Welcome to MCS 572. content and organization expectations of the course. definition and classification

Size: px
Start display at page:

Download "Welcome to MCS 572. content and organization expectations of the course. definition and classification"

Transcription

1 Welcome to MCS About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson s Law quality up MCS 572 Lecture 1 Introduction to Supercomputing Jan Verschelde, 22 August 2016 Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

2 Welcome to MCS About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson s Law quality up Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

3 Catalog Description Introduction to supercomputing on vector and parallel processors; architectural comparisons, parallel algorithms, vectorization techniques, parallelization techniques, actual implementation on real machines. Prerequisites: 1 a working knowledge of C/C++ (mcs 360), and scientific software (mcs 507); 2 familiarity with algorithms at the level of introductory numerical analysis (mcs 471). MCS 572 is one of the courses on the computational science prelim. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

4 Content of the Course Two recommended text books: Barry Wilkinson and Michael Allen: Parallel Programming. Techniques and Applications Using Networked Workstations and Parallel Computers. 2nd Edition. Prentice-Hall David B. Kirk and Wen-mei W. Hwu: Programming Massively Parallel Processors. A Hands-on Approach. Elsevier nd Edition, Parallel programming goals: 1 design and analysis of parallel programs; 2 implementation using MPI, OpenMP, and threads; 3 application to scientific problems. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

5 Welcome to MCS About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson s Law quality up Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

6 Organization and Expectations Three programming parts of the course: 1 using Message-Passing Interface (MPI) for clusters, 2 for shared memory: pthreads and OpenMP, 3 programming Graphics Processing Units (GPUs) using CUDA (Compute Unified Device Architecture) of NVIDIA. Activities throughout the semester: several homework collections, midterm exam could be take home, three computer projects. The first two computer projects will be on prescribed topics and may be solved in pairs. The third project must be done individually and could form the basis for a project presentation at the end. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

7 Welcome to MCS About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson s Law quality up Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

8 what is a supercomputer? Supercomputing = use of a supercomputer (also called high performance computing). Definition A supercomputer is a computing system (hardware, system & application software) that provides close to the best currently achievable sustained performance on demanding computational problems. Classification atwww.top500.org. A flop is a floating point operation. Performance is often measured in number of flops per second. If two flops can be done per clock cycle, then a processor at 3GHz can theoretically perform 6 billion flops (6 gigaflops) per second. All computers in the top 10 achieve more than 1 petaflop per second. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

9 top 10 of November 2011 Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

10 top 10 of November 2013 Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

11 top 10 of June 2016 Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

12 Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

13 system terms and architectures core for a CPU: unit capable of executing a thread, for a GPU: a streaming multiprocessor. R max maximal performance achieved on the LINPACK benchmark (solving a dense linear system) for problem size N max, measured in Gflop/s. R peak theoretical peak performance measured in Gflop/s. Power total power consumed by the system. Types of architectures, using commodity leading edge microprocessors running at their maximal clock and power limits; special processor chips running at less than maximal power to achieve high physical packaging densities; mix of chip types and accelerators (GPUs). Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

14 Welcome to MCS About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson s Law quality up Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

15 speedup and efficiency By p we denote the number of processors. Speedup S(p) = sequential execution time parallel execution time. Another measure for parallel performance: Efficiency E(p) = speedup #processors = S(p) p 100%. In the best case, we hope: S(p) = p and E(p) = 100%. If E = 50%, then on average processors are idle for half of the time. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

16 superlinear speedup While we hope for S(p) = p, we may achieve S(p) > p. Example. Sequential search in unsorted list. A parallel search by p processors divides the list evenly in p sublists. p = 3 : x y z The sequential search time depends on position in list. The parallel search time depends on position in sublist. huge speedup if at first element of last sublist. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

17 Welcome to MCS About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson s Law quality up Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

18 predicting speedup Consider a job that takes time t on one processor. Let R be the fraction of t that must be done sequentially, R [0, 1]. p = 1 Rt (1 R)t {}}{{}}{ p = 4 } {{ } Rt Speedup on p processors S(p) }{{} (1 R)t p t Rt + (1 R)t p = 1 R + 1 R p 1 R. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

19 Amdahl s Law Theorem (Amdahl (1967)) Let R be the fraction of the operations which cannot be done in 1 parallel. The speedup with p processors is bounded by R + 1 R. p Corollary. S(p) 1 R as p. Example. Suppose 90% of the operations in an algorithm can be executed in parallel. What is the best speedup with 8 processors? What is the best speedup with an unlimited amount of processors? 1 p = 8: ( 1 10) = p = : 1 1/10 = 10 Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

20 Welcome to MCS About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson s Law quality up Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

21 scaled speedup Consider a job that took time t on p processors. Let s be the fraction of t that is done sequentially. p = 4 st {}}{{ (1 s)t }}{ }{{}} {{ } st p(1 s)t Scaled speedup S s (p) st + p(1 s)t t = s + p(1 s) = p + (1 p)s. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

