s (2 families) p (6 families) d (10 families) f (14 families)

Size: px
Start display at page:

Download "s (2 families) p (6 families) d (10 families) f (14 families)"

Transcription

1 Electron Configuration Hint Sheet The chart below shows the regions of the periodic table in which the outermost electron is in s,p,d and f orbitals. It requires 2 e- s to fill an s orbital, 6 e- s to fill a p orbital, 10 e- s to fill a d orbital and 14 e- s to fill an f orbital. Each row and region in the periodic table is associated with a different quantum number. For s and p orbitals, the row number is the principle quantum number. For d orbitals, the row number minus one is the principle quantum number. For f orbitals, the row number minus two is the principle quantum number. 1 2 s (2 families) p (6 families) d (10 families) f (14 families) Total Electron configuration of Neutral Atoms Example: Se 1) Locate the element on the Periodic Table and determine what row it is in. Ah, it s in the 4 th row, in the p block. 2) Go up one row and all the way over to the noble gases. You can save some writing by putting the noble gas in brackets to indicate everything the noble gas has. OK, Argon is the noble gas in the 3 rd row, so write [Ar]. 3) Now go back to the row the element is in, and start counting over. It s going to take 2 e- s to fill up the s-block, so that s 4s 2. Page 1 7/3/03 L.M. Petrovich

2 It s going to take 10 e s to fill up the d-block, so that s 3d 10. No it s not a mistake. Remember it s (row #-1) for d s. Se is 4e s over into the p-block, so that s 4p 4. Example: Ba Total electron configuration of Se is [Ar] 4s 2 3d 10 4p 4 1) Locate the element on the Periodic Table and determine what row it is in. Ah, it s in the 6 th row, in the s block. 2) Go up one row and all the way over to the noble gases. You can save some writing by putting the noble gas in brackets to indicate everything the noble gas has. OK, Xenon is the noble gas in the 5th row, so write [Xe]. 3) Now go back to the row the element is in, and start counting over. It s going to take 2 e- s to fill up the s-block to where Ba is, so that s 6s 2. Example: Pd Total electron configuration of Ba is [Xe] 6s 2 1) Locate the element on the Periodic Table and determine what row it is in. Ah, it s in the 5 th row, in the d block. 2) Go up one row and all the way over to the noble gases. You can save some writing by putting the noble gas in brackets to indicate everything the noble gas has. OK, Kryton is the noble gas in the 4th row, so write [Kr]. 3) Now go back to the row the element is in, and start counting over. It s going to take 2 e- s to fill up the s-block, so that s 5s 2. Pd is 8e s over into the p-block, so that s 4d 8. Total electron configuration of Pd is [Kr] 5s 2 4d 8 Examples for you to try: 1a) Sn 1b) Fe 1c) Na 1d) N 1e) Ti 1f) Br Page 2 7/3/03 L.M. Petrovich

3 Valence Electron configuration of Neutral Atoms The VALENCE electron configuration of neutral atoms is simply the highest energy s orbital with electrons, plus any other energy levels that are not full of electrons. The valence electrons are the electrons the atom uses to participate in chemical reactions. Example: Se 1) Figure out the total electron configuration The total electron configuration of Se is [Ar] 4s 2 3d 10 4p 4, from the previous example. 2) Remove the noble gas core and any filled sublevels, other than the highest filled s. To get valence, we just throw out the core, [Ar] and the filled 3d sublevel. Valence electron configuration of Se is 4s 2 4p 4 Example: Ba 1) Figure out the total electron configuration Total electron configuration of Ba is [Xe] 6s 2 2) Remove the noble gas core and any filled sublevels, other than the highest filled s. To get valence, we just throw out the core, [Xe]. Valence electron configuration of Ba is 6s 2 Example: Pd 3) Figure out the total electron configuration Total electron configuration of Pd is [Kr] 5s 2 4d 8 4) Remove the noble gas core and any filled sublevels, other than the highest filled s. To get valence, we just throw out the core, [Kr]. Valence electron configuration of Pd is 5s 2 4d 8 Examples for you to try: 2a) Sn 2b) Fe 2c) Na 2d) N 2e) Ti 2f) Br Page 3 7/3/03 L.M. Petrovich

