Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry

Size: px
Start display at page:

Download "Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry"

Transcription

1 Name Objectives: Per. Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry Express the arrangement of electrons in atoms through electron configurations Understand the electromagnetic spectrum and the mathematical relationships between energy, frequency, and wavelength of light Calculate the wavelength, frequency, and energy of light using Planck's constant and the speed of light Explain the use of chemical and physical properties in the historical development of the Periodic Table Use the Periodic Table to identify and explain the properties of the chemical families Use the Periodic Table to identify and explain periodic trends Vocabulary: electron configuration, frequency, amplitude, energy, wavelength, direct, inverse, electromagnetic spectrum, energy level, sublevel, orbital, valence electron, octet, ion, cation, anion, electronegativity, ionization energy, atomic radius, ionic radius, period, group, shielding effect, transition metal, alkali metal, alkaline earth metal, metalloid, halogen, noble gas, lanthanide, actinide. Topics to master: Provided: The electromagnetic spectrum Wave calculations Periodic table Aufbau Principle vs. Pauli Exclusion Principle vs. Hund s rule c = f λ Electron configurations c = 3.00 x 10 8 m/s Orbital diagrams Ion formation with dot diagrams E = hf Periodic families and their properties h = x J. s History of the periodic table- Mendeleev, Moseley, Seaborg Periodic trends- Ionic & atomic radius, electronegativity, and ionization energy CHECKLIST: How to be successful in OTHS Academic Chemistry Pay attention and take notes in class Ask questions in class on material that is not clear Work every page in the practice packet for the unit Check answers to the practice packet online at Come to tutorials with any chemistry teacher Do the online homework and check solutions once they become available Always do the practice test for every test & ask good questions on review day Keep up with the calendar for the class/be aware of approaching quizzes, tests, & other deadlines Use videos posted on website as a quick and convenient tutorial Read the chapter in the book pg1 pg2 pg3 pg4 pg5 pg6 pg7 pg8

2 Wave Worksheet Part 1 c = λ f c = speed of light = 3.00 x 10 8 m/s wavelength (λ) should be expressed in meters (m) frequency (f) should be expressed in reciprocal seconds (s -1 or Hz) 1. What is the frequency of radiation with a wavelength of 3.82 x 10-7 m? What part of the electromagnetic spectrum does this fall in? 2. What wavelength of radiation has a frequency of 3.40 x Hz? What part of the electromagnetic spectrum does this fall in? 3. What is the frequency of red light if the wavelength is 7.60 x 10-7 m? 1

3 4. The green light associated with the aurora borealis is emitted by excited oxygen atoms. Its wavelength is 5.58 x 10-7 m? What is the frequency of this green light? 5. Gamma rays have frequencies around 1.0 x Hz. What wavelength does this correspond to? Part 2 E = h f h = Planck s constant = x J. s 6. How much energy does a photon of light with a frequency 4.2 x 10 8 Hz have? What part of the electromagnetic spectrum does this fall in? 7. It takes 6.63 x J of energy to eject an electron from a certain atom. What frequency of light is this? What part of the electromagnetic spectrum does this fall in? 8. What is the energy of a photon of light with a wavelength of 6.10 x 10-7 m? Hint: you need to use the equation from Part 1 also! What color is this light? 2

4 Electron Configuration 1. Give the electron configuration for the following elements: ***The noble gas configuration can be used after oxygen He Si Be Ni O As Na Sn Al Bi Ar Ba Sc Cd 2. Identify the specific element (symbol) that has the following electron configuration: ls 2 2s 2 2p 1 [Ne] 3s 2 3p 5 [Ne] 3s 2 3p 3 [Ar] 4s 2 3d 10 4p 4 [Ar] 4s 1 [Kr] 5s 2 4d 10 5p 6 [Ar] 4s 2 3d 10 ls 2 2s 2 2p 5 [Kr] 5s 2 [Xe] 6s 2 4f 14 5d 10 6p 5 [Ar] 4s 2 3d 10 4p 2 [Kr] 5s 2 4d 2 [Xe] 6s 1 [Ar] 4s 2 3d 6 3

