Remote Sensing ISSN

Size: px
Start display at page:

Download "Remote Sensing ISSN"

Transcription

1 Remote Sens. 2010, 2, ; doi: /rs Communication OPEN ACCESS Remote Sensing ISSN Determination of Backscatter-Extinction Coefficient Ratio for LIDAR-Retrieved Aerosol Optical Depth Based on Sunphotometer Data Pak Wai Chan Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong, China; Tel.: ; Fax: Received: 5 August 2010; in revised form: 6 September 2010 / Accepted: 6 September 2010 / Published: 9 September 2010 Abstract: Backscattered power data from the Doppler LIght Detection And Ranging (LIDAR) systems at the Hong Kong International Airport (HKIA) could be used to obtain the extinction coefficient of the troposphere by combining with the meteorological optical range (MOR) data from the nearby forward scatter sensor. The Range-height Indicator (RHI) scan of the LIDAR is then utilized to derive the vertical profile of extinction coefficient, which is integrated with height to obtain the aerosol optical depth (AOD). In the retrieval of extinction coefficient profile, there is a power exponent of unknown value relating the backscattered power and the extinction coefficient. This exponent (called the backscatter-extinction coefficient ratio) depends on the optical properties of the aerosol in the air, and is normally assumed to be 1. In the present study, the value of this ratio is established by comparing the AOD measurements by a hand-held sunphotometer and the LIDAR-based AOD estimate in one winter (October 2008 to January 2009), which is the season with the largest number of haze episodes, and one summer-winter-spring period of the following year (July 2009 to May 2010) at HKIA. It is found to be about 1.4. The sensitivity of extinction coefficient profile to the value of the ratio is also examined for two cases in the study period, one good visibility day and one hazy day. Keywords: LIDAR; sunphotometer; forward scatter sensor; aerosol optical depth 1. Introduction Aerosol optical depth (AOD) data are useful in the monitoring of hazy weather. Such data can be obtained from meteorological satellite observations (e.g., Moderate Resolution Imaging

2 Remote Sens. 2010, Spectroradiometer, MODIS) and ground-based LIDAR data [1]. At the Hong Kong International Airport (HKIA), two Doppler LIDAR systems of the Hong Kong Observatory (HKO) have been in operation for windshear alerting. At the same time, the backscattered power data from the LIDAR, coupled with the meteorological optical range (MOR) readings from the nearby forward scatter sensors, could be used to retrieve the vertical profile of extinction coefficient, which is integrated with height to give the AOD. In retrieving the extinction coefficient profile using Klett s method ([1,2]), it is assumed that the backscatter coefficient β is related to the extinction coefficient σ through a power law, namely, β α σ k. The power index k, which is called backscatter-extinction coefficient logarithmic ratio or backscatter-extinction coefficient ratio in short in this paper, is unknown theoretically and dependent on the optical properties of the aerosol in the air. It is common to assume that k = 1. However, there are many studies based on LIDAR measurements that k may not be equal to 1. For instance, in a study at Lanzhou, China, k is found to be (see [3]). LIDAR observations of aerosol have been made in Hong Kong, and some observations are reported in [4-6]. The value of k is established in this paper using AOD measurements of a hand-held sunphotometer (Microtops II) as ground truth. As the sunphotometer has not been used at HKIA for a long time, only the data of one winter (October 2008 to January 2009), which is the season with the highest number of hazy days, and one summer-winter-spring (July 2009 to May 2010) are considered in this paper. Only the data from the south runway LIDAR (location in Figure 1) are considered in the present study. The backscattered profiles are taken from Range-height Indicator (RHI) scans at an azimuth angle of 70 degrees from the north, as shown by the arrow in Figure 1. The LIDAR data are combined with the MOR readings from the forward scatter sensor near the center of the south runway (location in Figure 1) in retrieving the extinction coefficient profile. Figure 1. Location of the LIDAR (blue dot) and the direction of the LIDAR RHI scans considered in the present study. The red dots indicate the locations of the forward scatter sensors along the two runways. The forward scatter sensor used in the study is indicated by a red arrow.

3 Remote Sens. 2010, Calculation of AOD The calculation methodology is the same as that in [1] and only a summary of the major equations is given here. The distance-corrected backscattered power S of the LIDAR could be used to retrieve the extinction coefficient profile of the troposphere using Klett s method based on the following equation: σ( r) σ exp[( S( r) S rm 1 2 (1) exp[( S( r' ) Sm ) / k] dr' k r m m ) / k] where those quantities with subscript m are the corresponding values at a reference distance. The extinction coefficient σ for the LIDAR s wavelength (2,022 nm) is adjusted to that at the visible range (500 nm), indicated as σ. The latter quantity is then integrated with height to give AOD: z max Following [1], the maximum height z max is taken to be 4 km. AOD σ' ( z) dz (2) The LIDAR in use in the present study is calibrated for the radial velocity and it is not calibrated for the backscattered power. As such, the backscattered data from the LIDAR shows the relative variation of the aerosol concentration (in case of haze) in the troposphere. The accuracy of the LIDAR-derived AOD would then depend on that of the meteorological optical range (MOR) measurement from the forward scatter sensor in use. For the model considered at HKIA (FD-12P at Vaisala), the accuracy of MOR is within 10% for visibility less than 10 km. The performance of Microtops II in the determination of AOD has been studied in [7]. The same model of sun photometer has been used at HKIA. It has been calibrated at the factory before being used in Hong Kong. According to the manufacturer, the AOD measurement from Microtops II has an accuracy of Selection of k Based on Data from October 2008 to January 2009 The AOD values calculated from the LIDAR are compared with the actual measurements from the sunphotometer. In the LIDAR retrieval, the ratio k is varied between 0.5 and 2.0 at a step of 0.1. For each value of k, the LIDAR AOD is plotted against the sunphotometer AOD for the whole study period and the data points are fitted with a straight line using total least square technique (as in [1]). Three quantities of the best-fit straight line are considered, namely, the slope, y-intercept and correlation coefficient (R 2 ). Moreover, the root-mean-square (r.m.s.) difference between the two AOD datasets is considered. The variations of the above-mentioned quantities with k are shown in Figure 2(a d). The slope of the best fit straight line is closest to 1 and the corresponding y-intercept is closest to 0 for k = 1.4. The R 2 and r.m.s. difference also flat out with k for k 1.2. As such, the optimum value of k for the airport area is about 1.4, at least based on the data in the study period (October 2008 to January 2009). 0