4 Total Electron configuration of Ions Example: Se 2- The total electron configuration of Se is [Ar] 4s 2 3d 10 4p 4, from the previous example. Se 2- is an anion of-2, so add two electrons to the next available slot: the 4p orbital. The total electron configuration of Se 2- is [Ar] 4s 2 3d 10 4p 6, or more simply [Kr] Example: Ba 2+ The total electron configuration of Ba is [Xe] 6s 2 Ba 2+ is a cation of +2, so remove two electrons from the outermost s orbital, since the highest energy p is part of the core. The total electron configuration of Ba 2+ is [Xe] Example: Pd 2+ The total electron configuration of Pd is [Kr] 5s 2 4d 8 Pd 2+ is a cation of +2, so remove two electrons from the outermost s orbital, since the highest energy p is part of the core. Remember, s leave before d. The total electron configuration of Pd 2+ is [Kr] 4d 8 Page 4 7/3/03 L.M. Petrovich

5 Example: Tl 1+ The total electron configuration of Tl is [Xe] 6s 2 4f 14 5d 10 6p 1 Tl 1+ is a cation of +1, so remove two electrons from the outermost p orbital. Remember, p leave first, then s, then d. The total electron configuration of Tl 1+ is [Xe] 6s 2 4f 14 5d 10 Examples for you to try: 3a) Sn 4+ 3b) Fe 2+ 3c) Na 1+ 3d) N 3-3e) Ti 2+ 3f) Br 1- Page 5 7/3/03 L.M. Petrovich

6 Answers: 1a) Sn: [Kr] 5s 2 4d 10 5p 2 1b) Fe: [Ar] 4s 2 3d 6 1c) Na: [Ne] 3s 1 1d) N: [He] 2s 2 2p 3 1e) Ti: [Ar] 4s 2 3d 2 1f) Br: [Ar] 4s 2 3d 10 4p 5 2a) Sn: 5s 2 5p 2 2b) Fe: 4s 2 3d 6 2c) Na: 3s 1 2d) N: 2s 2 2p 3 2e) Ti: 4s 2 3d 2 2f) Br: 4s 2 3d 10 4p 5 3a) Sn 4+ : [Kr] 4d 10 3b) Fe 2+ : [Ar] 3d 6 3c) Na 1+ :: [Ne] 3d) N 3- :: [Ne] 3e) Ti 2+ :: [Ar] 3d 2 3f) Br 1- :: [Kr] Page 6 7/3/03 L.M. Petrovich

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE!

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! REPRESENTING ELECTRONS... Now that you know what an orbital is, you need to be able to use that to describe the electronic

More information

Unit Two: Elements & Matter. February 1, 2016

Unit Two: Elements & Matter. February 1, 2016 Unit Two: Elements & Matter February 1, 2016 Warm-Up: 2/1/2016 1. Fill in the following information: Atomic Symbol Ca 2+ Atomic Number Proton Neutron Electron 34 36 Mass Num. 2. Identify which family the

More information

ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE

ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE ELECTRON CONFIGURATIONS ELECTRON CONFIGURATIONS, ORBITAL DIAGRAMS, AUFBAU PRINCIPLE, HUND S RULE REPRESENTING ELECTRONS... Now that you know what an orbital is, you need to be able to use that to describe

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

Ch. 5 - The Periodic Table

Ch. 5 - The Periodic Table Ch. 5 - The Periodic Table 250 Atomic Radius (pm) 200 150 100 50 0 0 5 10 15 20 Atomic Number III. Periodic Trends (p. 140-154) I II III A. Periodic Law When elements are arranged in order of increasing

More information

LABELING ELECTRONS IN ATOMS

LABELING ELECTRONS IN ATOMS Date: Name: LABELING ELECTRONS IN ATOMS The location of each electron in an atom is determined by a few different factors. Each factor is represented by a QUANTUM NUMBER. Prediction: What do you think

More information

Activity Electron Configurations

Activity Electron Configurations Activity 151-10 Electron Configurations Directions: This GLA worksheet goes over two different ways to write the electron configuration for a specific element. Electron configurations are a way of specifying

More information

ELEMENTS & MATTER. September 7, 2016

ELEMENTS & MATTER. September 7, 2016 ELEMENTS & MATTER September 7, 2016 Review Problems: 9/7/2016 1. Fill in the following information: Atomic Symbol Atomic Number Proton Neutron Electron Mass Num. Atomic Mass 34 36 Ca 2+ 2. Identify which

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 175 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

Where are the s, p, d, f orbitals located on the periodic table? Identify them on the diagram below.