5 LEVELS, SUBLEVELS, ORBITALS, AND ELECTRONS 1. Which energy level a. holds a maximum of eight electrons? b. contains only an s sublevel? c. is the first to have s, p and d sublevels present? d. is the first to have a f sublevel? 2. Which sublevel(s) are present in a. the first energy level? b. the third energy level? c. the fourth energy level? 3. How many orbitals are in a. the first energy level? b. the s sublevel in the second energy level? c. the p sublevel in the fourth energy level? d. the third energy level? e. the d sublevel in the fifth energy level? 4. How many electrons (maximum number) may be placed in a. the second energy level? b. the s orbital in the fourth energy level? c. the d sublevel in the third energy level?. d. one f orbital? e. a 3p orbital? f. a 3p sublevel? g. one p orbital? 4

6 Ions Ion Formation Worksheet The name s Bond, Ionic Bond. I like my electrons taken, not shared. An ion is a charged particle formed by loss or gain of electrons. Atoms form ions in order to attain a stable octet (8 valence electrons) in the outer energy level. When an atom LOSES electrons, this results in a positively charged ion (CATION). When an atom GAINS electrons, this results in a negatively charged ion (ANION). Element e- dot structure Lose or gain e-? How many? Ion formula w/ charge Mg Mg Lose 2 Mg 2+ (1) Electron configuration of atom (2) Electron configuration of ion (1) Mg= 1s 2 2s 2 2p 6 3s 2 (2 valence e-) (2) Mg 2+ = 1s 2 2s 2 2p 6 (8 valence e-) Al S Na Cl Ionic Compound Formation: Simple ionic compounds are formed when a metal loses electrons to a nonmetal. Then the two newly formed + and ions attract. Complete electron dot diagrams for the following combinations, showing transfer of electrons with arrows. (a) Mg and S (b) Na and S (c) Al and Cl 5

7 SUMMARY OF PERIODIC AND GROUP TRENDS TREND ATOMIC RADIUS / IONIC RADIUS DOWN A GROUP IONOZATION ENERGY / ELECTRONEGATIVITY ACROSS A PERIOD Reason: Increasing Energy levels DECREASES Reason: Reason: Increasing shielding effect INCREASES Reason: Write in the patterns that the trends follow on the periodic table below: *Note: Noble gasses are NOT electronegative! Fluorine (F) is the most electronegative element. TRENDS IN IONIC RADIUS FOR THE SAME ELEMENT A POSITIVE ion is a CATION. It is a METAL that has LOST electrons. POSITIVE ions are SMALLER than the neutral atom. Examples: Na + is than Na A NEGATIVE ion is an ANION. It is a NON-METAL that has GAINED electrons. Negative ions are LARGER than the neutral atom. Examples: F is than F 6

8 Atomic Radius Worksheet: Periodic Trends Circle the correct answer 1. a. Atomic radius increases / decreases going down a group. b. Atomic radius increases / decreases going left to right across a period. 2. a. Which element has the larger atomic radius? i. Ca or Ba iii. Rb or K ii. Ca or Br iv. B or F b. Which element has the smaller atomic radius? Ionic Radius i. Fe or Zn iii. Xe or Ne ii. Br or I iv. Na or Al 3. a. A positive ion (cation) like Na + is always smaller / larger than the neutral metal atom (Na). b. A negative ion (anion) like F is always smaller / larger than the neutral nonmetal atom (F). 4. Which has the larger radius? i. K or K + iii. O or O 2- ii. Ca or Ca 2+ iv. Cl or Cl - 5. a. Ionic radius increases / decreases going down a group. b. Ionic radius increases / decreases going left to right across a period. 6. Which has the smaller ionic radius? i. Ca 2+ or Ba 2+ iii. Rb + or Sr 2+ ii. Cl - or Br - iv. N 3- or F - 7