4 Remote Sens. 2010, Figure 2. Variation of the following quantities with k: (a) slope, (b) y-intercept, and (c) correlation coefficient of the best fit straight line, and (d) root-mean-square difference, between AOD from LIDAR and AOD from sun photometer during the period October 2008 to January (a) (b) (c) (d) The AOD data points and the best fit straight line at k = 1.4 are shown in Figure 3(a). As a comparison, the corresponding scatter plot for MODIS AOD vs. sunphotometer AOD is given in Figure 3(b) (note: study period is the same but the actual observation times may be different because Figure 3(b) only includes those data points when MODIS AOD data are available). The slopes and the y-intercepts of the best fit straight lines in Figure 3(a,b) are of similar magnitude. The R 2 for MODIS is higher, but of a magnitude comparable with that for LIDAR. For the cases under consideration in the present study, there does not seem to be any signal of suspending aerosols above 4 km from the LIDAR s backscattered data. As such, though integration is only made up to 4 km above ground, the LIDAR-based AOD is expected to have a magnitude comparable with, instead of smaller than, that measured by the sunphotometer. As a result, the optimal value of k is determined based on, among others, the closeness of the slope of the best-fit straight line to unity by considering all the slopes above and below unity, instead of focusing on those slope values below unity only. In fact, for the optimal value of k = 1.4, the slope is just 1.003, which is very close to 1.

5 Remote Sens. 2010, Figure 3. Scatter plot of AOD: (a) between LIDAR and sun photometer, and (b) between MODIS and sun photometer. (a) (b) 4. Selection of k Based on Data from July 2009 to May 2010 The comparison study in Section 3 has been repeated for the longer period of time in the next year, namely, between July 2009 and May 2010, covering more seasons (summer, winter to the spring of the next year). The objective is to find out if the optimal value of k determined in the previous year could be applicable in the next year and over other seasons as well. From the slope of the best-fit straight line between LIDAR-measured AOD and sunphotometer-measured AOD (Figure 4(a)), it is closest to unity for k in the order of 0.9. However, for larger values of k, the slope still does not deviate significantly from unity. For instance, for k = 1.4, the slope is about From the y-intercept of the best-fit straight line (Figure 4(b)), it is closer to zero when the k value is larger, approaching 2.0. For k in the region of 1.4, the y-intercept is about -0.02, which is already rather small. From the correlation coefficient of the data points to the best-fit straight line (Figure 4(c)), it reaches a maximum value of about 0.75 for k = 0.8 or above. There are some fluctuations in the value of the correlation coefficient for lager values of k, but such changes are not considered to be significant. From the r.m.s. difference between the two sets of data (Figure 4(d)), it reaches a minimum value of about 0.15 for k = 1.3. Again, there are some fluctuations in the r.m.s. difference value for larger values of k, but such changes do not appear to be significant. Balancing all the factors, it appears that k = 1.4 could still be considered as an optimal value. The corresponding plot between LIDAR-derived AOD and sunphotometer-measured AOD can be found in Figure 5. Data collection is ongoing at HKIA. Further studies would be conducted in the future to see the variation of the optimal value of k in more years as well as the seasonal variation of this value.

6 Remote Sens. 2010, Figure 4. Variation of the following quantities with k: (a) slope, (b) y-intercept, and (c) correlation coefficient of the best fit straight line, and (d) root-mean-square difference, between AOD from LIDAR and AOD from sun photometer during the period July 2009 to May (a) (b) (c) (d) Figure 5. Scatter plot of the LIDAR-derived AOD and sunphotometer-measured AOD in the period July 2009 to May As a preliminary study of the seasonal and year-to-year variability in the relationship between LIDAR-derived AOD and sunphotometer-measured AOD, the slope of the best-fit straight line for the two datasets is considered in different seasons with sufficiently large samples, namely, samples of at

7 Remote Sens. 2010, least 30. This sample requirement is only fulfilled in autumn 2008 (September to November), winter 2008 to 2009 (December to February next year), autumn 2009, and winter 2009 to The results are summarized in Table 1. It can be seen that there are variations in the values of the slopes, varying between 0.72 and Given the limited amount of data available, it could not be concluded which season has the best result in terms of the slope being closest to unity. But year-to-year variability in the slope of the best-fit straight line can be seen, which may be related to the characteristics of the aerosols. With the accumulation of more data, such variability could be studied by comparing, for example, the chemical composition of the aerosols. Table 1. Summary of the slope of the best-fit straight line between LIDAR-derived AOD and sunphotometer-measured AOD in different seasons. Only those periods with more than 30 samples are considered. The value of k = 1.4 is used. Period Slope Number of samples autumn winter 2008 to autumn winter 2009 to Sensitivity of Extinction Coefficient Profile to k To demonstrate the sensitivity of extinction coefficient profile to the choice of k, two case studies have been conducted. The first occurs in the morning of 20 October At that time, visibility was good at HKIA and the human-observed visibility value was about 15 km. MODIS data show that AOD is relatively low along the coast of south China (Figure 6(a)), in the region of 0.1 to 0.2 only. Visibility in the region was in the order of km. RHI scan of the LIDAR indicates that the backscattered power (and thus aerosol loading of the air) is higher from the ground up to around 1.1 km above (Figure 6(b)). The corresponding extinction coefficient profiles based on different values of k are given in Figure 6(c). It could be seen that the profiles for different k values have generally similar appearance. In particular, the extinction coefficient is higher below 1 km or so. However, the fluctuations of σ with altitude are more exaggerated for smaller value of k. As such, the AOD based on a smaller value of k (such as 0.5, with an AOD value of about 0.23) deviates more significantly from the sunphotometer measurement (about 0.28). Similar behavior is also observed on a hazy day. During the daytime of 15 December 2008, it remained hazy at HKIA with the visibility hovering around 4000 m due to the aerosols brought about by the northwesterly sea breeze. MODIS data show that AOD is higher around the Pearl River Estuary compared with the inland areas of southern China (Figure 6(d)). RHI scan of the LIDAR (Figure 6(e)) indicates that, apart from the higher backscattered power values below 1.1 km or so, there are two elevated bands of higher values as well at about 2 km and 2.5 km above the sea level. As such, the retrieved σ does not drop significantly with altitude until at about 3 km. Once again, the σ profile (Figure 6(f)) shows more exaggerated fluctuations with height for a smaller value of k, particularly between 2 and 3.3 km (for k = 0.5). Thus, the resulting AOD value (1.37 for k = 0.5) deviates more from the sunphotometer measurement (1.25).

