History of Scientific Computing!

Size: px
Start display at page:

Download "History of Scientific Computing!"

Transcription

1 History of Scientific Computing! Topics to be addressed: Growth of compu5ng power Beginnings of Computa5onal Chemistry History of modern opera5ng system for scien5fic compu5ng: UNIX Current compu5ng power and what can be done with Computa5onal Chemistry The future of Computa5onal Chemistry

2 Developed for calcula/ons of ballis/c trajectories Programs were entered by hardwiring Beginnings of Compu5ng WW II - ENIAC (Electronic Numerical Integrator And Computer) Early History of Compu5ng: 1950s During this 5me: computers were expensive and difficult to use access was restricted (military use) MANIAC 1952 First program stored internally Used to design H bomb 2300 vacuum tubes

3 Early History of Compu5ng: 1950s UNIVAC 1951 Developed by Army, Census Bureau, NBS 43 total machines were produced 5000 vacuum tubes First magne/c tape storage The UNIVAC By the Mid to late 50s: Fewer than 1000 computers existed in US.

4 How Computa5onal Chemistry Began First Computa/onal Chemistry applica/on: University of Chicago Used UNIVAC at Wright AFB How Computa5onal Chemistry Began Bernard Ransil (U Chicago) Calcula/ons on diatomic molecules Performed in machine language Calcula/ons took 1 1/2 years to complete 12 diatomic molecule calcula/ons finished by late 1959 reasonable agreement achieved (1-2 sig figures) with experimental dipole moments, ioniza/on poten/als, etc.

5 Some of the Diatomic Molcules that Ransil Calculated H 2 HF LiH CO How Computa5onal Chemistry Began R. S. Mulliken - Nobel Prize 1966 for work on molecular orbital theory Mulliken summarized the use of computers in computa/onal chemistry to date: The opera5onal success of the computer program and the results it generated clearly heralded the dawn of a new era.

6 Compu5ng in the 1960s Important developments: Transistors replaced vacuum tubes. First mass- produced minicomputer (DEC PDP- 8) released in UNIX opera/ng system developed in DEC PDP- 8 The UNIX Opera5ng System Developed in 1969 at Bell Labs. UNIX has been con/nuously updated from 1969 to present. UNIX has been developed for all types of processors including Intel chips (Linux). UNIX was one of the first opera/ng systems for serious scien/fic compu/ng.

7 Computa5onal Chemistry in the 1960s and 70s Computers remained out of the mainstream of chemistry due to slow speeds and expense. S/ll, numbers of computa/onal chemistry ar/cles grew steadily. Microprocessor chip introduced by Intel in First supercomputer developed in Compu5ng in the 1970s Important developments:

8 The Development of the Supercomputer CRAY- 1 was developed in Cray- 1 had a speed of 100 Mflops. Today s quad- core processors have speeds of ~50 Gflops. 1980s - Introduc5on of the PC IBM PC introduced. Not of use in computa/onal chemistry - - too slow. In 70s and 80s, approximately 30% of the computer /me on supercomputers was used by computa/onal chemists.

9 1990s to Present - Explosion of Computa5onal Chemistry Key Developments: graphics and visualiza/on affordable fast processors cheap memory and hard drives high- speed networking 1990s to Present - Explosion of Computa5onal Chemistry Introduc/on of less expensive UNIX- based worksta5ons brought affordable means of performing simula/ons. Development of widely available commercial so_ware packages brought compu/ng to the desktop for many chemists.

10 1990s to Present - Explosion of Computa5onal Chemistry John Pople Nobel Prize for his work in computa/onal chemistry (shared with Walter Kohn). Gaussian so_ware package first developed by Pople s group in 1970, widely used by researchers for molecular calcula/ons. 1990s: State- of- the- art Calcula5ons Crambin (small plant protein) 642 atoms In 1998, 100 days of computer /me required for a quantum calcula/on of crambin (on a DEC Alpha worksta/on) good agreement with X- ray structure

11 Computa5onal Chemistry in the Present No end in sight to compu/ng increases. Speeds of Petaflops (1000 Tflops) have been reached (10 million )mes faster than 1st supercomputer). Current max > 30 Petaflops. Increased compu/ng power allows for more accurate simula/ons and larger systems. June Top 5 Supercomputers System # Cores Speed Tianhe- 2 Nat. Supercomp. Ctr., China Titan Oak Ridge Nat. Lab, US Sequoia Lawrence Livermore Nat. Lab, US K computer RIKEN Adv. Inst., Japan Mira Argonne Nat. Lab, US 3,120, Pflops 560, Pflops 1,570, Pflops 700, Pflops 790, Pflops from hop://

12 History of Supercomputer Speeds from hop:// Beyond Commercial Supercomputers: Compu5ng Clusters What is a compu/ng cluster? How and why are they being used in computa/onal chemistry? 192- core cluster at Texas Tech Univ.