9 Ionization Energy 7. a. Ionization energy increases / decreases going down a group. b. Ionization energy increases / decreases going L to R across a period. 8. a. Which element has the greater ionization energy? i. Si or Cl iii. Ga or Br ii. Si or Pb iv. Li or Cs b. Which element has the smaller ionization energy? i. C or Sn iii. P or Bi ii. Ba or Au iv. Be or O Electronegativity 9. a. Electronegativity increases / decreases going down a group. b. Electronegativity increases / decreases going L to R across a period. 10. a. Which element has the greater electronegativity? i. Cl or Al iii. N or As ii. K or Fr iv. Li or F b. Which element has the smaller electronegativity? i. Hg or Pb iii. Cr or W ii. Be or Ba iv. Sb or I 11. Group trends identified for the previous properties of the elements can be explained by a particular principle, the. (Use your notes to identify it!) 12. Periodic trends identified for the previous properties can be explained by another principle, increasing. (Use your notes!) 8

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

Notes: Electrons and Periodic Table (text Ch. 4 & 5)

Notes: Electrons and Periodic Table (text Ch. 4 & 5) Name Per. Notes: Electrons and Periodic Table (text Ch. 4 & 5) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to

More information

Honors Chemistry: Chapter 4- Problem Set (with some 6)

Honors Chemistry: Chapter 4- Problem Set (with some 6) Honors Chemistry: Chapter 4- Problem Set (with some 6) All answers and work on a separate sheet of paper! Classify the following as always true (AT), sometimes true (ST), or never true (NT) 1. Atoms of

More information

Electrons. Chemistry PreAP. Homework Packet

Electrons. Chemistry PreAP. Homework Packet Electrons Chemistry PreAP Homework Packet Name: 1 Name: Date: Period: Part 1 Wave Worksheet e = ÿ. v c = speed of light = 3.00 x 108 m/s wavelength 0Q should be expressed in meters (m) frequency (v) should

More information

Honors Unit 6 Atomic Structure

Honors Unit 6 Atomic Structure Honors Unit 6 Atomic Structure Miss Adams Honors Chemistry 1 Name: 1 Homework #1: Frequency, Wavelength and the Speed of Light Show all of your work for the problems, including the initial formula, substitution

More information

Worksheet 5 - Chemical Bonding

Worksheet 5 - Chemical Bonding Worksheet 5 - Chemical Bonding The concept of electron configurations allowed chemists to explain why chemical molecules are formed from the elements. In 1916 the American chemist Gilbert Lewis proposed

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

Name: Unit 3 Guide-Electrons In Atoms

Name: Unit 3 Guide-Electrons In Atoms Name: Unit 3 Guide-Electrons In Atoms Importance of Electrons Draw a complete Bohr model of the atom. Write an element s electron configuration. Know how the symbols used in ECs relate to electron properties

More information

The Periodic Law Notes (Chapter 5)

The Periodic Law Notes (Chapter 5) The Periodic Law Notes (Chapter 5) I. History of the Periodic Table About 70 elements were known by 1850 (no noble gases) but there didn t appear to be a good way of arranging or relating them to study.

More information

CHAPTER 5 THE PERIODIC LAW. What types of useful information can you find on the Periodic Table?

CHAPTER 5 THE PERIODIC LAW. What types of useful information can you find on the Periodic Table? CHAPTER 5 THE PERIODIC LAW What types of useful information can you find on the Periodic Table? I. History of the Periodic Table A. Before the Periodic Table was invented, about 63 elements were known.