8 Remote Sens. 2010, Figure 6. Data plots for the two events under study in this paper, namely, 20 October 2008: (a) MODIS AOD map at 03:16 UTC, 20 Oct 2008, (b) LIDAR RHI plot of backscattered power, (c) LIDAR-derived extinction coefficient profiles, and 15 December 2008: (d) MODIS AOD map at 02:27 UTC, 15 Dec 2008, (e) LIDAR RHI plot of backscattered power, (f) LIDAR-derived extinction coefficient profiles. (a) (b) (c) (d) (e) (f)

9 Remote Sens. 2010, Conclusions Based on the limited dataset in the present study, the backscatter-extinction coefficient ratio is found to have an optimum value of 1.4, at least for the winter of and for the summer-winter-spring of This is established by considering the RHI scan of a Doppler LIDAR and the MOR measurement by a nearby forward scatter sensor. The sunphotometer data are taken as the truth of AOD in the establishment of the optimal value of k. Data of two years have been considered, and as such it is believed that the optimal value of k so determined is quite representative of the condition at HKIA. More sunphotometer data would be collected to study the seasonal and possibly the year-to-year variation of k. Furthermore, the impact of the different choices of k on the climatology of the LIDAR-based visibility map [8] would also be considered. References 1. Chan, P.W. Comparison of aerosol optical depth (AOD) derived from ground-based LIDAR and MODIS. The Open Atmos. Sci. J. 2009, 3, Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, Zhang, W.Y.; Wang, Y.Q.; Song, J.Y.; Zhang, L.; Sun L. Research on logarithmic ratio k of aerosol backscatter extinction using Lidar. Plateau Meteorol. 2008, 27, Cheng, A.Y.S.; Walton, A.; Chan, R.L.M.; Chan, C.S. Mobile micro-pulse LiDAR measurement in Hong Kong. In Optical Technologies for Atmospheric, Ocean, and Environmental Studies; Lu, D., Matvienko, G.G., Eds.; Proceedings of the SPIE: Bellingham, WA, USA, 2005; Volume 5832, pp He, Q.; Li, C.; Mao, J.; Lau, A.K.H.; Chu, D.A. Analysis of aerosol vertical distribution and variability in Hong Kong. J. Geophys. Res. 2008, 113, D Yang, X.; Wenig, M. Study of columnar aerosol size distribution in Hong Kong. Atmos. Chem. Phys. 2009, 9, Ichoku, C.; Levy, R.; Kaufman, Y.J.; Remer, L.A.; Li, R.; Martins, V.J.; Holben, B.N.; Abuhassan, N.; Slutsker, I.; Eck, T.F.; Pietras, C. Analysis of the performance characteristics of the five-channel Microtops II sun photometer for measuring aerosol optical thickness and precipitable water vapour. J. Geophys. Res. 2002, 107, Chan, L.M.; Chan, P.W.; Cheng, Y.S. Generation of visibility map at the Hong Kong International Airport (HKIA) using LIDAR data. In Proceedings of Third Symposium on LiDAR Atmospheric Applications, American Meteorological Society, San Antonio, TX, USA, 2007; January by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (

Reprint 850. Within the Eye of Typhoon Nuri in Hong Kong in C.P. Wong & P.W. Chan

Reprint 850. Within the Eye of Typhoon Nuri in Hong Kong in C.P. Wong & P.W. Chan Reprint 850 Remote Sensing Observations of the Subsidence Zone Within the Eye of Typhoon Nuri in Hong Kong in 2008 C.P. Wong & P.W. Chan 8 th International Symposium on Tropospheric Profiling: Integration

More information

Field study of the latest transmissometers at Hong Kong International Airport

Field study of the latest transmissometers at Hong Kong International Airport Field study of the latest transmissometers at Hong Kong International Airport P. W. Chan Hong Kong Observatory 134A Nathan Road, Kowloon, Hong Kong, China Tel:+852 2926 8435, Fax: +852 2311 9448, Email:

More information

Application of microwave radiometer and wind profiler data in the estimation of wind gust associated with intense convective weather

Application of microwave radiometer and wind profiler data in the estimation of wind gust associated with intense convective weather Application of microwave radiometer and wind profiler data in the estimation of wind gust associated with intense convective weather P W Chan 1 and K H Wong 2 1 Hong Kong Observatory, 134A Nathan Road,

More information

The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China

The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China Lei Li, 1 Pak Wai Chan, 2 Honglong Yang, 1 Rong Zong, 1 Xia Mao, 1 Yin Jiang 1 and Hongbo Zhuang

More information

A tail strike event of an aircraft due to terrain-induced wind shear at the Hong Kong International Airport

A tail strike event of an aircraft due to terrain-induced wind shear at the Hong Kong International Airport METEOROLOGICAL APPLICATIONS Meteorol. Appl. 21: 504 511 (2014) Published online 14 March 2012 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/met.1303 A tail strike event of an aircraft due

More information

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA Global NEST Journal, Vol 8, No 3, pp 204-209, 2006 Copyright 2006 Global NEST Printed in Greece. All rights reserved TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA A.A. ACULININ

More information

Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers

Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers Christoph Münkel Senior Scientist Vaisala GmbH, Hamburg,

More information

Wind data collected by a fixed-wing aircraft in the vicinity of a typhoon over the south China coastal waters

Wind data collected by a fixed-wing aircraft in the vicinity of a typhoon over the south China coastal waters Wind data collected by a fixed-wing aircraft in the vicinity of a typhoon over the south China coastal waters P.W. Chan * and K.K. Hon Hong Kong Observatory, Hong Kong, China Abstract: The fixed-wing aircraft

More information

P2.3 Performance of drop-counting rain gauges in an operational environment. P.W. Chan * and C.M. Li Hong Kong Observatory, Hong Kong, China

P2.3 Performance of drop-counting rain gauges in an operational environment. P.W. Chan * and C.M. Li Hong Kong Observatory, Hong Kong, China P2.3 Performance of drop-counting rain gauges in an operational environment P.W. Chan * and C.M. Li Hong Kong Observatory, Hong Kong, China 1. INRODUCION Located at a subtropical coastal area, it is quite

More information

J1.2 Short-term wind forecasting at the Hong Kong International Airport by applying chaotic oscillatory-based neural network to LIDAR data