22 Gustafson s Law The problem size scales with the number of processors! Theorem (Gustafson s Law (1988)) If s is the fraction of serial operations in a parallel program run on p processors, then the scaled speedup is bounded by p + (1 p)s. Example. Suppose benchmarking reveals that 5% of time on a 64-processor machine is spent on one single processor (e.g.: root node working while all other processors are idle). Compute the scaled speedup. p = 64, s = 0.05: S s (p) 64 + (1 64)0.05 = = Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

23 Welcome to MCS About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson s Law quality up Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

24 quality up More processing power often leads to better results. finer granularity of a grid e.g.: discretization of space and/or time in a differential equation greater confidence of estimates e.g.: enlarged number of samples in a simulation compute with larger numbers (multiprecision arithmetic) e.g.: solve an ill-conditioned linear system quality up Q(p) = quality on p processors quality on 1 processor Q(p) measures improvement in quality using p procesors, keeping the computational time fixed. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

25 summary and recommended reading We defined supercomputing, speedup, and efficiency. Gustafson s Law reevaluates Amdahl s Law. Available to UIC via the ACM digital library: Jeannette M. Wing: computational thinking. Communications of the ACM 49(3):33-35, Peter M. Kogge and Timothy J. Dysart: Using the TOP500 to trace and project technology and architecture trends. In SC 11 Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. ACM John L. Gustafson: Reevaluating Amdahl s Law. Communications of the ACM 31(5): , Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

26 Exercises Homework will be collected at a to be announced date. 1 How many processors whose clock speed runs at 3.0GHz does one need to build a supercomputer which achieves a theoretical peak performance of at least 4 Tera Flops? Justify your answer. 2 Suppose we have a program where 2% of the operations must be executed sequentially. According to Amdahl s law, what is the maximum speedup which can be achieved using 64 processors? Assuming we have an unlimited number of processors, what is the maximal speedup possible? 3 Benchmarking of a program running on a 64-processor machine shows that 2% of the operations are done sequentially, i.e.: that 2% of the time only one single processor is working while the rest is idle. Use Gustafson s law to compute the scaled speedup. 4 Visithttp://extreme.uic.edu/hardware-specs/ and estimate the theoretical peak performance. Introduction to Supercomputing (MCS 572) Welcome to MCS 572 L-1 22 August / 26

Review for the Midterm Exam

Review for the Midterm Exam Review for the Midterm Exam 1 Three Questions of the Computational Science Prelim scaled speedup network topologies work stealing 2 The in-class Spring 2012 Midterm Exam pleasingly parallel computations

More information

GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic

GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic Jan Verschelde joint work with Xiangcheng Yu University of Illinois at Chicago

More information

High-Performance Scientific Computing

High-Performance Scientific Computing High-Performance Scientific Computing Instructor: Randy LeVeque TA: Grady Lemoine Applied Mathematics 483/583, Spring 2011 http://www.amath.washington.edu/~rjl/am583 World s fastest computers http://top500.org

More information

Dense Arithmetic over Finite Fields with CUMODP

Dense Arithmetic over Finite Fields with CUMODP Dense Arithmetic over Finite Fields with CUMODP Sardar Anisul Haque 1 Xin Li 2 Farnam Mansouri 1 Marc Moreno Maza 1 Wei Pan 3 Ning Xie 1 1 University of Western Ontario, Canada 2 Universidad Carlos III,

More information

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 1 / 23 Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 Maison de la Simulation Lille 1 University CNRS March 18, 2013

More information

GPU Acceleration of Cutoff Pair Potentials for Molecular Modeling Applications

GPU Acceleration of Cutoff Pair Potentials for Molecular Modeling Applications GPU Acceleration of Cutoff Pair Potentials for Molecular Modeling Applications Christopher Rodrigues, David J. Hardy, John E. Stone, Klaus Schulten, Wen-Mei W. Hwu University of Illinois at Urbana-Champaign

More information

Introduction to numerical computations on the GPU

Introduction to numerical computations on the GPU Introduction to numerical computations on the GPU Lucian Covaci http://lucian.covaci.org/cuda.pdf Tuesday 1 November 11 1 2 Outline: NVIDIA Tesla and Geforce video cards: architecture CUDA - C: programming

More information

Accelerating linear algebra computations with hybrid GPU-multicore systems.