Where are the s, p, d, f orbitals located on the periodic table? Identify them on the diagram below. Chapter 4 Arrangement of Electrons in Atoms Section 3: Electron Configuration Objectives: Be able to define: Aufbau Principle, Pauli Exclusion Principle, Hund s rule. Be able to list the number of electrons

More information

Electron Configurations and the Periodic Table

Electron Configurations and the Periodic Table Electron Configurations and the Periodic Table The periodic table can be used as a guide for electron configurations. The period number is the value of n. Groups 1A and 2A have the s-orbital filled. Groups

More information

2. Atoms with nearly empty valence shells give up electrons. They are called

2. Atoms with nearly empty valence shells give up electrons. They are called Name: Date: Chemistry ~ Ms. Hart Class: Anions or Cations 4.8 Ions and Ionic Radius Directions: As we watch the video, answer these questions. 1. What is it called when an atom gains or loses an electron?

More information

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n.

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n. Shells and Subshells The orbitals in an atom are arranged in shells and subshells. n=3 orbital 3s 3p 3d Shell: all orbitals with the same value of n n=3 3s 3p 3d Subshell: all orbitals with the same value

More information

Topic 2 Atomic Structure. IB Chemistry SL Coral Gables Senior High School Ms. Kiely

Topic 2 Atomic Structure. IB Chemistry SL Coral Gables Senior High School Ms. Kiely Topic 2 Atomic Structure IB Chemistry SL Coral Gables Senior High School Ms. Kiely Bell Ringer (i) Calculate the number of neutrons and electrons in one atom of ⁶⁵Cu. (ii) State one difference in the physical

More information

CHAPTER 2. Atoms,Elements, Periodic Table

CHAPTER 2. Atoms,Elements, Periodic Table CHAPTER Atoms,Elements, Periodic Table 1 Vocabulary Chemistry Science that describes matter its properties, the changes it undergoes, and the energy changes that accompany those processes Matter Anything

More information

Principles of Chemistry: A Molecular Approach (Tro) Chapter 2 Atoms and Elements

Principles of Chemistry: A Molecular Approach (Tro) Chapter 2 Atoms and Elements Principles of Chemistry: A Molecular Approach (Tro) Chapter 2 Atoms and Elements 1) Which of the following is an example of the law of multiple proportions? A) A sample of chlorine is found to contain

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

CHEM 103 Quantum Mechanics and Periodic Trends

CHEM 103 Quantum Mechanics and Periodic Trends CHEM 103 Quantum Mechanics and Periodic Trends Lecture Notes April 11, 2006 Prof. Sevian Agenda Predicting electronic configurations using the QM model Group similarities Interpreting measured properties

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 170 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

CHAPTER 6. Chemical Periodicity

CHAPTER 6. Chemical Periodicity CHAPTER 6 Chemical Periodicity 1 Chapter Goals 1. More About the Periodic Table Periodic Properties of the Elements 2. Atomic Radii 3. Ionization Energy (IE) 4. Electron Affinity (EA) 5. Ionic Radii 6.

More information

Name: Unit 3 Guide-Electrons In Atoms

Name: Unit 3 Guide-Electrons In Atoms Name: Unit 3 Guide-Electrons In Atoms Importance of Electrons Draw a complete Bohr model of the atom. Write an element s electron configuration. Know how the symbols used in ECs relate to electron properties

More information

Lesson 14: Periodic Trends

Lesson 14: Periodic Trends Lesson 14: Periodic Trends Review: Cations and Anions negative positive electrons n anion cation Metals lose electrons when they undergo chemical reactions. Na will always lose one electron. Nonmetals

More information

A bit of review. Atoms are made of 3 different SUB-ATOMIC PARTICLES: 1. ELECTRONS 2. PROTONS 3. NEUTRONS

A bit of review. Atoms are made of 3 different SUB-ATOMIC PARTICLES: 1. ELECTRONS 2. PROTONS 3. NEUTRONS Chemistry in Action A bit of review Chemistry is the study of MATTER and ENERGY. Matter is anything that has MASS. All matter is made of super small particles called ATOMS. Atoms are made of 3 different

More information

Shielding & Atomic Radius, Ions & Ionic Radius. Chemistry AP

Shielding & Atomic Radius, Ions & Ionic Radius. Chemistry AP Shielding & Atomic Radius, Ions & Ionic Radius Chemistry AP Periodic Table Periodic Table Elements in same column have similar properties Column # (IA-VIIIA) gives # valence electrons All elements in column

More information

There are 7 trends on the periodic table that we will follow. Using your periodic table, answer all of the questions in the packet. Think hard.