J1.2 Short-term wind forecasting at the Hong Kong International Airport by applying chaotic oscillatory-based neural network to LIDAR data J1.2 Short-term wind forecasting at the Hong Kong International Airport by applying chaotic oscillatory-based neural network to LIDAR data K.M. Kwong Hong Kong Polytechnic University, Hong Kong, China

More information

P1.17 Super-high-resolution Numerical Simulation of Atmospheric Turbulence in an Area of Complex Terrain

P1.17 Super-high-resolution Numerical Simulation of Atmospheric Turbulence in an Area of Complex Terrain P1.17 Super-high-resolution Numerical Simulation of Atmospheric Turbulence in an Area of Complex Terrain P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Turbulent airflow occurs at

More information

COMPARISON OF DOPPLER LIDAR OBSERVATIONS OF SEVERE TURBULENCE AND AIRCRAFT DATA. S.T. Chan * and C.W. Mok Hong Kong Observatory, Hong Kong

COMPARISON OF DOPPLER LIDAR OBSERVATIONS OF SEVERE TURBULENCE AND AIRCRAFT DATA. S.T. Chan * and C.W. Mok Hong Kong Observatory, Hong Kong 4.6 COMPARISON OF DOPPLER LIDAR OBSERVATIONS OF SEVERE TURBULENCE AND AIRCRAFT DATA S.T. Chan * and C.W. Mok Hong Kong Observatory, Hong Kong 1. INTRODUCTION The Hong Kong International Airport (HKIA)

More information

8.7 Calculation of windshear hazard factor based on Doppler LIDAR data. P.W. Chan * Hong Kong Observatory, Hong Kong, China

8.7 Calculation of windshear hazard factor based on Doppler LIDAR data. P.W. Chan * Hong Kong Observatory, Hong Kong, China 8.7 Calculation of windshear hazard factor based on Doppler LIDAR data P.W. Chan * Hong Kong Observatory, Hong Kong, China Paul Robinson, Jason Prince Aerotech Research 1. INTRODUCTION In the alerting

More information

Micro pulse lidar observation of high altitude aerosol layers at Visakhapatnam located on the east coast of India

Micro pulse lidar observation of high altitude aerosol layers at Visakhapatnam located on the east coast of India GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L03815, doi:10.1029/2006gl028199, 2007 Micro pulse lidar observation of high altitude aerosol layers at Visakhapatnam located on the east coast of India K. Niranjan,

More information

Aerosol impact and correction on temperature profile retrieval from MODIS

Aerosol impact and correction on temperature profile retrieval from MODIS GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L13818, doi:10.1029/2008gl034419, 2008 Aerosol impact and correction on temperature profile retrieval from MODIS Jie Zhang 1,2 and Qiang Zhang 1,2 Received 24 April

More information

Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal

Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal Advances in Space Research 33 (2004) 1104 1108 www.elsevier.com/locate/asr Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal S. Dey a, S. Sarkar b, R.P. Singh a, * a Department

More information

AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER ABSTRACT

AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER ABSTRACT AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER Christoph Münkel 1, Reijo Roininen 1 Vaisala GmbH, Schnackenburgallee 1d, 55 Hamburg, Germany Phone +9 89 1, Fax +9 89 11, E-mail christoph.muenkel@vaisala.com

More information

P. W. Chan and K. K. Hon. 1. Introduction

P. W. Chan and K. K. Hon. 1. Introduction Advances in Meteorology Volume 16, Article ID 1454513, 9 pages http://dx.doi.org/1.1155/16/1454513 Research Article Observation and Numerical Simulation of Terrain-Induced Windshear at the Hong Kong International

More information

Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data

Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data D. N. Whiteman, D. O C. Starr, and G. Schwemmer National Aeronautics and Space Administration Goddard

More information

An Analysis of Aerosol Optical Properties During Seasonal Monsoon Circulation

An Analysis of Aerosol Optical Properties During Seasonal Monsoon Circulation International Workshop on Land Use/Cover Changes and Air Pollution in Asia 4-7 August 2015 IPB ICC, Bogor, Indonesia An Analysis of Aerosol Optical Properties During Seasonal Monsoon Circulation Lim Hwee

More information

Remote Sensing Systems Overview

Remote Sensing Systems Overview Remote Sensing Systems Overview Remote Sensing = Measuring without touching Class objectives: Learn principles for system-level understanding and analysis of electro-magnetic remote sensing instruments

More information

Large aerosol optical depths observed at an urban location in southern India associated with rain-deficit summer monsoon season

Large aerosol optical depths observed at an urban location in southern India associated with rain-deficit summer monsoon season Annales Geophysicae (2004) 22: 3073 3077 SRef-ID: 1432-0576/ag/2004-22-3073 European Geosciences Union 2004 Annales Geophysicae Large aerosol optical depths observed at an urban location in southern India

More information

Aerosol Optical Depth investigated with satellite remote sensing observations in China

Aerosol Optical Depth investigated with satellite remote sensing observations in China IOP Conference Series: Earth and Environmental Science OPEN ACCESS Aerosol Optical Depth investigated with satellite remote sensing observations in China To cite this article: Hu Die et al 2014 IOP Conf.

More information

Impact of aerosol on air temperature in Baghdad

Impact of aerosol on air temperature in Baghdad Journal of Applied and Advanced Research 2017, 2(6): 317 323 http://dx.doi.org/10.21839/jaar.2017.v2i6.112 http://www.phoenixpub.org/journals/index.php/jaar ISSN 2519-9412 / 2017 Phoenix Research Publishers

More information

Seasonal Aerosol Vertical Distribution and Optical Properties over North China Xing-xing GAO, Yan CHEN, Lei ZHANG * and Wu ZHANG

Seasonal Aerosol Vertical Distribution and Optical Properties over North China Xing-xing GAO, Yan CHEN, Lei ZHANG * and Wu ZHANG 2017 International Conference on Energy, Environment and Sustainable Development (EESD 2017) ISBN: 978-1-60595-452-3 Seasonal Aerosol Vertical Distribution and Optical Properties over North China Xing-xing

More information

Numerical simulation of the low visibility event at the. Hong Kong International Airport on 25 December 2009

Numerical simulation of the low visibility event at the. Hong Kong International Airport on 25 December 2009 Numerical simulation of the low visibility event at the Hong Kong International Airport on 25 December 2009 P. W. Chan, Hong Kong Observatory, Hong Kong, China; and T. Yao and J. C. H. Fung, Hong Kong