More information

Unit 3: The Periodic Table and Atomic Theory

Unit 3: The Periodic Table and Atomic Theory Name: Period: Unit 3: The Periodic Table and Atomic Theory Day Page # Description IC/HW 1 2-3 Periodic Table and Quantum Model Notes IC 1 4-5 Orbital Diagrams Notes IC 1 14 3-A: Orbital Diagrams Worksheet

More information

Organizing the Periodic Table

Organizing the Periodic Table Organizing the Periodic Table How did chemists begin to organize the known elements? Chemists used the properties of the elements to sort them into groups. The Organizers JW Dobereiner grouped the elements

More information

Notes: Unit 6 Electron Configuration and the Periodic Table

Notes: Unit 6 Electron Configuration and the Periodic Table Name KEY Block Notes: Unit 6 Electron Configuration and the Periodic Table In the 1790's Antoine Lavoisier compiled a list of the known elements at that time. There were only 23 elements. By the 1870's

More information

s or Hz J atom J mol or -274 kj mol CHAPTER 4. Practice Exercises ΔE atom = ΔE mol =

s or Hz J atom J mol or -274 kj mol CHAPTER 4. Practice Exercises ΔE atom = ΔE mol = CHAPTER 4 Practice Exercises 4.1 10 1 2.1410 s or Hz 4.3 ΔE atom = ΔE mol = 4.5610 J atom 19 1 2.7410 J mol or -274 kj mol 5 1-1 4.5 excitation energy = 471 kj mol 1 + 275 kj mol 1 = 746 kj mol 1 Hg 4.7

More information

Chemistry Chapter 9 Review. 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x s -1.

Chemistry Chapter 9 Review. 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x s -1. Chemistry Chapter 9 Review 1. What is the frequency of radiation that has a wavelength of 4.7 x 10-5 cm? 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x 10 14 s -1. 3. The

More information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information Discovery of Elements Development of the Periodic Table Chapter 5 Honors Chemistry 412 At the end of the 1700 s, only 30 elements had been isolated Included most currency metals and some nonmetals New

More information

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 Modern Atomic Theory (a.k.a. the electron chapter!) 1 Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 ELECTROMAGNETIC RADIATION 2 Electromagnetic radiation. 3 4 Electromagnetic Radiation

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

- Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints".

- Atomic line spectra are UNIQUE to each element. They're like atomic fingerprints. - Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints". - Problem was that the current model of the atom completely failed to explain why atoms emitted these lines. An orbit

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

Advanced Chemistry. Mrs. Klingaman. Chapter 5: Name:

Advanced Chemistry. Mrs. Klingaman. Chapter 5: Name: Advanced Chemistry Mrs. Klingaman Chapter 5: The Periodic Law Name: _ Mods: Chapter 5: The Periodic Law Reading Guide 5.1 History of the Periodic Table (pgs. 125-129) 1) What did Dimitri Mendeleev notice

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period Regan & Johnston Name Chemistry Unit 3 Exam: The Periodic Table Class Period 1. An atom of which element has the largest atomic radius? (1) Si (2) Fe (3) Zn (4) Mg 2. Which characteristics both generally

More information

PERIODIC TRENDS AND THE PERIODIC TABLE

PERIODIC TRENDS AND THE PERIODIC TABLE PERIODIC TRENDS AND THE PERIODIC TABLE THE PERIODIC TABLE The row tells us how many energy levels are in that atom The row is also the group The column tells us how many electrons are in the outer energy

More information

HSVD Ms. Chang Page 1

HSVD Ms. Chang Page 1 Name: Chemistry, PERIODIC TABLE 1. A solid element that is malleable, a good conductor of electricity, and reacts with oxygen is classified as a (1) noble gas (2) metalloid (3) metal (4) nonmetal 2. Which

More information

Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding

Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding Chemistry 11 Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding 1. Atomic Models and Subatomic Particles: A. Subatomic Particles and Average Atomic Mass: - Subatomic

More information

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Patterns What Patterns have you observed in your life? Where to Get Help If you don t understand concepts in chapter

More information

Chapter 7. Electron Configuration and the Periodic Table

Chapter 7. Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Topics Development of the periodic table The modern periodic table Effective nuclear charge Periodic trends in properties of elements Electron configuration

More information

Unit 2 Review Please note that this does not start on question 1.