13 What are Compu5ng Clusters? Compu/ng clusters consist of groups of cheap computers (PCs, small UNIX worksta/ons) connected by high- speed communica/ons so that they can run in parallel. A cluster may consist of individual PC towers hooked together 128- core cluster at Univ. of Calgary What are Compu5ng Clusters? Or the cluster may consist of individual CPUs added to a rack- type system core cluster at Univ. of Missouri

14 What are Compu5ng Clusters? They may be home built. 72- core cluster at RPI (home built) Or they may be purchased from commercial retailers core cluster at ISU (from Parallel Quantum Solu/ons) How and why are compu5ng clusters used in computa5onal chemistry? Clusters can be constructed or purchased for a frac/on of the cost of a commercial supercomputer. Their cost- effec/ve nature makes clusters ideal for individual research groups or departments. Chemistry Dept. cluster at Univ. of Wisconsin

15 How and why are compu5ng clusters used in computa5onal chemistry? The clusters may approach speeds of Tflops, and they easily produce 100s of Gflops. As a result, clusters may be used for modeling molecular systems of almost all types and sizes. 80- core cluster at Wabash College

Supercomputing: Why, What, and Where (are we)?

Supercomputing: Why, What, and Where (are we)? Supercomputing: Why, What, and Where (are we)? R. Govindarajan Indian Institute of Science, Bangalore, INDIA govind@serc.iisc.ernet.in (C)RG@SERC,IISc Why Supercomputer? Third and Fourth Legs RG@SERC,IISc

More information

Fundamentals of Computational Science

Fundamentals of Computational Science Fundamentals of Computational Science Dr. Hyrum D. Carroll August 23, 2016 Introductions Each student: Name Undergraduate school & major Masters & major Previous research (if any) Why Computational Science

More information

Applications of Mathematical Economics

Applications of Mathematical Economics Applications of Mathematical Economics Michael Curran Trinity College Dublin Overview Introduction. Data Preparation Filters. Dynamic Stochastic General Equilibrium Models: Sunspots and Blanchard-Kahn

More information

INTENSIVE COMPUTATION. Annalisa Massini

INTENSIVE COMPUTATION. Annalisa Massini INTENSIVE COMPUTATION Annalisa Massini 2015-2016 Course topics The course will cover topics that are in some sense related to intensive computation: Matlab (an introduction) GPU (an introduction) Sparse

More information

Application of Computer in Chemistry SSC Prof. Mohamed Noor Hasan Dr. Hasmerya Maarof Department of Chemistry

Application of Computer in Chemistry SSC Prof. Mohamed Noor Hasan Dr. Hasmerya Maarof Department of Chemistry Application of Computer in Chemistry SSC 3533 Prof. Mohamed Noor Hasan Dr. Hasmerya Maarof Department of Chemistry Outline Fields of applica:on Examples Types of computer Programming languages 2 Introduction

More information

Lecture 19. Architectural Directions

Lecture 19. Architectural Directions Lecture 19 Architectural Directions Today s lecture Advanced Architectures NUMA Blue Gene 2010 Scott B. Baden / CSE 160 / Winter 2010 2 Final examination Announcements Thursday, March 17, in this room:

More information

Nuclear Physics and Computing: Exascale Partnerships. Juan Meza Senior Scientist Lawrence Berkeley National Laboratory

Nuclear Physics and Computing: Exascale Partnerships. Juan Meza Senior Scientist Lawrence Berkeley National Laboratory Nuclear Physics and Computing: Exascale Partnerships Juan Meza Senior Scientist Lawrence Berkeley National Laboratory Nuclear Science and Exascale i Workshop held in DC to identify scientific challenges

More information

COMPUTERS IN PHARMACEUTICAL RESEARCH & DEVELOPMENT

COMPUTERS IN PHARMACEUTICAL RESEARCH & DEVELOPMENT COMPUTERS IN PHARMACEUTICAL RESEARCH & DEVELOPMENT Presented by MrsA. Lavanya M.Pharm., Assistant Professor Department of Pharmaceutics Krishna Teja Pharmacy college Subject; Computer Aided Drug Delivery

More information

Cosmological N-Body Simulations and Galaxy Surveys

Cosmological N-Body Simulations and Galaxy Surveys Cosmological N-Body Simulations and Galaxy Surveys Adrian Pope, High Energy Physics, Argonne Na3onal Laboratory, apope@anl.gov CScADS: Scien3fic Data and Analy3cs for Extreme- scale Compu3ng, 30 July 2012