More information

A STUDY OF AIR QUALITY IN THE SOUTHEASTERN HAMPTON-NORFOLK-VIRGINIA BEACH REGION WITH AIRBORNE LIDAR MEASUREMENTS AND MODIS AOD RETRIEVALS

A STUDY OF AIR QUALITY IN THE SOUTHEASTERN HAMPTON-NORFOLK-VIRGINIA BEACH REGION WITH AIRBORNE LIDAR MEASUREMENTS AND MODIS AOD RETRIEVALS A STUDY OF AIR QUALITY IN THE SOUTHEASTERN HAMPTON-NORFOLK-VIRGINIA BEACH REGION WITH AIRBORNE LIDAR MEASUREMENTS AND MODIS AOD RETRIEVALS Jasper 1, Russell De Young 2, D. Allen Chu 3 1 Hampton University,

More information

5.3 INVESTIGATION OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER USING A NOVEL ROBUST ALGORITHM. Christoph Münkel * Vaisala GmbH, Hamburg, Germany

5.3 INVESTIGATION OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER USING A NOVEL ROBUST ALGORITHM. Christoph Münkel * Vaisala GmbH, Hamburg, Germany 5. INVESTIGATION OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER USING A NOVEL ROBUST ALGORITHM Christoph Münkel * Vaisala GmbH, Hamburg, Germany Reijo Roininen Vaisala Oyj, Helsinki, Finland 1. INTRODUCTION

More information

Attenuation of ultraviolet radiation reaching the surface due to atmospheric aerosols in Guangzhou

Attenuation of ultraviolet radiation reaching the surface due to atmospheric aerosols in Guangzhou Article Atmospheric Science July 2012 Vol.57 No.21: 2759 2766 doi: 10.1007/s11434-012-5172-5 Attenuation of ultraviolet radiation reaching the surface due to atmospheric aerosols in Guangzhou DENG XueJiao

More information

Continuous Observations of Aerosol Profiles with a Two-Wavelength Mie-Scattering Lidar in Guangzhou in PRD2006

Continuous Observations of Aerosol Profiles with a Two-Wavelength Mie-Scattering Lidar in Guangzhou in PRD2006 1822 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 48 Continuous Observations of Aerosol Profiles with a Two-Wavelength Mie-Scattering Lidar in Guangzhou in PRD2006

More information

Regional Air Quality Monitoring and Forecasting using Remote Sensing Satellites, Ground-level Measurements and Numerical Modelling

Regional Air Quality Monitoring and Forecasting using Remote Sensing Satellites, Ground-level Measurements and Numerical Modelling Regional Air Quality Monitoring and Forecasting using Remote Sensing Satellites, Ground-level Measurements and Numerical Modelling PI: Santo V. Salinas [a] Collaborators: Ellsworth J. Welton [b], Brent

More information

Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II. (MICROTOPS II) sun-photometer

Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II. (MICROTOPS II) sun-photometer Determination of aerosol optical depth using a Micro Total Ozone Spectrometer II (MICROTOPS II) sun-photometer Agossa Segla, Antonio Aguirre, and VivianaVladutescu Office of Educational Program (FAST Program)

More information

In-Orbit Vicarious Calibration for Ocean Color and Aerosol Products

In-Orbit Vicarious Calibration for Ocean Color and Aerosol Products In-Orbit Vicarious Calibration for Ocean Color and Aerosol Products Menghua Wang NOAA National Environmental Satellite, Data, and Information Service Office of Research and Applications E/RA3, Room 12,

More information

>

> Integrated use of remote sensing and Lidar techniques for the study of air pollution and optical properties of the atmosphere in Cyprus > http://cyprusremotesensing.com/ilatic/ > The project ILATIC "Integrated

More information

A study on the aerosol extinction-to-backscatter ratio. ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong.

A study on the aerosol extinction-to-backscatter ratio. ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong. A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong Q. S. He, C. C. Li, J. T. Mao, A. K. H. Lau, P. R. Li To cite this version: Q. S. He,

More information

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2 JP1.10 On the Satellite Determination of Multilayered Multiphase Cloud Properties Fu-Lung Chang 1 *, Patrick Minnis 2, Sunny Sun-Mack 1, Louis Nguyen 1, Yan Chen 2 1 Science Systems and Applications, Inc.,

More information

A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa

A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa A new perspective on aerosol direct radiative effects in South Atlantic and Southern Africa Ian Chang and Sundar A. Christopher Department of Atmospheric Science University of Alabama in Huntsville, U.S.A.

More information

AVIATION APPLICATIONS OF A NEW GENERATION OF MESOSCALE NUMERICAL WEATHER PREDICTION SYSTEM OF THE HONG KONG OBSERVATORY

AVIATION APPLICATIONS OF A NEW GENERATION OF MESOSCALE NUMERICAL WEATHER PREDICTION SYSTEM OF THE HONG KONG OBSERVATORY P452 AVIATION APPLICATIONS OF A NEW GENERATION OF MESOSCALE NUMERICAL WEATHER PREDICTION SYSTEM OF THE HONG KONG OBSERVATORY Wai-Kin WONG *1, P.W. Chan 1 and Ivan C.K. Ng 2 1 Hong Kong Observatory, Hong

More information

ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach

ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach Lucia Mona CNR-IMAA, Potenza, Italy mona@imaa.cnr.it and EARLINET Team OUTLINE

More information

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China Impact of different cumulus parameterizations on the numerical simulation of rain over southern China P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Convective rain occurs over southern

More information

Analysis of aerosol vertical distribution and variability in Hong Kong

Analysis of aerosol vertical distribution and variability in Hong Kong JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd009778, 2008 Analysis of aerosol vertical distribution and variability in Hong Kong Qianshan He, 1,2 Chengcai Li, 1,3 Jietai Mao, 1 Alexis

More information

Aerosol optical depth over the mountainous region in central Asia (Issyk-Kul Lake, Kyrgyzstan)

Aerosol optical depth over the mountainous region in central Asia (Issyk-Kul Lake, Kyrgyzstan) GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L05807, doi:10.1029/2004gl021746, 2005 Aerosol optical depth over the mountainous region in central Asia (Issyk-Kul Lake, Kyrgyzstan) V. K. Semenov, 1 A. Smirnov,