Accelerating linear algebra computations with hybrid GPU-multicore systems. Accelerating linear algebra computations with hybrid GPU-multicore systems. Marc Baboulin INRIA/Université Paris-Sud joint work with Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)

More information

CRYPTOGRAPHIC COMPUTING

CRYPTOGRAPHIC COMPUTING CRYPTOGRAPHIC COMPUTING ON GPU Chen Mou Cheng Dept. Electrical Engineering g National Taiwan University January 16, 2009 COLLABORATORS Daniel Bernstein, UIC, USA Tien Ren Chen, Army Tanja Lange, TU Eindhoven,

More information

Parallel Performance Theory - 1

Parallel Performance Theory - 1 Parallel Performance Theory - 1 Parallel Computing CIS 410/510 Department of Computer and Information Science Outline q Performance scalability q Analytical performance measures q Amdahl s law and Gustafson-Barsis

More information

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics SPARSE SOLVERS FOR THE POISSON EQUATION Margreet Nool CWI, Multiscale Dynamics November 9, 2015 OUTLINE OF THIS TALK 1 FISHPACK, LAPACK, PARDISO 2 SYSTEM OVERVIEW OF CARTESIUS 3 POISSON EQUATION 4 SOLVERS

More information

Parallel Polynomial Evaluation

Parallel Polynomial Evaluation Parallel Polynomial Evaluation Jan Verschelde joint work with Genady Yoffe University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu

More information

Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method

Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method NUCLEAR SCIENCE AND TECHNIQUES 25, 0501 (14) Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method XU Qi ( 徐琪 ), 1, YU Gang-Lin ( 余纲林 ), 1 WANG Kan ( 王侃 ),

More information

Performance Metrics for Computer Systems. CASS 2018 Lavanya Ramapantulu

Performance Metrics for Computer Systems. CASS 2018 Lavanya Ramapantulu Performance Metrics for Computer Systems CASS 2018 Lavanya Ramapantulu Eight Great Ideas in Computer Architecture Design for Moore s Law Use abstraction to simplify design Make the common case fast Performance

More information

CS 700: Quantitative Methods & Experimental Design in Computer Science

CS 700: Quantitative Methods & Experimental Design in Computer Science CS 700: Quantitative Methods & Experimental Design in Computer Science Sanjeev Setia Dept of Computer Science George Mason University Logistics Grade: 35% project, 25% Homework assignments 20% midterm,

More information

Parallel Longest Common Subsequence using Graphics Hardware

Parallel Longest Common Subsequence using Graphics Hardware Parallel Longest Common Subsequence using Graphics Hardware John Kloetzli rian Strege Jonathan Decker Dr. Marc Olano Presented by: rian Strege 1 Overview Introduction Problem Statement ackground and Related

More information

Optimization Techniques for Parallel Code 1. Parallel programming models

Optimization Techniques for Parallel Code 1. Parallel programming models Optimization Techniques for Parallel Code 1. Parallel programming models Sylvain Collange Inria Rennes Bretagne Atlantique http://www.irisa.fr/alf/collange/ sylvain.collange@inria.fr OPT - 2017 Goals of

More information

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters H. Köstler 2nd International Symposium Computer Simulations on GPU Freudenstadt, 29.05.2013 1 Contents Motivation walberla software concepts

More information

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization)

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) Schodinger equation: Hψ = Eψ Choose a basis set of wave functions Two cases: Orthonormal

More information

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah PERFORMANCE METRICS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Jan. 17 th : Homework 1 release (due on Jan.

More information

Model Order Reduction via Matlab Parallel Computing Toolbox. Istanbul Technical University

Model Order Reduction via Matlab Parallel Computing Toolbox. Istanbul Technical University Model Order Reduction via Matlab Parallel Computing Toolbox E. Fatih Yetkin & Hasan Dağ Istanbul Technical University Computational Science & Engineering Department September 21, 2009 E. Fatih Yetkin (Istanbul

More information

Heterogenous Parallel Computing with Ada Tasking

Heterogenous Parallel Computing with Ada Tasking Heterogenous Parallel Computing with Ada Tasking Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu

More information

A Blackbox Polynomial System Solver on Parallel Shared Memory Computers

A Blackbox Polynomial System Solver on Parallel Shared Memory Computers A Blackbox Polynomial System Solver on Parallel Shared Memory Computers Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science The 20th Workshop on

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

INTENSIVE COMPUTATION. Annalisa Massini

INTENSIVE COMPUTATION. Annalisa Massini INTENSIVE COMPUTATION Annalisa Massini 2015-2016 Course topics The course will cover topics that are in some sense related to intensive computation: Matlab (an introduction) GPU (an introduction) Sparse

More information

Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures

Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures José I. Aliaga Performance and Energy Analysis of the Iterative Solution of Sparse

More information

Outline. policies for the first part. with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014

Outline. policies for the first part. with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014 Outline 1 midterm exam on Friday 11 July 2014 policies for the first part 2 questions with some potential answers... MCS 260 Lecture 10.0 Introduction to Computer Science Jan Verschelde, 9 July 2014 Intro