Unit 2 Review Please note that this does not start on question 1. Unit 2 Review Please note that this does not start on question 1. 21. Of the three particles; protons, neutrons, and electrons, which one(s) are responsible for most of the mass of an atom? a) the protons

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine to moles chlorine using formula weight 2 - Convert moles

More information

Test Review # 4. Chemistry: Form TR4-5A 6 S S S

Test Review # 4. Chemistry: Form TR4-5A 6 S S S Chemistry: Form TR4-5A REVIEW Name Date Period Test Review # 4 Development of the Periodic Table. Dmitri Mendeleev (1869) prepared a card for each of the known elements listing the symbol, the atomic mass,

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

Frequency and wavelength are mathematically related to each other by the equation: c = λν.

Frequency and wavelength are mathematically related to each other by the equation: c = λν. Chemistry I Unit 3: Electron Configurations and the Periodic Table Properties of Light The Wave Description of Light Electromagnetic radiation- a form of energy that exhibits wavelike behavior as it travels

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

spins. As shown in the following table, the sublevels s, p, d, and f have 1, 3, 5, and 7 available orbitals, respectively.

spins. As shown in the following table, the sublevels s, p, d, and f have 1, 3, 5, and 7 available orbitals, respectively. Math Tutor The arrangement of elements in the periodic table reflects the arrangement of electrons in an atom. Each period begins with an atom that has an electron in a new energy level and with the exception

More information

(FIRST) IONIZATION ENERGY

(FIRST) IONIZATION ENERGY 181 (FIRST) IONIZATION ENERGY - The amount of energy required to remove a single electron from the outer shell of an atom. - Relates to reactivity for metals. The easier it is to remove an electron, the

More information

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca 2. Which of the following influenced your answer to number one the most? a. effective nuclear

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table!

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! Development of the Periodic Table! Main Idea: The periodic table evolved over time as scientists discovered more useful ways

More information

Valence electron- Energy sublevel- Transition element- Period 10. Electronegativity- Alkaline earth metal- 11. Ion- Halogen- 12.

Valence electron- Energy sublevel- Transition element- Period 10. Electronegativity- Alkaline earth metal- 11. Ion- Halogen- 12. Mrs. Hilliard 1. Valence electron 2. Period 3. Alkaline earth metal 4. Halogen 5. Metalloid 6. Hund s Rule 7. Representative element 8. Energy sublevel 9. Transition element 10. Electronegativity 11. Ion

More information

6.1.5 Define frequency and know the common units of frequency.

6.1.5 Define frequency and know the common units of frequency. CHM 111 Chapter 6 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Chapter 8: Periodic Properties of the Elements

Chapter 8: Periodic Properties of the Elements C h e m i s t r y 1 A : C h a p t e r 8 P a g e 1 Chapter 8: Periodic Properties of the Elements Homework: Read Chapter 8. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Atoimic Structure and the Periodic Table: Unit Objective Study Guide Part 2

Atoimic Structure and the Periodic Table: Unit Objective Study Guide Part 2 Name Date Due Atoimic Structure and the Periodic Table: Unit Objective Study Guide Part 2 Directions: Write your answers to the following questions in the space provided. For problem solving, all of the

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 179 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

CHEM 1305: Introductory Chemistry

CHEM 1305: Introductory Chemistry CHEM 1305: Introductory Chemistry The Periodic Table From Chapter 5 Textbook Introductory Chemistry: Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Classification of Elements By 1870,

More information

1) Which electron would be most likely to emit x-ray electromagnetic energy?