More information

Aerosol Retrieved from MODIS: Algorithm, Products, Validation and the Future

Aerosol Retrieved from MODIS: Algorithm, Products, Validation and the Future Aerosol Retrieved from MODIS: Algorithm, Products, Validation and the Future Presented by: Rob Levy Re-presenting NASA-GSFC s MODIS aerosol team: Y. Kaufman, L. Remer, A. Chu,, C. Ichoku,, R. Kleidman,,

More information

Variations of Aerosol Optical Depth in Bhaktapur, Nepal

Variations of Aerosol Optical Depth in Bhaktapur, Nepal TUTA/IOE/PCU Journal of the Institute of Engineering, 2017, 13(1): 133-138 TUTA/IOE/PCU Printed in Nepal 133 Variations of Aerosol Optical Depth in Bhaktapur, Nepal Niranjan Prasad Sharma Department of

More information

Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in 2002 and 2003

Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in 2002 and 2003 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd005421, 2005 Comparing aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment (SAGE) II and III satellite experiments in

More information

Ground-based Validation of spaceborne lidar measurements

Ground-based Validation of spaceborne lidar measurements Ground-based Validation of spaceborne lidar measurements Ground-based Validation of spaceborne lidar measurements to make something officially acceptable or approved, to prove that something is correct

More information

Changes in atmospheric aerosol parameters after Gujarat earthquake of January 26, 2001

Changes in atmospheric aerosol parameters after Gujarat earthquake of January 26, 2001 Advances in Space Research 33 (2004) 254 258 www.elsevier.com/locate/asr Changes in atmospheric aerosol parameters after Gujarat earthquake of January 26, 2001 Y. Okada a, *, S. Mukai a, R.P. Singh b a

More information

Satellite remote sensing of aerosols & clouds: An introduction

Satellite remote sensing of aerosols & clouds: An introduction Satellite remote sensing of aerosols & clouds: An introduction Jun Wang & Kelly Chance April 27, 2006 junwang@fas.harvard.edu Outline Principals in retrieval of aerosols Principals in retrieval of water

More information

RETRIEVAL OF AEROSOL OPTICAL DEPTH OVER URBAN AREAS USING TERRA/MODIS DATA

RETRIEVAL OF AEROSOL OPTICAL DEPTH OVER URBAN AREAS USING TERRA/MODIS DATA RETRIEVAL OF AEROSOL OPTICAL DEPTH OVER URBAN AREAS USING TERRA/MODIS DATA X. Q. Zhang a, *, L. P. Yang b, Y. Yamaguchi a a Dept. of Earth and Environmental Sciences, Graduate School of Environmental Studies,

More information

STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE

STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE Guangyao Dai 1, 2*, Songhua Wu 1, 3, Xiaoquan Song 1, 3, Xiaochun Zhai 1 1 Ocean University

More information

Supplement of Recovering long-term aerosol optical depth series ( ) from an astronomical potassium-based resonance scattering spectrometer

Supplement of Recovering long-term aerosol optical depth series ( ) from an astronomical potassium-based resonance scattering spectrometer Supplement of Atmos. Meas. Tech., 7, 4103 4116, 2014 http://www.atmos-meas-tech.net/7/4103/2014/ doi:10.5194/amt-7-4103-2014-supplement Author(s) 2014. CC Attribution 3.0 License. Supplement of Recovering

More information

Some considerations about Ångström exponent distributions

Some considerations about Ångström exponent distributions Atmos. Chem. Phys., 8, 481 489, 28 www.atmos-chem-phys.net/8/481/28/ Authors) 28. This work is distributed under the Creative Commons Attribution 3. License. Atmospheric Chemistry and Physics Some considerations

More information

VALIDATION OF AEROSOL OPTICAL THICKNESS RETRIEVED BY BAER (BEMEN AEROSOL RETRIEVAL) IN THE MEDITERRANEAN AREA

VALIDATION OF AEROSOL OPTICAL THICKNESS RETRIEVED BY BAER (BEMEN AEROSOL RETRIEVAL) IN THE MEDITERRANEAN AREA VALIDATION OF AEROSOL OPTICAL THICKNESS RETRIEVED BY BAER (BEMEN AEROSOL RETRIEVAL) IN THE MEDITERRANEAN AREA Wolfgang von Hoyningen-Huene (1), Alexander Kokhanovsky (1), John P. Burrows (1), Maria Sfakianaki

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[university of Maryland] On: 13 October 2007 Access Details: [subscription number 731842062] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

Deriving aerosol scattering ratio using range-resolved lidar ratio

Deriving aerosol scattering ratio using range-resolved lidar ratio PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 391 395 Deriving aerosol scattering ratio using range-resolved lidar ratio REJI K DHAMAN 1, V KRISHNAKUMAR 1, V

More information

Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation

Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation Sources and Properties of Atmospheric Aerosol in Texas: DISCOVER-AQ Measurements and Validation Thanks to: Rebecca Sheesley and Sascha Usenko, Baylor Barry Lefer, U. Houston, AQRP Sarah D. Brooks T. Ren,

More information

Inter-comparison of Raingauges on Rainfall Amount and Intensity Measurements in a Tropical Environment

Inter-comparison of Raingauges on Rainfall Amount and Intensity Measurements in a Tropical Environment Inter-comparison of Raingauges on Rainfall Amount and Intensity Measurements in a Tropical Environment CHAN Ying-wa, Yu Choi-loi and TAM Kwong-hung Hong Kong Observatory 134A Nathan Road, Tsim Sha Tsui,

More information

L. McMurdie, R. Houze, J. Zagrodnik, W. Petersen, M. Schwaller

L. McMurdie, R. Houze, J. Zagrodnik, W. Petersen, M. Schwaller L. McMurdie, R. Houze, J. Zagrodnik, W. Petersen, M. Schwaller International Atmospheric Rivers Conference, San Diego, CA, 9 August 2016 Goals of OLYMPEX Validate GPM satellite radar and passive microwave

More information

Assessment of MODIS-derived visible and near-ir aerosol optical properties and their spatial variability in the presence of mineral dust

Assessment of MODIS-derived visible and near-ir aerosol optical properties and their spatial variability in the presence of mineral dust GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L18814, doi:10.1029/2006gl026626, 2006 Assessment of MODIS-derived visible and near-ir aerosol optical properties and their spatial variability in the presence of

More information

The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau C. Xu, Y. M. Ma, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences xuchao@itpcas.ac.cn