More information

Direct Self-Consistent Field Computations on GPU Clusters

Direct Self-Consistent Field Computations on GPU Clusters Direct Self-Consistent Field Computations on GPU Clusters Guochun Shi, Volodymyr Kindratenko National Center for Supercomputing Applications University of Illinois at UrbanaChampaign Ivan Ufimtsev, Todd

More information

MICROPROCESSOR REPORT. THE INSIDER S GUIDE TO MICROPROCESSOR HARDWARE

MICROPROCESSOR REPORT.   THE INSIDER S GUIDE TO MICROPROCESSOR HARDWARE MICROPROCESSOR www.mpronline.com REPORT THE INSIDER S GUIDE TO MICROPROCESSOR HARDWARE ENERGY COROLLARIES TO AMDAHL S LAW Analyzing the Interactions Between Parallel Execution and Energy Consumption By

More information

Generalizing Gustafson s Law For Heterogeneous Processors

Generalizing Gustafson s Law For Heterogeneous Processors Generalizing Gustafson s Law For Heterogeneous Processors André A. Cesta, Geraldo M. Silva Eldorado Research Institute Brasilia - Campinas - Porto Alegre, Brazil {andre.cesta,geraldo.magela}@eldorado.org.br

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines 1 Clocks A microprocessor is composed of many different circuits that are operating simultaneously if each

More information

Quality Up in Polynomial Homotopy Continuation

Quality Up in Polynomial Homotopy Continuation Quality Up in Polynomial Homotopy Continuation Jan Verschelde joint work with Genady Yoffe University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/

More information

Tips Geared Towards R. Adam J. Suarez. Arpil 10, 2015

Tips Geared Towards R. Adam J. Suarez. Arpil 10, 2015 Tips Geared Towards R Departments of Statistics North Carolina State University Arpil 10, 2015 1 / 30 Advantages of R As an interpretive and interactive language, developing an algorithm in R can be done

More information

Chapter 1 Exercises. 2. Give reasons why 10 bricklayers would not in real life build a wall 10 times faster than one bricklayer.

Chapter 1 Exercises. 2. Give reasons why 10 bricklayers would not in real life build a wall 10 times faster than one bricklayer. Chapter 1 Exercises 37 Chapter 1 Exercises 1. Look up the definition of parallel in your favorite dictionary. How does it compare to the definition of parallelism given in this chapter? 2. Give reasons

More information

arxiv: v1 [hep-lat] 7 Oct 2010

arxiv: v1 [hep-lat] 7 Oct 2010 arxiv:.486v [hep-lat] 7 Oct 2 Nuno Cardoso CFTP, Instituto Superior Técnico E-mail: nunocardoso@cftp.ist.utl.pt Pedro Bicudo CFTP, Instituto Superior Técnico E-mail: bicudo@ist.utl.pt We discuss the CUDA

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

Performance Metrics & Architectural Adaptivity. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So

Performance Metrics & Architectural Adaptivity. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So Performance Metrics & Architectural Adaptivity ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So What are the Options? Power Consumption Activity factor (amount of circuit switching) Load Capacitance (size

More information

Acceleration of WRF on the GPU

Acceleration of WRF on the GPU Acceleration of WRF on the GPU Daniel Abdi, Sam Elliott, Iman Gohari Don Berchoff, Gene Pache, John Manobianco TempoQuest 1434 Spruce Street Boulder, CO 80302 720 726 9032 TempoQuest.com THE WORLD S FASTEST

More information

A hierarchical Model for the Analysis of Efficiency and Speed-up of Multi-Core Cluster-Computers

A hierarchical Model for the Analysis of Efficiency and Speed-up of Multi-Core Cluster-Computers A hierarchical Model for the Analysis of Efficiency and Speed-up of Multi-Core Cluster-Computers H. Kredel 1, H. G. Kruse 1 retired, S. Richling2 1 IT-Center, University of Mannheim, Germany 2 IT-Center,

More information

Scalable and Power-Efficient Data Mining Kernels

Scalable and Power-Efficient Data Mining Kernels Scalable and Power-Efficient Data Mining Kernels Alok Choudhary, John G. Searle Professor Dept. of Electrical Engineering and Computer Science and Professor, Kellogg School of Management Director of the

More information

Parallel Performance Theory

Parallel Performance Theory AMS 250: An Introduction to High Performance Computing Parallel Performance Theory Shawfeng Dong shaw@ucsc.edu (831) 502-7743 Applied Mathematics & Statistics University of California, Santa Cruz Outline

More information

The Green Index (TGI): A Metric for Evalua:ng Energy Efficiency in HPC Systems

The Green Index (TGI): A Metric for Evalua:ng Energy Efficiency in HPC Systems The Green Index (TGI): A Metric for Evalua:ng Energy Efficiency in HPC Systems Wu Feng and Balaji Subramaniam Metrics for Energy Efficiency Energy- Delay Product (EDP) Used primarily in circuit design