1) Which electron would be most likely to emit x-ray electromagnetic energy? AP Chemistry Test (Chapter 7) Multiple Choice (40%) 1) Which electron would be most likely to emit x-ray electromagnetic energy? A) n = 1 n = 6 B) n = 2 n = 3 C) n = 6 n = 1 D) n = 3 n = 2 2) Which statement

More information

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements 1 63 Periodic Trends > Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends 2 63 Periodic Trends > CHEMISTRY & YOU How are trends in the weather similar

More information

Chapter 6: The Periodic Table

Chapter 6: The Periodic Table Chapter 6: The Periodic Table Name: Per: Test date: In-Class Quiz: Moodle Quiz: preap Learning Objectives Trace the historical development of the periodic table Identify the major groups and key features

More information

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Terms, definitions, and people Dobereiner Newlands Mendeleev Moseley Periodic table Periodic Law group family period Page 1 of 38 alkali

More information

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small.

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small. 63 Periodic Trends > 63 Periodic Trends > CHEMISTRY & YOU Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends How are trends in the weather similar to

More information

Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties

Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties 1. Find your staircase on the right side of the periodic table. Feel free to make the lines

More information

Periodic Trends. Name: Class: Date: ID: A. Matching

Periodic Trends. Name: Class: Date: ID: A. Matching Name: Class: Date: Periodic Trends Matching Match each item with the correct statement below. a. electronegativity f. periodic law b. ionization energy g. atomic mass c. atomic radius h. period d. metal

More information

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 188 THE FIRST TWO PERIODIC TRENDS IN A NUTSHELL LARGER IONIZATION ENERGY SMALLER RADIUS IA H IIA IIIA IVA VA VIA VIIA VIIIA He Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude Wave Nature of Light 1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude 2. Draw two waves with different frequencies and circle the wave that has a higher frequency.

More information

Using the Periodic Table

Using the Periodic Table MATH SKILLS TRANSPARENCY WORKSHEET Using the Periodic Table 6 Use with Chapter 6, Section 6.2 1. Identify the number of valence electrons in each of the following elements. a. Ne e. O b. K f. Cl c. B g.

More information

Valence Electrons. Periodic Table and Valence Electrons. Group Number and Valence Electrons. Learning Check. Learning Check.

Valence Electrons. Periodic Table and Valence Electrons. Group Number and Valence Electrons. Learning Check. Learning Check. Chapter 5 Lecture Chapter 5 Electronic Structure and Periodic Trends 5.6 Trends in Periodic Properties Learning Goal Use the electron configurations of elements to explain the trends in periodic properties.

More information

Honors Chemistry Unit 4 ( )

Honors Chemistry Unit 4 ( ) Honors Chemistry Unit 4 (2017-2018) Families (research and present) Metals/nonmetals Trends o Atomic radius o Electronegativity o Ionization energy o Metallic and nonmetallic character Review Ions Oxidation

More information

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that 20 CHEMISTRY 11 D. Organizing the Elements The Periodic Table 1. Following Dalton s Atomic Theory, By 1817, chemists had discovered 52 elements and by 1863 that number had risen to 62. 2. In 1869 Russian

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 186 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements?

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements? Searching for an Organizing Principle Searching for an Organizing Principle How did chemists begin to organize the known elements? Searching for an Organizing Principle A few elements, including copper,

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

Why is it called a periodic table?

Why is it called a periodic table? The Periodic Table Why is it called a periodic table? The properties of the elements in the table repeat in a "periodic" way (specific pattern). Periodic law: There is a periodic repetition of chemical

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 13 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

Honors Chemistry - Unit 4 Bonding Part I

Honors Chemistry - Unit 4 Bonding Part I Honors Chemistry - Unit 4 Bonding Part I Unit 4 Packet - Page 1 of 8 Vocab Due: Quiz Date(s): Test Date: UT Quest Due: Bonding Vocabulary: see separate handout assignment OBJECTIVES: Chapters 4-8 Be able

More information

Periodicity & Many-Electron Atoms

Periodicity & Many-Electron Atoms Chap. 8 ELECTRON CONFIGURAT N & CEMICAL PERIODICITY 8.1-8.2 Periodicity & Many-Electron Atoms Understand the correlation of electron configuration and the periodic character of atomic properties such as