More information

Molecular Dynamics Simulations

Molecular Dynamics Simulations MDGRAPE-3 chip: A 165- Gflops application-specific LSI for Molecular Dynamics Simulations Makoto Taiji High-Performance Biocomputing Research Team Genomic Sciences Center, RIKEN Molecular Dynamics Simulations

More information

Q-Chem 4.0: Expanding the Frontiers. Jing Kong Q-Chem Inc. Pittsburgh, PA

Q-Chem 4.0: Expanding the Frontiers. Jing Kong Q-Chem Inc. Pittsburgh, PA Q-Chem 4.0: Expanding the Frontiers Jing Kong Q-Chem Inc. Pittsburgh, PA Q-Chem: Profile Q-Chem is a high performance quantum chemistry program; Contributed by best quantum chemists from 40 universities

More information

High-Performance Scientific Computing

High-Performance Scientific Computing High-Performance Scientific Computing Instructor: Randy LeVeque TA: Grady Lemoine Applied Mathematics 483/583, Spring 2011 http://www.amath.washington.edu/~rjl/am583 World s fastest computers http://top500.org

More information

arxiv:astro-ph/ v1 10 Dec 1996

arxiv:astro-ph/ v1 10 Dec 1996 N-body Simulation of Galaxy Formation on GRAPE-4 Special-Purpose Computer arxiv:astro-ph/9612090v1 10 Dec 1996 Toshiyuki Fukushige and Junichiro Makino Department of General Systems Studies, College of

More information

Parallelizing Gaussian Process Calcula1ons in R

Parallelizing Gaussian Process Calcula1ons in R Parallelizing Gaussian Process Calcula1ons in R Christopher Paciorek UC Berkeley Sta1s1cs Joint work with: Benjamin Lipshitz Wei Zhuo Prabhat Cari Kaufman Rollin Thomas UC Berkeley EECS (formerly) IBM

More information

0 volts. 2 volts. 5 volts

0 volts. 2 volts. 5 volts CS101 Binary Storage Devices and Boolean Logic Now that we have discussed number representation, why do computers use the binary representation and not something we are more familiar with, like decimal?

More information

CHEM 545 Theory and Practice of Molecular Electronic Structure. Anna I. Krylov. DON T PANIC.

CHEM 545 Theory and Practice of Molecular Electronic Structure. Anna I. Krylov.   DON T PANIC. CHEM 545 Theory and Practice of Molecular Electronic Structure Anna I. Krylov http://iopenshell.usc.edu/chem545/ DON T PANIC USC Fall 2014 Things to do: 1. Install IQmol (by this Thursday). http://iqmol.org/.

More information

Introduction The Nature of High-Performance Computation

Introduction The Nature of High-Performance Computation 1 Introduction The Nature of High-Performance Computation The need for speed. Since the beginning of the era of the modern digital computer in the early 1940s, computing power has increased at an exponential

More information

Physics of switches. Luca Gammaitoni NiPS Laboratory

Physics of switches. Luca Gammaitoni NiPS Laboratory Physics of switches Luca Gammaitoni NiPS Laboratory Logic switches A logic switch is a device that can assume physically dis=nct states as a result of external inputs. Usually the output of a physical

More information

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 1 / 23 Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 Maison de la Simulation Lille 1 University CNRS March 18, 2013

More information

Computers in Chemistry as Educa3on and Research Tools. Bong June Sung Department of Chemistry Sogang University

Computers in Chemistry as Educa3on and Research Tools. Bong June Sung Department of Chemistry Sogang University Computers in Chemistry as Educa3on and Research Tools Bong June Sung Department of Chemistry Sogang University Computa3onal Chemistry Computa3onal chemistry is a branch of chemistry that employs computer

More information

GRAPE and Project Milkyway. Jun Makino. University of Tokyo

GRAPE and Project Milkyway. Jun Makino. University of Tokyo GRAPE and Project Milkyway Jun Makino University of Tokyo Talk overview GRAPE Project Science with GRAPEs Next Generation GRAPE the GRAPE-DR Project Milkyway GRAPE project GOAL: Design and build specialized

More information

Claude Tadonki. MINES ParisTech PSL Research University Centre de Recherche Informatique

Claude Tadonki. MINES ParisTech PSL Research University Centre de Recherche Informatique Claude Tadonki MINES ParisTech PSL Research University Centre de Recherche Informatique claude.tadonki@mines-paristech.fr Monthly CRI Seminar MINES ParisTech - CRI June 06, 2016, Fontainebleau (France)

