tecniche di osservazione per la caratterizzazione di aerosol di origine vulcanica

Integrazione di tecniche di osservazione per la caratterizzazione di aerosol di origine vulcanica Integrazione di tecniche di osservazione per la caratterizzazione di aerosol di origine vulcanica Amodeo Aldo, Boselli Antonella, D'Amico Giuseppe, Giunta Aldo, Madonna Fabio, Mona Lucia, Pappalardo Gelsomina

More information

Continuous observation of aerosols in East Asia using a ground based lidar network (AD NET)

Continuous observation of aerosols in East Asia using a ground based lidar network (AD NET) International Workshop on Air Quality in Asia, Hanoi, Vietnam. June 24th 26th, 2014 Continuous observation of aerosols in East Asia using a ground based lidar network (AD NET) Nobuo Sugimoto, Tomoaki Nishizawa,

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

>

> Integrated use of remote sensing and Lidar techniques for the study of air pollution and optical properties of the atmosphere in Cyprus > http://cyprusremotesensing.com/ilatic/ > The project ILATIC "Integrated

More information

Main Activities / Stelios Kazadzis

Main Activities / Stelios Kazadzis Main Activities / Stelios Kazadzis Solar radiation measurements/modeling Aerosol optical properties Solar Energy Participation in projects New proposals Services Infrastructure Supervising publications

More information

MISR remote sensing of tropospheric aerosols

MISR remote sensing of tropospheric aerosols MISR remote sensing of tropospheric aerosols David J. Diner, John V. Martonchik, Ralph A. Kahn Jet Propulsion Laboratory, California Institute of Technology Michel M. Verstraete Institute for Environment

More information

Supplement of Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

Supplement of Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar Supplement of Atmos. Chem. Phys., 16, 4539 4554, 2016 http://www.atmos-chem-phys.net/16/4539/2016/ doi:10.5194/acp-16-4539-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Studying

More information

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA Global NEST Journal, Vol 8, No 3, pp 204-209, 2006 Copyright 2006 Global NEST Printed in Greece. All rights reserved TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA A.A. ACULININ

More information

The Need For Meteoritic Dust In The Stratosphere

The Need For Meteoritic Dust In The Stratosphere Global LIDAR Remote Sensing of Stratospheric Aerosols and Comparison with WACCM/CARMA: The Need For Meteoritic Dust In The Stratosphere CESM Whole Atmosphere Working Group Meeting 23 June 2011 Breckenridge,

More information

Remote Sensing Systems Overview

Remote Sensing Systems Overview Remote Sensing Systems Overview Remote Sensing = Measuring without touching Class objectives: Learn principles for system-level understanding and analysis of electro-magnetic remote sensing instruments

More information

Inversion of Sun & Sky Radiance to Derive Aerosol Properties from AERONET

Inversion of Sun & Sky Radiance to Derive Aerosol Properties from AERONET Inversion of Sun & Sky Radiance to Derive Aerosol Properties from AERONET Oleg Dubovik (GEST/UMBC, NASA/GSFC) Contributors: Brent Holben,, Alexander Smirnov, Tom Eck, Ilya Slutsker, Tatyana Lapyonok, AERONET

More information

DS1 2010; 2011; 2015; 2018), 2015; 2017), GRASP

DS1 2010; 2011; 2015; 2018), 2015; 2017), GRASP Interactive comment on Impact of mineral dust on shortwave and longwave radiation: evaluation of different vertically-resolved parameterizations in 1-D radiative transfer computations by Maria José Granados-Muñoz

More information

VIIRS SDR Cal/Val: S-NPP Update and JPSS-1 Preparations

VIIRS SDR Cal/Val: S-NPP Update and JPSS-1 Preparations VIIRS SDR Cal/Val: S-NPP Update and JPSS-1 Preparations VIIRS SDR Cal/Val Posters: Xi Shao Zhuo Wang Slawomir Blonski ESSIC/CICS, University of Maryland, College Park NOAA/NESDIS/STAR Affiliate Spectral

More information

Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-pacific

Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-pacific JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd005274, 2005 Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-pacific

More information

Regional evaluation of an advanced very high resolution radiometer (AVHRR) two-channel aerosol retrieval algorithm

Regional evaluation of an advanced very high resolution radiometer (AVHRR) two-channel aerosol retrieval algorithm JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003jd003817, 2004 Regional evaluation of an advanced very high resolution radiometer (AVHRR) two-channel aerosol retrieval algorithm Tom X.-P. Zhao,

More information

4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING

4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING 4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING C. Russell Philbrick *, Timothy Wright, Michelle Snyder, Hans Hallen North Carolina State University, Raleigh NC Andrea M. Brown,

More information

Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active/Passive Retrievals of Aerosol Extinction Profiles

Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active/Passive Retrievals of Aerosol Extinction Profiles Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active/Passive Retrievals of Aerosol Extinction Profiles Richard Ferrare, Sharon Burton, Chris Hostetler, John Hair, Anthony Cook,

More information

Projeto Temático FAPESP 2013/ Climate Ecosystems Atmospheric Composition

Projeto Temático FAPESP 2013/ Climate Ecosystems Atmospheric Composition Projeto Temático FAPESP 2013/05014-0 Climate Ecosystems Atmospheric Composition GoAmazon2014/15 Experiment Manaus is a city of 2 million people surrounded by just forest in a radius of 1.500 Km. UNIQUE

More information

Remote Sensing ISSN

Remote Sensing ISSN Remote Sens. 2010, 2, 2127-2135; doi:10.3390/rs2092127 Communication OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Determination of Backscatter-Extinction Coefficient Ratio

More information

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 Graphics: ESA Graphics: ESA Graphics: ESA Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 S. Noël, S. Mieruch, H. Bovensmann, J. P. Burrows Institute of Environmental

More information

2.3 Fundamentals of Lidar (Fabio Madonna)

2.3 Fundamentals of Lidar (Fabio Madonna) .3 Fundamentals of idar (Fabio Madonna) The lidar profiling technique (Fiocco, 1963) is based on the study of the interaction between a laser radiation sent into the atmosphere and the atmospheric constituents.

More information

Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL)

Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL) Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL) Title of project: Study of the atmospheric aerosols, water vapor and temperature by LIDAR Project leader and

More information