More information

Improvements for Implicit Linear Equation Solvers

Improvements for Implicit Linear Equation Solvers Improvements for Implicit Linear Equation Solvers Roger Grimes, Bob Lucas, Clement Weisbecker Livermore Software Technology Corporation Abstract Solving large sparse linear systems of equations is often

More information

Quantum Chemical Calculations by Parallel Computer from Commodity PC Components

Quantum Chemical Calculations by Parallel Computer from Commodity PC Components Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 4, 461 468 Quantum Chemical Calculations by Parallel Computer from Commodity PC Components S. Bekešienė 1, S. Sėrikovienė 2 1 Institute of

More information

Parallel Rabin-Karp Algorithm Implementation on GPU (preliminary version)

Parallel Rabin-Karp Algorithm Implementation on GPU (preliminary version) Bulletin of Networking, Computing, Systems, and Software www.bncss.org, ISSN 2186-5140 Volume 7, Number 1, pages 28 32, January 2018 Parallel Rabin-Karp Algorithm Implementation on GPU (preliminary version)

More information

arxiv: v1 [physics.comp-ph] 22 Nov 2012

arxiv: v1 [physics.comp-ph] 22 Nov 2012 A Customized 3D GPU Poisson Solver for Free BCs Nazim Dugan a, Luigi Genovese b, Stefan Goedecker a, a Department of Physics, University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland b Laboratoire

More information

MPI at MPI. Jens Saak. Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

MPI at MPI. Jens Saak. Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory MAX PLANCK INSTITUTE November 5, 2010 MPI at MPI Jens Saak Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory FOR DYNAMICS OF COMPLEX TECHNICAL

More information

Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry

Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry and Eugene DePrince Argonne National Laboratory (LCF and CNM) (Eugene moved to Georgia Tech last week)

More information

Jacobi-Based Eigenvalue Solver on GPU. Lung-Sheng Chien, NVIDIA

Jacobi-Based Eigenvalue Solver on GPU. Lung-Sheng Chien, NVIDIA Jacobi-Based Eigenvalue Solver on GPU Lung-Sheng Chien, NVIDIA lchien@nvidia.com Outline Symmetric eigenvalue solver Experiment Applications Conclusions Symmetric eigenvalue solver The standard form is

More information

arxiv: v1 [physics.data-an] 19 Feb 2017

arxiv: v1 [physics.data-an] 19 Feb 2017 arxiv:1703.03284v1 [physics.data-an] 19 Feb 2017 Model-independent partial wave analysis using a massively-parallel fitting framework L Sun 1, R Aoude 2, A C dos Reis 2, M Sokoloff 3 1 School of Physics

More information

Analytical Modeling of Parallel Systems

Analytical Modeling of Parallel Systems Analytical Modeling of Parallel Systems Chieh-Sen (Jason) Huang Department of Applied Mathematics National Sun Yat-sen University Thank Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar for providing

More information

Projectile Motion Slide 1/16. Projectile Motion. Fall Semester. Parallel Computing

Projectile Motion Slide 1/16. Projectile Motion. Fall Semester. Parallel Computing Projectile Motion Slide 1/16 Projectile Motion Fall Semester Projectile Motion Slide 2/16 Topic Outline Historical Perspective ABC and ENIAC Ballistics tables Projectile Motion Air resistance Euler s method

More information

Perm State University Research-Education Center Parallel and Distributed Computing

Perm State University Research-Education Center Parallel and Distributed Computing Perm State University Research-Education Center Parallel and Distributed Computing A 25-minute Talk (S4493) at the GPU Technology Conference (GTC) 2014 MARCH 24-27, 2014 SAN JOSE, CA GPU-accelerated modeling

More information

High-Performance Computing, Planet Formation & Searching for Extrasolar Planets

High-Performance Computing, Planet Formation & Searching for Extrasolar Planets High-Performance Computing, Planet Formation & Searching for Extrasolar Planets Eric B. Ford (UF Astronomy) Research Computing Day September 29, 2011 Postdocs: A. Boley, S. Chatterjee, A. Moorhead, M.