More information

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Introduction: The objective of the second computer laboratory exercise is to get acquainted with a program for performing quantum chemical

More information

History & Binary Representation

History & Binary Representation History & Binary Representation C. R. da Cunha 1 1 Instituto de Física, Universidade Federal do Rio Grande do Sul, RS 91501-970, Brazil. August 30, 2017 Abstract In this lesson we will review the history

More information

Transistor and Integrated Circuits: History

Transistor and Integrated Circuits: History Course Objective Review and practice fundamental chemical engineering concepts (mass, energy, and momentum transport coupled with heterogeneous and homogeneous reactions and thermodynamics). Apply these

More information

The QMC Petascale Project

The QMC Petascale Project The QMC Petascale Project Richard G. Hennig What will a petascale computer look like? What are the limitations of current QMC algorithms for petascale computers? How can Quantum Monte Carlo algorithms

More information

Performance evaluation of scalable optoelectronics application on large-scale Knights Landing cluster

Performance evaluation of scalable optoelectronics application on large-scale Knights Landing cluster Performance evaluation of scalable optoelectronics application on large-scale Knights Landing cluster Yuta Hirokawa Graduate School of Systems and Information Engineering, University of Tsukuba hirokawa@hpcs.cs.tsukuba.ac.jp

More information

ON THE FUTURE OF HIGH PERFORMANCE COMPUTING: HOW TO THINK FOR PETA AND EXASCALE COMPUTING

ON THE FUTURE OF HIGH PERFORMANCE COMPUTING: HOW TO THINK FOR PETA AND EXASCALE COMPUTING ON THE FUTURE OF HIGH PERFORMANCE COMPUTING: HOW TO THINK FOR PETA AND EXASCALE COMPUTING JACK DONGARRA UNIVERSITY OF TENNESSEE OAK RIDGE NATIONAL LAB What Is LINPACK? LINPACK is a package of mathematical

More information

From Physics to Logic

From Physics to Logic From Physics to Logic This course aims to introduce you to the layers of abstraction of modern computer systems. We won t spend much time below the level of bits, bytes, words, and functional units, but

More information

ENIAC s Problem. 1 Discussion

ENIAC s Problem. 1 Discussion ENIAC s Problem 1 Discussion A Bit of History Initiated during the height of World War II, the Electronic Numerical Integrator and Calculator (ENIAC) was designed to make ballistics tables, which required

More information

Welcome to MCS 572. content and organization expectations of the course. definition and classification

Welcome to MCS 572. content and organization expectations of the course. definition and classification Welcome to MCS 572 1 About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson

More information

Quantum Chemical Calculations by Parallel Computer from Commodity PC Components

Quantum Chemical Calculations by Parallel Computer from Commodity PC Components Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 4, 461 468 Quantum Chemical Calculations by Parallel Computer from Commodity PC Components S. Bekešienė 1, S. Sėrikovienė 2 1 Institute of

More information

Measurement & Performance

Measurement & Performance Measurement & Performance Timers Performance measures Time-based metrics Rate-based metrics Benchmarking Amdahl s law Topics 2 Page The Nature of Time real (i.e. wall clock) time = User Time: time spent

More information

Measurement & Performance

Measurement & Performance Measurement & Performance Topics Timers Performance measures Time-based metrics Rate-based metrics Benchmarking Amdahl s law 2 The Nature of Time real (i.e. wall clock) time = User Time: time spent executing

More information

Reliability at Scale

Reliability at Scale Reliability at Scale Intelligent Storage Workshop 5 James Nunez Los Alamos National lab LA-UR-07-0828 & LA-UR-06-0397 May 15, 2007 A Word about scale Petaflop class machines LLNL Blue Gene 350 Tflops 128k

More information

CRYPTOGRAPHIC COMPUTING

CRYPTOGRAPHIC COMPUTING CRYPTOGRAPHIC COMPUTING ON GPU Chen Mou Cheng Dept. Electrical Engineering g National Taiwan University January 16, 2009 COLLABORATORS Daniel Bernstein, UIC, USA Tien Ren Chen, Army Tanja Lange, TU Eindhoven,

More information

Intel s approach to Quantum Computing

Intel s approach to Quantum Computing Intel s approach to Quantum Computing Dr. Astrid Elbe, Managing Director Intel Lab Europe Quantum Computing: Key Concepts Superposition Classical Physics Quantum Physics v Heads or Tails Heads and Tails

More information

Direct Self-Consistent Field Computations on GPU Clusters

Direct Self-Consistent Field Computations on GPU Clusters Direct Self-Consistent Field Computations on GPU Clusters Guochun Shi, Volodymyr Kindratenko National Center for Supercomputing Applications University of Illinois at UrbanaChampaign Ivan Ufimtsev, Todd

More information

From Niels Bohr to Quantum Computing - from philosophical struggle to technological revolution

From Niels Bohr to Quantum Computing - from philosophical struggle to technological revolution From Niels Bohr to Quantum Computing - from philosophical struggle to technological revolution IPAC 2017 Intel Pentium QuadCore processor, 3.5 GHz, 3 GB SDRAM. Quantum computer Processor unknown 1000 Hz

More information

How fast can we calculate?