There are 7 trends on the periodic table that we will follow. Using your periodic table, answer all of the questions in the packet. Think hard. Trends Handout ANSWERS There are 7 trends on the periodic table that we will follow. Using your periodic table, answer all of the questions in the packet. Think hard. The periodic table has 18 groups that

More information

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table!

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! Development of the Periodic Table! Main Idea: The periodic table evolved over time as scientists discovered more useful ways

More information

AP Chemistry - Problem Drill 10: Atomic Structures and Electron Configuration

AP Chemistry - Problem Drill 10: Atomic Structures and Electron Configuration AP Chemistry - Problem Drill 10: Atomic Structures and Electron Configuration No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1.

More information

Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements. Multiple Choice Questions

Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements. Multiple Choice Questions Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements Multiple Choice Questions 1) In a chemical reaction, matter is neither created or destroyed. Which law does this refer to? A) Law

More information

Electron Configurations

Electron Configurations Electron Configurations Electron Arrangement in an Atom The arrangement of electrons in an atom is its electron configuration. It is impossible to know where an electron is or how fast it is traveling

More information

The Shell Model (II)

The Shell Model (II) 22 ChemActivity 5 The Shell Model (II) Model 1: Valence Electrons, Inner-Shell Electrons, and Core Charge. The electrons in the outermost shell of an atom are referred to as valence electrons. Electrons

More information

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL ELECTRONS IN ATOMS LIMITATIONS OF RUTHERFORD S ATOMIC MODEL Did not explain the chemical properties of atoms For example, it could not explain why metals or compounds of metals give off characteristic

More information

Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements

Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements 1) Which of the following is an example of the law of multiple proportions? A) A sample of chlorine is found to contain

More information

Electron Configurations

Electron Configurations Section 3 Electron Configurations Key Terms electron configuration Pauli exclusion principle noble gas Aufbau principle Hund s rule noble-gas configuration Main Ideas Electrons fill in the lowest-energy

More information

1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions

1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions Pre-AP Chemistry 11 Atomic Theory II Name: Date: Block: 1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions Electronic

More information

Dobereiner developed concept of Triads (groups of 3 elements with similar chemical properties) Average of 1st and 3rd

Dobereiner developed concept of Triads (groups of 3 elements with similar chemical properties) Average of 1st and 3rd Unit Early 800's Dobereiner developed concept of Triads (groups of elements with similar chemical properties) atomic mass atomic mass Ca 0. S. Sr Average of st and rd Se Ba 7. Te 7. *useful for predicting

More information

- Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints".

- Atomic line spectra are UNIQUE to each element. They're like atomic fingerprints. - Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints". - Problem was that the current model of the atom completely failed to explain why atoms emitted these lines. An orbit

More information

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Chemistry I: Quantum Mechanics Notes Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Major developments that put

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements

Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements 1) Which of the following is an example of the law of multiple proportions? A) A sample of chlorine is found to contain

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2 Electron Spin and Magnetism We have seen that an atomic orbital is described by three

More information

Page 1 of 9. Website: Mobile:

Page 1 of 9. Website:    Mobile: Question 1: Did Dobereiner s triads also exist in the columns of Newlands Octaves? Compare and find out. Only one triad of Dobereiner s triads exists in the columns of Newlands octaves. The triad formed

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

CHAPTER 6 The Periodic Table

CHAPTER 6 The Periodic Table CHAPTER 6 The Periodic Table 6.1 Organizing the Elements Mendeleev: listed the elements in order of increasing atomic mass and in vertical columns according to their properties. Left blank spaces for undiscovered

More information

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons Atomic Structure Neutrons: neutral Protons: positive charge (1.6x10 19 C, 1.67x10 27 kg) Electrons: negative charge (1.6x10 19 C, 9.11x10 31 kg) Atomic weight = m protons + m neutrons Atomic number (Z)

More information

Electron Configurations

Electron Configurations Electron Configurations Parts of the atom Protons identify the element. Neutrons add mass and help glue the nucleus together ( all those protons are NOT happy being stuck next to each other). Parts of

More information

Electron Configuration and Chemical Periodicity. Chapter Eight. AP Chemistry

Electron Configuration and Chemical Periodicity. Chapter Eight. AP Chemistry Electron Configuration and Chemical Periodicity Chapter Eight AP Chemistry General Review Information about the Periodic Table Organization of the Elements 1869: Dmitri Mendeleev - Published an organizational

More information

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small.