More information

FORENSIC WEATHER CONSULTANTS, LLC

FORENSIC WEATHER CONSULTANTS, LLC MOST INFORMATION HAS BEEN CHANGED FOR THIS SAMPLE REPORT FORENSIC WEATHER CONSULTANTS, LLC Howard Altschule Certified Consulting Meteorologist 1971 Western Avenue, #200 Albany, New York 12203 518-862-1800

More information

SYNERGETIC USE OF ACTIVE AND PASSIVE REMOTE SENSING INSTRUMENTS FOR THE SEASONAL VARIANCE OF AEROSOLS OVER CYPRUS

SYNERGETIC USE OF ACTIVE AND PASSIVE REMOTE SENSING INSTRUMENTS FOR THE SEASONAL VARIANCE OF AEROSOLS OVER CYPRUS CEST2013 Athens, Greece Ref no: XXX Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 Formatted: English (United States) SYNERGETIC

More information

WMO Aeronautical Meteorology Scientific Conference 2017

WMO Aeronautical Meteorology Scientific Conference 2017 Session 1 Science underpinning meteorological observations, forecasts, advisories and warnings 1.3 Aerodrome throughput 1.3.1 Wake vortex detection and prediction Frequent-output sub-kilometric NWP models

More information

Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies

Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L13606, doi:10.1029/2005gl022917, 2005 Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies

More information

Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert

Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L16804, doi:10.1029/2008gl034981, 2008 Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan

More information

RADIOMETER-BASED ESTIMATION OF THE ATMOSPHERIC OPTICAL THICKNESS

RADIOMETER-BASED ESTIMATION OF THE ATMOSPHERIC OPTICAL THICKNESS RADIOMETER-BASED ESTIMATION OF THE ATMOSPHERIC OPTICAL THICKNESS Vassilia Karathanassi (), Demetrius Rokos (),Vassilios Andronis (), Alex Papayannis () () Laboratory of Remote Sensing, School of Rural

More information

Antonio Aguirre Jr. Office of Science, Faculty and Student Team Internship Program. New York City College of Technology, Brooklyn

Antonio Aguirre Jr. Office of Science, Faculty and Student Team Internship Program. New York City College of Technology, Brooklyn Retrieval of Optical and Size Parameters of Aerosols Utilizing a Multi-Filter Rotating Shadowband Radiometer and Inter-comparison with CIMEL and Microtops Sun Photometers Antonio Aguirre Jr. Office of

More information

APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING

APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING P1.14 APPLICATION OF CCNY LIDAR AND CEILOMETERS TO THE STUDY OF AEROSOL TRANSPORT AND PM2.5 MONITORING Leona A. Charles*, Shuki Chaw, Viviana Vladutescu, Yonghua Wu, Fred Moshary, Barry Gross, Stanley

More information

Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City

Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City Yonghua Wu*, Chowdhury Nazmi, Cuiya Li, Daniel Hoyos, Barry Gross, Fred Moshary NOAA-CREST and

More information

Empirical Z-Visibility Relation Found by Fog Measurements at an Airport by Cloud Radar and Optical Fog Sensors

Empirical Z-Visibility Relation Found by Fog Measurements at an Airport by Cloud Radar and Optical Fog Sensors 14a5 Empirical Z-Visibility Relation Found by Fog Measurements at an Airport by Cloud Radar and Optical Fog Sensors Matthias Bauer-Pfundstein Gerhard Peters Bernd Fischer METEK GmbH, Elmshorn, Germany

More information

Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center

Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center Sea of Okhotsk, MODIS image Feb. 6, 2007, NASA Earth Observatory Arctic Aerosol Remote Sensing Overview

More information

GMES: calibration of remote sensing datasets

GMES: calibration of remote sensing datasets GMES: calibration of remote sensing datasets Jeremy Morley Dept. Geomatic Engineering jmorley@ge.ucl.ac.uk December 2006 Outline Role of calibration & validation in remote sensing Types of calibration

More information

Visibility in Low Clouds And Its Impact on FSO Links

Visibility in Low Clouds And Its Impact on FSO Links Visibility in Low Clouds And Its Impact on FSO Links M. Ammar Al-Habash, Janae Nash, Jeff Baars, Michael Witiw, Ken Fischer, Ken Desmet Terabeam Corporation, 14833 NE 87th St., Building C, Redmond, WA

More information

A semi-empirical model for estimating diffuse solar irradiance under a clear sky condition for a tropical environment

A semi-empirical model for estimating diffuse solar irradiance under a clear sky condition for a tropical environment Available online at www.sciencedirect.com Procedia Engineering 32 (2012) 421 426 I-SEEC2011 A semi-empirical model for estimating diffuse solar irradiance under a clear sky condition for a tropical environment

More information

Aerosol Characteristics at a high-altitude station Nainital during the ISRO-GBP Land Campaign-II

Aerosol Characteristics at a high-altitude station Nainital during the ISRO-GBP Land Campaign-II Aerosol Characteristics at a high-altitude station Nainital during the ISRO-GBP Land Campaign-II Auromeet Saha, P. Pant, U.C. Dumka, P. Hegde, Manoj K. Srivastava, and Ram Sagar Aryabhatta Research Institute

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols

Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L07803, doi:10.1029/2009gl037237, 2009 Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols Xiangao Xia 1 and Xuemei Zong 1 Received 12

More information

Reprint 797. Development of a Thunderstorm. P.W. Li

Reprint 797. Development of a Thunderstorm. P.W. Li Reprint 797 Development of a Thunderstorm Nowcasting System in Support of Air Traffic Management P.W. Li AMS Aviation, Range, Aerospace Meteorology Special Symposium on Weather-Air Traffic Management Integration,

More information

Inter-comparison of Raingauges in a Sub-tropical Environment

Inter-comparison of Raingauges in a Sub-tropical Environment Inter-comparison of Raingauges in a Sub-tropical Environment TAM Kwong-hung, CHAN Ying-wa, CHAN Pak-wai and SIN Kau-chuen Hong Kong Observatory 134A Nathan Road, Tsim Sha Tsui, Kowloon, Hong Kong, China

More information

Systematic differences of two similar approaches to the determination of the AOD from Brewer direct sun UV measurements

Systematic differences of two similar approaches to the determination of the AOD from Brewer direct sun UV measurements Systematic differences of two similar approaches to the determination of the AOD from Brewer direct sun UV measurements J.L. Gómez-Amo a, A. di Sarra b, M. Stanek c, M.P. Utrillas a and J.A. Martínez-Lozano

More information

Clouds, Precipitation and their Remote Sensing

Clouds, Precipitation and their Remote Sensing Clouds, Precipitation and their Remote Sensing Prof. Susanne Crewell AG Integrated Remote Sensing Institute for Geophysics and Meteorology University of Cologne Susanne Crewell, Kompaktkurs, Jülich 24.