How fast can we calculate? November 30, 2013 A touch of History The Colossus Computers developed at Bletchley Park in England during WW2 were probably the first programmable computers. Information about these machines has only been

More information

Physics plans and ILDG usage

Physics plans and ILDG usage Physics plans and ILDG usage in Italy Francesco Di Renzo University of Parma & INFN Parma The MAIN ILDG USERS in Italy are the ROME groups A (by now) well long track of ILDG-based projects mainly within

More information

18. Nuclear Magnetic Resonance Spectroscopy

18. Nuclear Magnetic Resonance Spectroscopy 18. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) is a spectroscopic technique widely used by organic chemists. NMR provides details about the number and environment of specific

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Amdahl's Law. Execution time new = ((1 f) + f/s) Execution time. S. Then:

Amdahl's Law. Execution time new = ((1 f) + f/s) Execution time. S. Then: Amdahl's Law Useful for evaluating the impact of a change. (A general observation.) Insight: Improving a feature cannot improve performance beyond the use of the feature Suppose we introduce a particular

More information

CS-683: Advanced Computer Architecture Course Introduction

CS-683: Advanced Computer Architecture Course Introduction CS-683: Advanced Computer Architecture Course Introduction Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology

More information

Knott, M. May Future t r e n d s

Knott, M. May Future t r e n d s 0.S'T 1 Knott, M. May 1 9 9 0 M. K r a h e r, and F. Lenkszus A P S CONTROL SYSTEM OPERATING SYSTEM CHOICE Contents: Introduction What i s t h e o p e r a t i n g system? A P S c o n t r o l system a r

More information

QCDOC A Specialized Computer for Particle Physics

QCDOC A Specialized Computer for Particle Physics QCDOC A Specialized Computer for Particle Physics Supercomputers for Science across the Atlantic May 19, 2005 Norman H. Christ Columbia University Outline Physics overview Computer design opportunities

More information

The Future of Compu.ng Towards the Post Moore s Law Era. Stefano Markidis KTH Royal Ins.tute of Technology

The Future of Compu.ng Towards the Post Moore s Law Era. Stefano Markidis KTH Royal Ins.tute of Technology The Future of Compu.ng Towards the Post Moore s Law Era Stefano Markidis KTH Royal Ins.tute of Technology Processor Evolu.on In 1971 a small company, called Intel, released the 4004, its first microprocessor:

More information

Theory of Self-Reproducing Automata John Von Neumann. Joshua Ridens and David Shubsda

Theory of Self-Reproducing Automata John Von Neumann. Joshua Ridens and David Shubsda Theory of Self-Reproducing Automata John Von Neumann Joshua Ridens and David Shubsda Natural Automata vs. Artificial Automata Specifically Von Neumann looked at the nervous system and a vacuum tube computer

More information

A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters

A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters ANTONINO TUMEO, ORESTE VILLA Collaborators: Karol Kowalski, Sriram Krishnamoorthy, Wenjing Ma, Simone Secchi May 15, 2012 1 Outline!

More information

Architecture-Aware Algorithms and Software for Peta and Exascale Computing

Architecture-Aware Algorithms and Software for Peta and Exascale Computing Architecture-Aware Algorithms and Software for Peta and Exascale Computing Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 4/25/2011 1 H. Meuer, H. Simon, E.

More information

Computer Architecture. ESE 345 Computer Architecture. Performance and Energy Consumption. CA: Performance and Energy

Computer Architecture. ESE 345 Computer Architecture. Performance and Energy Consumption. CA: Performance and Energy Computer Architecture ESE 345 Computer Architecture Performance and Energy Consumption 1 Two Notions of Performance Plane Boeing 747 DC to Paris 6.5 hours Top Speed 610 mph Passengers Throughput (pmph)

More information

Data Intensive Computing meets High Performance Computing

Data Intensive Computing meets High Performance Computing Data Intensive Computing meets High Performance Computing Kathy Yelick Associate Laboratory Director for Computing Sciences, Lawrence Berkeley National Laboratory Professor of Electrical Engineering and

More information

Quantum computing with superconducting qubits Towards useful applications

Quantum computing with superconducting qubits Towards useful applications Quantum computing with superconducting qubits Towards useful applications Stefan Filipp IBM Research Zurich Switzerland Forum Teratec 2018 June 20, 2018 Palaiseau, France Why Quantum Computing? Why now?