More information

Mr. Dolgos Regents Chemistry PRACTICE PACKET. Unit 3: Periodic Table

Mr. Dolgos Regents Chemistry PRACTICE PACKET. Unit 3: Periodic Table *STUDENT* *STUDENT* Mr. Dolgos Regents Chemistry PRACTICE PACKET Unit 3: Periodic Table 2 3 It s Elemental DIRECTIONS: Use the reading below to answer the questions that follow. We all know by now that

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 180 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

IONIC AND METALLIC BONDING

IONIC AND METALLIC BONDING 7 IONIC AND METALLIC BONDING Chapter Test B A. Matching Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. Column A Column B 1. compound

More information

Electronic Structure and Bonding Review

Electronic Structure and Bonding Review Name: Band: Date: Electronic Structure and Bonding Review 1. For electrons: a. What is the relative charge? b. What is the relative mass? c. What is the symbol? d. Where are they located in the modern

More information

Name Date Period Unit 3 Review: Electrons and the periodic table

Name Date Period Unit 3 Review: Electrons and the periodic table Name Date Period Unit 3 Review: Electrons and the periodic table G Chem; Coleman SHOW YOUR WORK ON ANY AND ALL CALCULATIONS. SIG FIGS MATTER. UNITS MATTER. General Questions: 1. Use the following terms

More information

Ch 8 Electron Configurations and Periodicity (Periodic table)

Ch 8 Electron Configurations and Periodicity (Periodic table) Ch 8 Electron Configurations and Periodicity (Periodic table) - An e 1 configuration is an atom s particular distribution of e 1 among the available subshells and orbitals. For example, the ground state

More information

CHAPTER 6. Table & Periodic Law. John Newlands

CHAPTER 6. Table & Periodic Law. John Newlands CHAPTER 6 Table & Periodic Law 6.1 Developing a Periodic Table The periodic table was developed to show the properties of an element by simply looking at it's location. In 1860, chemists agreed on a way

More information

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d. Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

More information

Chapter #2 The Periodic Table

Chapter #2 The Periodic Table Chapter #2 The Periodic Table Mendeleeve (1834 1907), arranged the elements within a group in order of their atomic mass. He noted repeating patterns in their physical and chemical properties Periodic

More information

Test Review # 4. Chemistry: Form TR4-9A

Test Review # 4. Chemistry: Form TR4-9A Chemistry: Form TR4-9A REVIEW Name Date Period Test Review # 4 Location of electrons. Electrons are in regions of the atom known as orbitals, which are found in subdivisions of the principal energy levels

More information

CHAPTER 2. Atoms,Elements, Periodic Table

CHAPTER 2. Atoms,Elements, Periodic Table CHAPTER Atoms,Elements, Periodic Table 1 Vocabulary Chemistry Science that describes matter its properties, the changes it undergoes, and the energy changes that accompany those processes Matter Anything

More information

I. The Periodic Law and the Periodic Table. Electronic Configuration and Periodicity. Announcements Newland Law of Octaves

I. The Periodic Law and the Periodic Table. Electronic Configuration and Periodicity. Announcements Newland Law of Octaves Announcements EM radiation --Exam 3 Oct 3...Includes chapters 7/8/9/10 The excluded items include: 1. Classical distinction between energy and matter (p. 217) 2. Numerical problems involving the Rydberg

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8 th element had similar properties

More information

Chapter 6 The Periodic Table

Chapter 6 The Periodic Table Chapter 6 The Periodic Table Section 6.1 Organizing the Elements OBJECTIVES: Explain how elements are organized in a periodic table. Section 6.1 Organizing the Elements OBJECTIVES: Compare early and modern

More information

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Periodic trends Trends in Atomic Size Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Trends in Atomic Size Group Trend: Atomic radii of

More information

Chemistry 1 1. Review Package #3. Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding

Chemistry 1 1. Review Package #3. Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding Chemistry 1 1 Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding properties 1. Atomic Models and Subatomic Particles: A. Subatomic Particles and Average Atomic