More information

On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code

On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code E Calore, S F Schifano, R Tripiccione Enrico Calore INFN Ferrara, Italy 7 th Workshop on UnConventional High Performance

More information

Julian Merten. GPU Computing and Alternative Architecture

Julian Merten. GPU Computing and Alternative Architecture Future Directions of Cosmological Simulations / Edinburgh 1 / 16 Julian Merten GPU Computing and Alternative Architecture Institut für Theoretische Astrophysik Zentrum für Astronomie Universität Heidelberg

More information

Binding Performance and Power of Dense Linear Algebra Operations

Binding Performance and Power of Dense Linear Algebra Operations 10th IEEE International Symposium on Parallel and Distributed Processing with Applications Binding Performance and Power of Dense Linear Algebra Operations Maria Barreda, Manuel F. Dolz, Rafael Mayo, Enrique

More information

BENCHMARK STUDY OF A 3D PARALLEL CODE FOR THE PROPAGATION OF LARGE SUBDUCTION EARTHQUAKES

BENCHMARK STUDY OF A 3D PARALLEL CODE FOR THE PROPAGATION OF LARGE SUBDUCTION EARTHQUAKES BENCHMARK STUDY OF A D PARALLEL CODE FOR THE PROPAGATION OF LARGE SUBDUCTION EARTHQUAKES Mario Chavez,2, Eduardo Cabrera, Raúl Madariaga 2, Narciso Perea, Charles Moulinec 4, David Emerson 4, Mike Ashworth

More information

Scalable Systems for Computational Biology

Scalable Systems for Computational Biology John von Neumann Institute for Computing Scalable Systems for Computational Biology Ch. Pospiech published in From Computational Biophysics to Systems Biology (CBSB08), Proceedings of the NIC Workshop

More information

Lecture 3, Performance

Lecture 3, Performance Lecture 3, Performance Repeating some definitions: CPI Clocks Per Instruction MHz megahertz, millions of cycles per second MIPS Millions of Instructions Per Second = MHz / CPI MOPS Millions of Operations

More information

Cactus Tools for Petascale Computing

Cactus Tools for Petascale Computing Cactus Tools for Petascale Computing Erik Schnetter Reno, November 2007 Gamma Ray Bursts ~10 7 km He Protoneutron Star Accretion Collapse to a Black Hole Jet Formation and Sustainment Fe-group nuclei Si

More information

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners José I. Aliaga Leveraging task-parallelism in energy-efficient ILU preconditioners Universidad Jaime I (Castellón, Spain) José I. Aliaga

More information

Shortest Lattice Vector Enumeration on Graphics Cards

Shortest Lattice Vector Enumeration on Graphics Cards Shortest Lattice Vector Enumeration on Graphics Cards Jens Hermans 1 Michael Schneider 2 Fréderik Vercauteren 1 Johannes Buchmann 2 Bart Preneel 1 1 K.U.Leuven 2 TU Darmstadt SHARCS - 10 September 2009

More information

Computing least squares condition numbers on hybrid multicore/gpu systems

Computing least squares condition numbers on hybrid multicore/gpu systems Computing least squares condition numbers on hybrid multicore/gpu systems M. Baboulin and J. Dongarra and R. Lacroix Abstract This paper presents an efficient computation for least squares conditioning

More information

Parallel programming using MPI. Analysis and optimization. Bhupender Thakur, Jim Lupo, Le Yan, Alex Pacheco

Parallel programming using MPI. Analysis and optimization. Bhupender Thakur, Jim Lupo, Le Yan, Alex Pacheco Parallel programming using MPI Analysis and optimization Bhupender Thakur, Jim Lupo, Le Yan, Alex Pacheco Outline l Parallel programming: Basic definitions l Choosing right algorithms: Optimal serial and

More information

Performance Evaluation of MPI on Weather and Hydrological Models

Performance Evaluation of MPI on Weather and Hydrological Models NCAR/RAL Performance Evaluation of MPI on Weather and Hydrological Models Alessandro Fanfarillo elfanfa@ucar.edu August 8th 2018 Cheyenne - NCAR Supercomputer Cheyenne is a 5.34-petaflops, high-performance

More information

COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD

COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD XVIII International Conference on Water Resources CMWR 2010 J. Carrera (Ed) c CIMNE, Barcelona, 2010 COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD James.E. McClure, Jan F. Prins

More information

University of Alberta

University of Alberta University of Alberta Parallel Electromagnetic Transient Simulation of Large-Scale Power Systems on Massive-threading Hardware by Zhiyin Zhou A thesis submitted to the Faculty of Graduate Studies and Research

More information

A CUDA Solver for Helmholtz Equation

A CUDA Solver for Helmholtz Equation Journal of Computational Information Systems 11: 24 (2015) 7805 7812 Available at http://www.jofcis.com A CUDA Solver for Helmholtz Equation Mingming REN 1,2,, Xiaoguang LIU 1,2, Gang WANG 1,2 1 College

More information

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL 2018. MWF 2:00pm - 2:50pm MTH 0407 Instructor: M. Machedon Office: MTH 3311 e-mail: mxm@math.umd.edu Required text: Evans, Partial Differential Equations second

More information

SIMULATION OF ISING SPIN MODEL USING CUDA

SIMULATION OF ISING SPIN MODEL USING CUDA SIMULATION OF ISING SPIN MODEL USING CUDA MIRO JURIŠIĆ Supervisor: dr.sc. Dejan Vinković Split, November 2011 Master Thesis in Physics Department of Physics Faculty of Natural Sciences and Mathematics