More information

Predictive Molecular Simulation for Drug Discovery

Predictive Molecular Simulation for Drug Discovery Predictive Molecular Simulation for Drug Discovery 생명과학 의약연구소의약설계팀이승주 sjlee@lgls.co.kr sjlee.lgls@gmail.com Outline Challenging problems in drug discovery Binding affinity calculation New paradigm for

More information

Update on Cray Earth Sciences Segment Activities and Roadmap

Update on Cray Earth Sciences Segment Activities and Roadmap Update on Cray Earth Sciences Segment Activities and Roadmap 31 Oct 2006 12 th ECMWF Workshop on Use of HPC in Meteorology Per Nyberg Director, Marketing and Business Development Earth Sciences Segment

More information

The Transistor. Thomas J. Bergin Computer History Museum American University

The Transistor. Thomas J. Bergin Computer History Museum American University The Transistor Thomas J. Bergin Computer History Museum American University In the nineteenth century, scientists were rarely inventors: Samuel F.B. Morse, Alexander Graham Bell, Thomas Alva Edison In

More information

ab initio Electronic Structure Calculations

ab initio Electronic Structure Calculations ab initio Electronic Structure Calculations New scalability frontiers using the BG/L Supercomputer C. Bekas, A. Curioni and W. Andreoni IBM, Zurich Research Laboratory Rueschlikon 8803, Switzerland ab

More information

Theory of Computation. Theory of Computation

Theory of Computation. Theory of Computation Theory of Computation Theory of Computation What is possible to compute? We can prove that there are some problems computers cannot solve There are some problems computers can theoretically solve, but

More information

Intro To Digital Logic

Intro To Digital Logic Intro To Digital Logic 1 Announcements... Project 2.2 out But delayed till after the midterm Midterm in a week Covers up to last lecture + next week's homework & lab Nick goes "H-Bomb of Justice" About

More information

The History of ENIAC

The History of ENIAC The History of ENIAC Thomas McCaffery University of Pennsylvania Thomas McCaffery Bicsi Northeast Regional Meeting March 8, 2012 University of Pennsylvania About Penn Founded in 1740 by Benjamin Franklin.

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines 1 Clocks A microprocessor is composed of many different circuits that are operating simultaneously if each

More information

The APE Experience. Nicola Cabibbo. Università di Roma La Sapienza INFN Sezione di Roma. apenext: Computational Challenges and First Physics Results

The APE Experience. Nicola Cabibbo. Università di Roma La Sapienza INFN Sezione di Roma. apenext: Computational Challenges and First Physics Results The APE Experience Nicola Cabibbo Università di Roma La Sapienza INFN Sezione di Roma apenext: Computational Challenges and First Physics Results Nicola Cabibbo The APE experience 8/2/2007 1 / 21 Birth

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

More information

There s still plenty of room at the bottom

There s still plenty of room at the bottom There s still plenty of room at the bottom Foundations of the nanotechnology revolution Ross Lockwood Department of Physics February 4, 2014 Richard Feynman Born May 11th, 1918, in Far Rockaway, New York

More information

Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio

Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio Jun Makino Center for Computational Astrophysics and Division Theoretical Astronomy National Astronomical Observatory of Japan

More information

Univ. Prof. Dr. Leticia González Institute of Theoretical Chemistry University of Vienna

Univ. Prof. Dr. Leticia González Institute of Theoretical Chemistry University of Vienna Univ. Prof. Dr. Leticia González Institute of Theoretical Chemistry University of Vienna leticia.gonzalez@univie.ac.at www.theochem.univie.ac.at PLUS LUCIS 70. FORTBILDUNGSWOCHE Molecules dancing waltz

More information

Part 2 Electronic Structure Theory

Part 2 Electronic Structure Theory HS 2013: Vorlesung Physikalische Chemie III Part 2 Electronic Structure Theory Lecture 6 Dr. Mar'n O. Steinhauser Fraunhofer Ins'tute for High- Speed Dynamics, Ernst- Mach- Ins'tut, EMI, Freiburg Email:

More information

Additional background material on the Nobel Prize in Chemistry 1998

Additional background material on the Nobel Prize in Chemistry 1998 Additional background material on the Nobel Prize in Chemistry 1998 The Royal Swedish Academy of Sciences has decided to award the 1998 Nobel Prize in Chemistry with one half to Professor WALTER KOHN,