More information

Sensitivity Study of the MODIS Cloud Top Property

Sensitivity Study of the MODIS Cloud Top Property Sensitivity Study of the MODIS Cloud Top Property Algorithm to CO 2 Spectral Response Functions Hong Zhang a*, Richard Frey a and Paul Menzel b a Cooperative Institute for Meteorological Satellite Studies,

More information

Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active/Passive Retrievals of Aerosol Extinction Profiles

Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active/Passive Retrievals of Aerosol Extinction Profiles Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active/Passive Retrievals of Aerosol Extinction Profiles Richard Ferrare, Sharon Burton, Chris Hostetler, John Hair, Anthony Cook,

More information

Mario Flores, Graduate Student Department of Applied Mathematics, UTSA. EES 5053: Remote Sensing

Mario Flores, Graduate Student Department of Applied Mathematics, UTSA. EES 5053: Remote Sensing Mario Flores, Graduate Student Department of Applied Mathematics, UTSA Miguel Balderas, E.I.T., Graduate Student Department of Civil/Environmental Engineering, UTSA EES 5053: Remote Sensing REMOTE SENSING

More information

Final report on the operation of a Campbell Scientific CS135 ceilometer at Chilbolton Observatory

Final report on the operation of a Campbell Scientific CS135 ceilometer at Chilbolton Observatory Final report on the operation of a Campbell Scientific ceilometer at Chilbolton Observatory Judith Agnew RAL Space 27 th March 2014 Summary A Campbell Scientific ceilometer has been operating at Chilbolton

More information

Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993

Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993 Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993 Yasuhiro Sasano Mie scattering lidar was used to observe aerosol extinction

More information

A HIGH-RESOLUTION RAPIDLY-UPDATED METEOROLOGICAL DATA ANALYSIS SYSTEM FOR AVIATION APPLICATIONS

A HIGH-RESOLUTION RAPIDLY-UPDATED METEOROLOGICAL DATA ANALYSIS SYSTEM FOR AVIATION APPLICATIONS A HIGH-RESOLUTION RAPIDLY-UPDATED METEOROLOGICAL DATA ANALYSIS SYSTEM FOR AVIATION APPLICATIONS C. S. Lau *, J. T. K. Wan and M. C. Chu Department of Physics, The Chinese University of Hong Kong, Hong

More information

Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model

Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model Airborne High Spectral Resolution Lidar Aerosol Measurements and Comparisons with GEOS-5 Model Richard Ferrare, Chris Hostetler, John Hair, Anthony Cook, David Harper, Mike Obland, Ray Rogers, Sharon Burton,

More information

Aerosol Air Mass Distinctions over Jalisco using Multi-Angle Imaging Spectroradiometer

Aerosol Air Mass Distinctions over Jalisco using Multi-Angle Imaging Spectroradiometer Instituto Tecnológico y de Estudios Superiores de Occidente Repositorio Institucional del ITESO rei.iteso.mx Departamento de Electrónica, Sistemas e Informática DESI - Artículos y ponencias con arbitraje

More information

Recent lidar measurements from AWIPEV

Recent lidar measurements from AWIPEV Recent lidar measurements from AWIPEV By Christoph Ritter AWI Potsdam Aerosol and BL measurements Aims aerosol: (remote sensing sun/star-photometer, Raman lidar) Continue long-term measurements Participate

More information

European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution

European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution Werner Thomas Deutscher Wetterdienst (DWD) Hohenpeissenberg Meteorological Observatory www.dwd.de/ceilomap

More information

PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN

PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN Clelia Caracciolo1, Franco Prodi1,2, Leo Pio D Adderio2 and Eckhard Lanzinger4 1 University of Ferrara,

More information

THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL

THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL Robert Höller, 1 Akiko Higurashi 2 and Teruyuki Nakajima 3 1 JAXA, Earth Observation Research and Application Center

More information

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( )

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( ) 10 th Anniversary Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project (2000-2010) 2010) Alex PAPAYANNIS (Coordinator) and the EARLINET Team Outline Role of aerosols

More information

Remote sensing of haze aerosol over eastern China

Remote sensing of haze aerosol over eastern China ISALSaRS'17, USTC, 21-June-2017 China University of Mining and Technology Remote sensing of haze aerosol over eastern China Qin Kai( 秦凯 ), CUMT ( 中国矿业大学 ) Wu Lixin, CSU( 中南大学 ) Wong Mansing, Hong Kong

More information

Retrieval Of Aerosol Extinction Profile: Study By Using Ground Based LIDAR And Sun-Photometer

Retrieval Of Aerosol Extinction Profile: Study By Using Ground Based LIDAR And Sun-Photometer Retrieval Of Aerosol Extinction Profile: Study By Using Ground Based LIDAR And Sun-Photometer Kishore Reddy *1, Y. Nazeer Ahammed *2 And D. V. Phani Kumar #3 *1 Research Fellow, Dept of Physics, Yogi Vemana

More information

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products V. Cuomo, G. Pappalardo, A. Amodeo, C. Cornacchia, L. Mona, M. Pandolfi IMAA-CNR Istituto di Metodologie per

More information

Verification of precipitation forecasts by the DWD limited area model LME over Cyprus

Verification of precipitation forecasts by the DWD limited area model LME over Cyprus Adv. Geosci., 10, 133 138, 2007 Author(s) 2007. This work is licensed under a Creative Commons License. Advances in Geosciences Verification of precipitation forecasts by the DWD limited area model LME

More information

Prospects for radar and lidar cloud assimilation

Prospects for radar and lidar cloud assimilation Prospects for radar and lidar cloud assimilation Marta Janisková, ECMWF Thanks to: S. Di Michele, E. Martins, A. Beljaars, S. English, P. Lopez, P. Bauer ECMWF Seminar on the Use of Satellite Observations

More information

Synoptic classification of Moderate Resolution Imaging Spectroradiometer aerosols over Israel

Synoptic classification of Moderate Resolution Imaging Spectroradiometer aerosols over Israel Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jd010160, 2009 Synoptic classification of Moderate Resolution Imaging Spectroradiometer aerosols over Israel I. Carmona

More information