More information

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay SP-CNN: A Scalable and Programmable CNN-based Accelerator Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay Motivation Power is a first-order design constraint, especially for embedded devices. Certain

More information

GPU accelerated Monte Carlo simulations of lattice spin models

GPU accelerated Monte Carlo simulations of lattice spin models Available online at www.sciencedirect.com Physics Procedia 15 (2011) 92 96 GPU accelerated Monte Carlo simulations of lattice spin models M. Weigel, T. Yavors kii Institut für Physik, Johannes Gutenberg-Universität

More information

Available online at ScienceDirect. Procedia Engineering 61 (2013 ) 94 99

Available online at  ScienceDirect. Procedia Engineering 61 (2013 ) 94 99 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 6 (203 ) 94 99 Parallel Computational Fluid Dynamics Conference (ParCFD203) Simulations of three-dimensional cavity flows with

More information

Accelerating Quantum Chromodynamics Calculations with GPUs

Accelerating Quantum Chromodynamics Calculations with GPUs Accelerating Quantum Chromodynamics Calculations with GPUs Guochun Shi, Steven Gottlieb, Aaron Torok, Volodymyr Kindratenko NCSA & Indiana University National Center for Supercomputing Applications University

More information

A Massively Parallel Eigenvalue Solver for Small Matrices on Multicore and Manycore Architectures

A Massively Parallel Eigenvalue Solver for Small Matrices on Multicore and Manycore Architectures A Massively Parallel Eigenvalue Solver for Small Matrices on Multicore and Manycore Architectures Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences,

More information

INITIAL INTEGRATION AND EVALUATION

INITIAL INTEGRATION AND EVALUATION INITIAL INTEGRATION AND EVALUATION OF SLATE PARALLEL BLAS IN LATTE Marc Cawkwell, Danny Perez, Arthur Voter Asim YarKhan, Gerald Ragghianti, Jack Dongarra, Introduction The aim of the joint milestone STMS10-52

More information

GPU Computing Activities in KISTI

GPU Computing Activities in KISTI International Advanced Research Workshop on High Performance Computing, Grids and Clouds 2010 June 21~June 25 2010, Cetraro, Italy HPC Infrastructure and GPU Computing Activities in KISTI Hongsuk Yi hsyi@kisti.re.kr

More information

Marwan Burelle. Parallel and Concurrent Programming. Introduction and Foundation

Marwan Burelle.  Parallel and Concurrent Programming. Introduction and Foundation and and marwan.burelle@lse.epita.fr http://wiki-prog.kh405.net Outline 1 2 and 3 and Evolutions and Next evolutions in processor tends more on more on growing of cores number GPU and similar extensions

More information

Efficient implementation of the overlap operator on multi-gpus

Efficient implementation of the overlap operator on multi-gpus Efficient implementation of the overlap operator on multi-gpus Andrei Alexandru Mike Lujan, Craig Pelissier, Ben Gamari, Frank Lee SAAHPC 2011 - University of Tennessee Outline Motivation Overlap operator

More information

Accelerating Model Reduction of Large Linear Systems with Graphics Processors

Accelerating Model Reduction of Large Linear Systems with Graphics Processors Accelerating Model Reduction of Large Linear Systems with Graphics Processors P. Benner 1, P. Ezzatti 2, D. Kressner 3, E.S. Quintana-Ortí 4, Alfredo Remón 4 1 Max-Plank-Institute for Dynamics of Complex

More information

GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular Dynamics Flexible Fitting

GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular Dynamics Flexible Fitting GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular Dynamics Flexible Fitting John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten Theoretical and Computational

More information

Lecture 19. Architectural Directions

Lecture 19. Architectural Directions Lecture 19 Architectural Directions Today s lecture Advanced Architectures NUMA Blue Gene 2010 Scott B. Baden / CSE 160 / Winter 2010 2 Final examination Announcements Thursday, March 17, in this room:

More information

CSE 548: Analysis of Algorithms. Lecture 12 ( Analyzing Parallel Algorithms )

CSE 548: Analysis of Algorithms. Lecture 12 ( Analyzing Parallel Algorithms ) CSE 548: Analysis of Algorithms Lecture 12 ( Analyzing Parallel Algorithms ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2017 Why Parallelism? Moore s Law Source: Wikipedia

More information

BeiHang Short Course, Part 7: HW Acceleration: It s about Performance, Energy and Power

BeiHang Short Course, Part 7: HW Acceleration: It s about Performance, Energy and Power BeiHang Short Course, Part 7: HW Acceleration: It s about Performance, Energy and Power James C. Hoe Department of ECE Carnegie Mellon niversity Eric S. Chung, et al., Single chip Heterogeneous Computing:

More information

Factoring Solution Sets of Polynomial Systems in Parallel

Factoring Solution Sets of Polynomial Systems in Parallel Factoring Solution Sets of Polynomial Systems in Parallel Jan Verschelde Department of Math, Stat & CS University of Illinois at Chicago Chicago, IL 60607-7045, USA Email: jan@math.uic.edu URL: http://www.math.uic.edu/~jan

More information

Implementing NNLO into MCFM

Implementing NNLO into MCFM Implementing NNLO into MCFM Downloadable from mcfm.fnal.gov A Multi-Threaded Version of MCFM, J.M. Campbell, R.K. Ellis, W. Giele, 2015 Higgs boson production in association with a jet at NNLO using jettiness

More information

Lecture 3, Performance

Lecture 3, Performance Repeating some definitions: Lecture 3, Performance CPI MHz MIPS MOPS Clocks Per Instruction megahertz, millions of cycles per second Millions of Instructions Per Second = MHz / CPI Millions of Operations

More information

Goals for Performance Lecture

Goals for Performance Lecture Goals for Performance Lecture Understand performance, speedup, throughput, latency Relationship between cycle time, cycles/instruction (CPI), number of instructions (the performance equation) Amdahl s

More information

Simulation of Lid-driven Cavity Flow by Parallel Implementation of Lattice Boltzmann Method on GPUs

Simulation of Lid-driven Cavity Flow by Parallel Implementation of Lattice Boltzmann Method on GPUs Simulation of Lid-driven Cavity Flow by Parallel Implementation of Lattice Boltzmann Method on GPUs S. Berat Çelik 1, Cüneyt Sert 2, Barbaros ÇETN 3 1,2 METU, Mechanical Engineering, Ankara, TURKEY 3 METU-NCC,

More information

Parallelism in Structured Newton Computations

Parallelism in Structured Newton Computations Parallelism in Structured Newton Computations Thomas F Coleman and Wei u Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, Canada N2L 3G1 E-mail: tfcoleman@uwaterlooca

More information

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Outline A few words on MD applications and the GROMACS package The main work in an MD simulation Parallelization Stream computing

More information

Performance and Application of Observation Sensitivity to Global Forecasts on the KMA Cray XE6

Performance and Application of Observation Sensitivity to Global Forecasts on the KMA Cray XE6 Performance and Application of Observation Sensitivity to Global Forecasts on the KMA Cray XE6 Sangwon Joo, Yoonjae Kim, Hyuncheol Shin, Eunhee Lee, Eunjung Kim (Korea Meteorological Administration) Tae-Hun

More information

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel?

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel? CRYSTAL in parallel: replicated and distributed (MPP) data Roberto Orlando Dipartimento di Chimica Università di Torino Via Pietro Giuria 5, 10125 Torino (Italy) roberto.orlando@unito.it 1 Why parallel?

More information

Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers

Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers UT College of Engineering Tutorial Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers Stan Tomov 1, George Bosilca 1, and Cédric

More information

Spin glass simulations on Janus

Spin glass simulations on Janus Spin glass simulations on Janus R. (lele) Tripiccione Dipartimento di Fisica, Universita' di Ferrara raffaele.tripiccione@unife.it UCHPC, Rodos (Greece) Aug. 27 th, 2012 Warning / Disclaimer / Fineprints

More information

Processing NOAA Observation Data over Hybrid Computer Systems for Comparative Climate Change Analysis

Processing NOAA Observation Data over Hybrid Computer Systems for Comparative Climate Change Analysis Processing NOAA Observation Data over Hybrid Computer Systems for Comparative Climate Change Analysis Xuan Shi 1,, Dali Wang 2 1 Department of Geosciences, University of Arkansas, Fayetteville, AR 72701,

More information

Practical Combustion Kinetics with CUDA

Practical Combustion Kinetics with CUDA Funded by: U.S. Department of Energy Vehicle Technologies Program Program Manager: Gurpreet Singh & Leo Breton Practical Combustion Kinetics with CUDA GPU Technology Conference March 20, 2015 Russell Whitesides

More information

Some thoughts about energy efficient application execution on NEC LX Series compute clusters

Some thoughts about energy efficient application execution on NEC LX Series compute clusters Some thoughts about energy efficient application execution on NEC LX Series compute clusters G. Wellein, G. Hager, J. Treibig, M. Wittmann Erlangen Regional Computing Center & Department of Computer Science

More information

Analytical Modeling of Parallel Programs (Chapter 5) Alexandre David

Analytical Modeling of Parallel Programs (Chapter 5) Alexandre David Analytical Modeling of Parallel Programs (Chapter 5) Alexandre David 1.2.05 1 Topic Overview Sources of overhead in parallel programs. Performance metrics for parallel systems. Effect of granularity on

More information