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Outline A few words on MD applications and the GROMACS package The main work in an MD simulation Parallelization Stream computing

More information

Post Von Neumann Computing

Post Von Neumann Computing Post Von Neumann Computing Matthias Kaiserswerth Hasler Stiftung (formerly IBM Research) 1 2014 IBM Corporation Foundation Purpose Support information and communication technologies (ICT) to advance Switzerland

More information

Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs. HPC User Forum April 18, 2018

Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs. HPC User Forum April 18, 2018 Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs HPC User Forum April 18, 2018 Quantum Computing: Key Concepts Superposition Classical Physics Quantum Physics v Entanglement

More information

From Supercomputers to GPUs

From Supercomputers to GPUs From Supercomputers to GPUs What a physicist should know about current computational capabilities Craig Rasmussen (Research Support Services, University of Oregon) Which one? Gordon Bell Prize: Price Performance

More information

Parallelization of the Molecular Orbital Program MOS-F

Parallelization of the Molecular Orbital Program MOS-F Parallelization of the Molecular Orbital Program MOS-F Akira Asato, Satoshi Onodera, Yoshie Inada, Elena Akhmatskaya, Ross Nobes, Azuma Matsuura, Atsuya Takahashi November 2003 Fujitsu Laboratories of

More information

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M.

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience and IEEE Press, January 2003 Nov. 14,

More information

CPSC 506: Complexity of Computa5on

CPSC 506: Complexity of Computa5on CPSC 506: Complexity of Computa5on On the founda5ons of our field, connec5ons between Science and Compu5ng, where our field might be headed in the future CPSC 506 MW 9-10:30, DMP 101 cs.ubc.ca/~condon/cpsc506/

More information

History of the partnership between SMHI and NSC. Per Undén

History of the partnership between SMHI and NSC. Per Undén History of the partnership between SMHI and NSC Per Undén Outline Pre-history and NWP Preparations parallelisation HPD Council Decision and early developments Climate modelling Other applications HPD Project

More information

Sunil Khilari IMED Research Center, Pune. Dr. Sachin Kadam Bharti Vidyapeeth University, Pune

Sunil Khilari IMED Research Center, Pune. Dr. Sachin Kadam Bharti Vidyapeeth University, Pune Representing of Problem, Solution Implementation Spaces with Interrelated Attributes for Developing Knowledge Management Base in Computational Chemistry Area Sunil Khilari IMED Research Center, Pune Dr.

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Computational Physics Computerphysik

Computational Physics Computerphysik Computational Physics Computerphysik Rainer Spurzem, Astronomisches Rechen-Institut Zentrum für Astronomie, Universität Heidelberg Ralf Klessen, Institut f. Theoretische Astrophysik, Zentrum für Astronomie,

More information

VMD: Visual Molecular Dynamics. Our Microscope is Made of...

VMD: Visual Molecular Dynamics. Our Microscope is Made of... VMD: Visual Molecular Dynamics Computational Microscope / Tool to Think amino acid tyrosine enzymatic control BPTI VMD tutorial traficking Ubiquitin case study http://www.ks.uiuc.edu/training/casestudies/

More information

Efficient implementation of the overlap operator on multi-gpus

Efficient implementation of the overlap operator on multi-gpus Efficient implementation of the overlap operator on multi-gpus Andrei Alexandru Mike Lujan, Craig Pelissier, Ben Gamari, Frank Lee SAAHPC 2011 - University of Tennessee Outline Motivation Overlap operator

More information

What is a Computer? computer: anything that is able to take a mathematically

What is a Computer? computer: anything that is able to take a mathematically What is a Computer? computer: anything that is able to take a mathematically well-defined problem and perform a sequence of simple operations that will result in the solution to that problem. A computer

More information

Short column around Transistor. 12/22/2017 JC special topic

Short column around Transistor. 12/22/2017 JC special topic Short column around Transistor 12/22/2017 JC special topic Transistor, FET, CMOS D G S FET Transistor CMOS You can refer, such as, https://www.allaboutcircuits.com/textbook/semiconductors/ Timeline 1925:

More information

! Chris Diorio. ! Gaetano Borrielo. ! Carl Ebeling. ! Computing is in its infancy

! Chris Diorio. ! Gaetano Borrielo. ! Carl Ebeling. ! Computing is in its infancy Welcome to CSE370 Special Thanks!! Instructor: ruce Hemingway " Ts: ryan Nelson and John Hwang " Tool Specialist: Cory Crawford Lecture Materials:! Chris Diorio! Class web " http://www.cs.washington.edu/education/courses/370/currentqtr/

More information

IBM Q: building the first universal quantum computers for business and science. Federico Mattei Banking and Insurance Technical Leader, IBM Italy

IBM Q: building the first universal quantum computers for business and science. Federico Mattei Banking and Insurance Technical Leader, IBM Italy IBM Q: building the first universal quantum computers for business and science Federico Mattei Banking and Insurance Technical Leader, IBM Italy Agenda Which problems can not be solved with classical computers?