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 170 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

Chapter 2: The Structure of the Atom and the Periodic Table

Chapter 2: The Structure of the Atom and the Periodic Table Chapter 2: The Structure of the Atom and the Periodic Table 1. What are the three primary particles found in an atom? A) neutron, positron, and electron B) electron, neutron, and proton C) electron, proton,

More information

White Light. Chapter 7 Electron Structure of the Atom

White Light. Chapter 7 Electron Structure of the Atom Chapter 7 Electron Structure of the Atom Electromagnetic Radiation and Energy The Bohr Model of the Hydrogen Atom The Modern Model of the Atom Periodicity of Electron Configurations Valence Electrons for

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior Models of the Atom I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 179 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

1) What type of relationship (direct or indirect) exists between wavelength, frequency, and photon energy?

1) What type of relationship (direct or indirect) exists between wavelength, frequency, and photon energy? Chapter 7 Study Guide Name: AP Chemistry 6 points DUE AT TEST (Mon., 11/20/17) Date: Topics/people to be covered on the test: wavelength frequency c=ëí ideas of Max Planck E=hí quanta photons relationship

More information

Unit 2 Part 2: Periodic Trends

Unit 2 Part 2: Periodic Trends Unit 2 Part 2: Periodic Trends Outline Classification of elements using properties Representative elements, transition elements Metals, nonmetals and metalloids Classification of elements using electron

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE C10 04/19/2013 13:34:14 Page 114 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is

More information

Ch. 1: Introduction to Chemistry. Ch. 2: Matter and Change

Ch. 1: Introduction to Chemistry. Ch. 2: Matter and Change Review Sheet for Chemistry First Semester Final Refer to your class notes, worksheets, and the textbook to complete this review sheet. Study early so that you will have time to ask questions about what

More information

5. Radio Station WTIC AM in Hartford, CT, broadcasts at a frequency of 1080 KiloHz.! a. What is this frequency in Hz?! (1.

5. Radio Station WTIC AM in Hartford, CT, broadcasts at a frequency of 1080 KiloHz.! a. What is this frequency in Hz?! (1. Chemistry Worksheet: Light : Chapt 13 : p. 372-375! Page 3 1. Arrange the following electromagnetic radiations in order of decreasing wavelength.! (a) Infrared radiation from a heat lamp, (b) ultraviolet

More information

Lesson 14: Periodic Trends

Lesson 14: Periodic Trends Lesson 14: Periodic Trends Review: Cations and Anions negative positive electrons n anion cation Metals lose electrons when they undergo chemical reactions. Na will always lose one electron. Nonmetals

More information

Unit 5. The Periodic Table

Unit 5. The Periodic Table Unit 5 The Periodic Table I. Development of Periodic Table Periodic law: when elements are arranged in order of increasing atomic number, their physical and chemical properties show a periodic pattern.

More information

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles.

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles. Chemistry: Form TR5-8A REVIEW Name Date Period Test Review # 5 Subatomic particles. Type of Particle Location Mass Relative Mass Charge Proton Center 1.67 10-27 kg 1 +1 Electron Outside 9.11 10-31 kg 0-1

More information

Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP

Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP Name Date Period Answer Key change font to white CHAPTER 4/5 THE PERIODIC TABLE/ELECTRON CONFIGURATIONS: WARM-UP 1. What is the periodic law? (These questions are from Chapter 5 The Periodic Table) When

More information

Assessment Chapter 5 Pre-Test Chapter: The Periodic Law Use the periodic table below to answer the questions in this Chapter Test.

Assessment Chapter 5 Pre-Test Chapter: The Periodic Law Use the periodic table below to answer the questions in this Chapter Test. Assessment Chapter 5 Pre-Test Chapter: The Periodic Law Use the periodic table below to answer the questions in this Chapter Test. In the space provided, write the letter of the term or phrase that best

More information