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small. 63 Periodic Trends > 63 Periodic Trends > CHEMISTRY & YOU Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends How are trends in the weather similar to

More information

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements 1 63 Periodic Trends > Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends 2 63 Periodic Trends > CHEMISTRY & YOU How are trends in the weather similar

More information

Electron configurations follow the order of sublevels on the periodic table.

Electron configurations follow the order of sublevels on the periodic table. Electron configurations follow the order of sublevels on the periodic table. 1 The periodic table consists of sublevel blocks arranged in order of increasing energy. Groups 1A(1)-2A(2) = s level Groups

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Bohr Model Quantum Model Energy level Atomic orbital Quantum Atomic number Quantum mechanical

More information

KWL CHART--ELECTRONS

KWL CHART--ELECTRONS KWL CHART--ELECTRONS WHAT DO I ALREADY KNOW ABOUT ELECTRONS? WHAT DO I WANT TO KNOW CONCERNING ELECTRONS? WHAT HAVE I LEARNED TODAY ABOUT ELECTRONS? GPS STANDARD SC3. Students will use the modern atomic

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011 The Electronic Structure of the Atom Bohr based his theory on his experiments with hydrogen he found that when energy is added to a sample of hydrogen, energy is absorbed and reemitted as light When passed

More information

Periodic Relationships Among the Elements

Periodic Relationships Among the Elements When the Elements Were Discovered Periodic Relationships Among the Elements Chapter 8 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2 ns 1 Ground State Electron

More information

General Rules. Pauli Exclusion Principle. Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli

General Rules. Pauli Exclusion Principle. Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli General Rules Pauli Exclusion Principle Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli General Rules Aufbau Principle Electrons fill the lowest energy orbitals first. Lazy Tenant

More information

Today is Monday, October 9 th, 2017

Today is Monday, October 9 th, 2017 In This Lesson: Valence Electrons and Lewis Dot Structures (Lesson 4 of 4) Today is Monday, October 9 th, 2017 Stuff You Need: Periodic Table Pre-Class: You ve probably heard of the special name we give

More information

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). 170 LIGHT wavelength Diffraction frequency = wavelengths / time = - Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). - Einstein noted that viewing light as a particle

More information

The Periodic Law Similar physical and chemical properties recur periodically when the elements are listed in order of increasing atomic number.

The Periodic Law Similar physical and chemical properties recur periodically when the elements are listed in order of increasing atomic number. The Periodic Law Similar physical and chemical properties recur periodically when the elements are listed in order of increasing atomic number. Each period ends with a completely filled outer shell that

More information

ELECTRONIC STRUCTURE OF ATOMS

ELECTRONIC STRUCTURE OF ATOMS ELECTRONIC STRUCTURE OF ATOMS Electron Spin The electron: spins around its own axis acts as an tiny magnet (any moving electrical charge creates a magnetic field around itself) can spin in either of 2

More information

Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry

Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry Name Objectives: Per. Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry Express the arrangement of electrons in atoms through electron configurations Understand the electromagnetic spectrum

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

CHEM 1305: Introductory Chemistry

CHEM 1305: Introductory Chemistry CHEM 1305: Introductory Chemistry The Periodic Table From Chapter 5 Textbook Introductory Chemistry: Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Classification of Elements By 1870,

More information

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the Honors Chemistry Ms. Ye Name Date Block Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the 2. The Pauli Exclusion Principle: a maximum of can occupy an orbital

More information

Chapter 6 Part 3; Many-electron atoms

Chapter 6 Part 3; Many-electron atoms Chapter 6 Part 3; Many-electron atoms Read: BLB 6.7 6.9 HW: BLB 6:59,63,64,67,71b-d,74,75,90,97; Packet 6:10 14 Know: s & atoms with many electrons Spin quantum number m s o Pauli exclusion principle o

More information

Chemistry 11. Unit 8 Atoms and the Periodic Table Part II Electronic Structure of Atoms