More information

CS 100: Parallel Computing

CS 100: Parallel Computing CS 100: Parallel Computing Chris Kauffman Week 12 Logistics Upcoming HW 5: Due Friday by 11:59pm HW 6: Up by Early Next Week Moore s Law: CPUs get faster Smaller transistors closer together Smaller transistors

More information

Nuclear Energy ECEG-4405

Nuclear Energy ECEG-4405 Nuclear Energy ECEG-4405 Today s Discussion Technical History and Developments Atom Nuclear Energy concepts and Terms Features Fission Critical Mass Uranium Fission Nuclear Fusion and Fission Fusion Fission

More information

Petaflops, Exaflops, and Zettaflops for Science and Defense

Petaflops, Exaflops, and Zettaflops for Science and Defense SAND2005-2690C Petaflops, Exaflops, and Zettaflops for Science and Defense Erik P. DeBenedictis Sandia National Laboratories May 16, 2005 Sandia is a multiprogram laboratory operated by Sandia Corporation,

More information

arxiv:astro-ph/ v1 15 Sep 1999

arxiv:astro-ph/ v1 15 Sep 1999 Baltic Astronomy, vol.8, XXX XXX, 1999. THE ASTEROSEISMOLOGY METACOMPUTER arxiv:astro-ph/9909264v1 15 Sep 1999 T.S. Metcalfe and R.E. Nather Department of Astronomy, University of Texas, Austin, TX 78701

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

On the Development of a New Computational Chemistry Software

On the Development of a New Computational Chemistry Software On the Development of a New Computational Chemistry Software Han Ung Lee, Hayan Lee and Wilfredo Credo Chung* Department of Chemistry, De La Salle University Manila, 2401 Taft Avenue, Manila, 1004 Philippines

More information

ECE 340 Lecture 31 : Narrow Base Diode Class Outline:

ECE 340 Lecture 31 : Narrow Base Diode Class Outline: ECE 340 Lecture 31 : Narrow Base Diode Class Outline: Narrow-Base Diodes Things you should know when you leave Key Questions What is a narrow-base diode? How does current flow in a narrow-base diode? Quick

More information

Projectile Motion Slide 1/16. Projectile Motion. Fall Semester. Parallel Computing

Projectile Motion Slide 1/16. Projectile Motion. Fall Semester. Parallel Computing Projectile Motion Slide 1/16 Projectile Motion Fall Semester Projectile Motion Slide 2/16 Topic Outline Historical Perspective ABC and ENIAC Ballistics tables Projectile Motion Air resistance Euler s method

More information

Design and implementation of a new meteorology geographic information system

Design and implementation of a new meteorology geographic information system Design and implementation of a new meteorology geographic information system WeiJiang Zheng, Bing. Luo, Zhengguang. Hu, Zhongliang. Lv National Meteorological Center, China Meteorological Administration,

More information

What s the driving force behind the scaling?

What s the driving force behind the scaling? To talk about nano, the electrical engineer almost always starts from transistor scaling, Moore s law... Let s follow this somewhat traditional (boring) path for now. This course is about nanoelectronics

More information

Hands-on Course in Computational Structural Biology and Molecular Simulation BIOP590C/MCB590C. Course Details

Hands-on Course in Computational Structural Biology and Molecular Simulation BIOP590C/MCB590C. Course Details Hands-on Course in Computational Structural Biology and Molecular Simulation BIOP590C/MCB590C Emad Tajkhorshid Center for Computational Biology and Biophysics Email: emad@life.uiuc.edu or tajkhors@uiuc.edu

More information

Modeling Biomolecular Systems II. BME 540 David Sept

Modeling Biomolecular Systems II. BME 540 David Sept Modeling Biomolecular Systems II BME 540 David Sept Introduction Why do we perform simulations? What makes simulations possible? How do we perform simulations? What types of things/systems do we simulate?

More information

Properties of Borane, the BH 3 Molecule

Properties of Borane, the BH 3 Molecule Properties of Borane, the BH 3 Molecule Natural Bond Orbital (NBO) analysis following MO calculation Borane Exists as a Dimer: Diborane Diborane, B 2 H 6, is a colorless gas forming explosive mixtures

More information