Chemistry 11. Unit 8 Atoms and the Periodic Table Part II Electronic Structure of Atoms Chemistry 11 Unit 8 Atoms and the Periodic Table Part II Electronic Structure of Atoms 2 1. Atomic number and atomic mass In the previous section, we have seen that from 50 to 100 years after Dalton proposed

More information

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE PART 2 INTRODUCTION TO THE PERIODIC TABLE Contents 1. The Structure of the Periodic Table 2. Trends in the Periodic Table Key words: group, period, block,

More information

WRITING AN IONIC FORMULA

WRITING AN IONIC FORMULA WRITING AN IONIC FORMULA - if you know the ions that make up a compound, all you need to do is find the smallest ratio of cation to anion the compound needs to have an overall charge of zero Example: If

More information

Example: If a simple ionic compound is made of these two ions, what is its formula? In the final formula, don't write the charges on the ions!

Example: If a simple ionic compound is made of these two ions, what is its formula? In the final formula, don't write the charges on the ions! 88 WRITING AN IONIC FORMULA - if you know the ions that make up a compound, all you need to do is find the smallest ratio of cation to anion the compound needs to have an overall charge of zero Example:

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

[3.3] Energy Level Diagrams and Configurations

[3.3] Energy Level Diagrams and Configurations [3.3] Energy Level Diagrams and Configurations 1 Energy Level Diagrams Energy level diagrams are used to represent the electron arrangement in an atom 2 Pauli s Exclusion Principle No two electrons have

More information

Atomic Theory and Atomic structure. Part A. d) Distance of electrons from the nucleus

Atomic Theory and Atomic structure. Part A. d) Distance of electrons from the nucleus Grade Subject Topic : AP : Science : Atomic Theory and Atomic Structure Atomic Theory and Atomic structure Part A (1) The Principal quantum number represents a) Shape of an orbital b) Number of electrons

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above are metals. 3. Which element is

More information

CHEM 115 Electron Configurations and

CHEM 115 Electron Configurations and CHEM 115 Electron Configurations and Periodic Trends Lecture 20 Prof. Sevian 1 Agenda Electron configurations Ground state vs. excited state Periodic properties Ionization energy Atomic radius Others Interpreting

More information

Orbitals give the probability of finding an electron in a given region of space (boundary surface encloses 90% of electron density)

Orbitals give the probability of finding an electron in a given region of space (boundary surface encloses 90% of electron density) Matter Waves Find the wavelength of any object given v and m Orbitals Square of Schrödinger wave-function gives the probability density or electron density or orbital Orbitals give the probability of finding

More information

CDO AP Chemistry Unit 5

CDO AP Chemistry Unit 5 1. a. Calculate the wavelength of electromagnetic radiation that has a frequency of 5.56 MHz. b. Calculate the frequency of electromagnetic radiation that has a wavelength equal to 667 nm. 2. Electromagnetic

More information

1. [Chang7 8.P.021.] Group the following electron configurations in pairs that would represent similar chemical properties of their atoms.

1. [Chang7 8.P.021.] Group the following electron configurations in pairs that would represent similar chemical properties of their atoms. uestion Score 1. [Chang7 8.P.021.] Group the following electron configurations in pairs that would represent similar chemical properties of their atoms. (a) 1s 2 2s 2 2p 6 3s 2 (b) 1s 2 2s 2 2p 3 (c) 1s

More information

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis.

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis. 47 Blocks on the periodic table 11 Sodium 22.99 Atomic number: This is always a whole number. The periodic table is arranged by atomic number! Element symbol: A one or two letter abbreviation for the name

More information

Fundamentals of General, Organic, and Biological Chemistry, 7e (McMurry) Chapter 2 Atoms and the Periodic Table

Fundamentals of General, Organic, and Biological Chemistry, 7e (McMurry) Chapter 2 Atoms and the Periodic Table Fundamentals of General, Organic, and Biological Chemistry, 7e (McMurry) Chapter 2 Atoms and the Periodic Table 1) The smallest amount of an element that retains that element's characteristics is the A)

More information

CHEMICAL COMPOUNDS. - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds!

CHEMICAL COMPOUNDS. - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! 69 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

WRITING AN IONIC FORMULA

WRITING AN IONIC FORMULA 55 WRITING AN IONIC FORMULA - if you know the ions that make up a compound, all you need to do is find the smallest ratio of cation to anion the compound needs to have an overall charge of zero Example:

More information

Chapter 6 The Periodic Table

Chapter 6 The Periodic Table Chapter 6 The Periodic Table Section 6.1 Organizing the Elements OBJECTIVES: Explain how elements are organized in a periodic table. Section 6.1 Organizing the Elements OBJECTIVES: Compare early and modern

More information

Chapter 9: Elements are the Building blocks of Life

Chapter 9: Elements are the Building blocks of Life Chapter 9: Elements are the Building blocks of Life Section 9.1- Elements and the Periodic Table Keep Scale in mind Animation: http://htwins.net/scale2/ I. ELEMENTS All matter is made up of one or more

More information

Unit 3: The Periodic Table and Atomic Theory

Unit 3: The Periodic Table and Atomic Theory Name: Period: Unit 3: The Periodic Table and Atomic Theory Day Page # Description IC/HW 1 2-3 Periodic Table and Quantum Model Notes IC 1 4-5 Orbital Diagrams Notes IC 1 14 3-A: Orbital Diagrams Worksheet

More information

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements?

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements? Searching for an Organizing Principle Searching for an Organizing Principle How did chemists begin to organize the known elements? Searching for an Organizing Principle A few elements, including copper,

More information

Chapter 8: Periodic Properties of the Elements

Chapter 8: Periodic Properties of the Elements C h e m i s t r y 1 A : C h a p t e r 8 P a g e 1 Chapter 8: Periodic Properties of the Elements Homework: Read Chapter 8. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Summation of Periodic Trends

Summation of Periodic Trends Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

Professor K. Section 8 Electron Configuration Periodic Table

Professor K. Section 8 Electron Configuration Periodic Table Professor K Section 8 Electron Configuration Periodic Table Schrödinger Cannot be solved for multielectron atoms We must assume the orbitals are all hydrogen-like Differences In the H atom, all subshells

More information

UNIT 7 DAY 1. Ionic Bonding Basics; Dot diagrams

UNIT 7 DAY 1. Ionic Bonding Basics; Dot diagrams UNIT 7 DAY 1 Ionic Bonding Basics; Dot diagrams U7D1: Ionic Bonding Basics HW: See Schedule; Lab Due Thursday Do Now: 1.Write your name, date and period on all packets. 2.Look through schedule 3. answer

More information

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

Example: What is the number of electrons in an atom that has 3 protons and 4 neutrons? A. 3. B. 5. C. 7. D. 10.

Example: What is the number of electrons in an atom that has 3 protons and 4 neutrons? A. 3. B. 5. C. 7. D. 10. Structure of atom: PROTONS Protons are located in the nucleus of an atom. They carry a +1 electrical charge and have a mass of 1 atomic mass unit (u). NEUTRONS Neutrons are located in the nucleus of an

More information

Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP

Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP 1. What is the periodic law? (These questions are from Chapter 5 The Periodic Table) When

More information

Electronic Configuration of the Elements

Electronic Configuration of the Elements Electronic Configuration of the Elements As the number of electrons increases with the number of protons of a neutral atom, they occupy orbitals of increasing energy: The possibilities are: n l m l m s

More information

IONIC COMPOUNDS. - USUALLY form from metals combining with nonmetals, or from metals combining with metalloids

IONIC COMPOUNDS. - USUALLY form from metals combining with nonmetals, or from metals combining with metalloids 52 IONIC COMPOUNDS - USUALLY form from metals combining with nonmetals, or from metals combining with metalloids Examples: - almost always solid at room temperature, and usually have relatively high melting

More information

Trends in the Periodic Table

Trends in the Periodic Table Trends in the Periodic Table Effective nuclear charge: < effective nuclear charge is the attraction felt by the valence electrons from the nucleus < increases across a period : increases across because

More information

Objectives: Learn how to show Electron configuration using:

Objectives: Learn how to show Electron configuration using: 4 WAYS to SHOW the Electron Configuration(Electron arrangement) Objectives: Learn how to show Electron configuration using: 1. Using Aufbau Energy Diagrams 2. Orbital Diagrams 3. Long hand Electron configuration

More information

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis.

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis. 47 Blocks on the periodic table 11 Sodium 22.99 Atomic number: This is always a whole number. The periodic table is arranged by atomic number! Element symbol: A one or two letter abbreviation for the name

More information