Objectives: Learn how to show Electron configuration using:

Size: px
Start display at page:

Download "Objectives: Learn how to show Electron configuration using:"

Transcription

1 4 WAYS to SHOW the Electron Configuration(Electron arrangement) Objectives: Learn how to show Electron configuration using: 1. Using Aufbau Energy Diagrams 2. Orbital Diagrams 3. Long hand Electron configuration 4. Short-hand Electron configuration

2 Filling Rules for Electron Orbitals Aufbau Principle: Electrons occupy the positions of the lowest energy until all the electrons of the atom have been accounted for. Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. that must spin in opposite directions. Hund s Rule: Electrons in the same sublevel occupy empty orbitals rather than pair up *Aufbau is German for building up

3 Periodic Patterns s 2s 3s 4s 5s 6s 7s d (n-1) 3d 4d 5d 6d p 2p 3p 4p 5p 6p 7p f (n-2) 6 7 5f 4f

4 Order in which subshells are filled with electrons (AUFBAU) 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s s 2p 3s 3p 4s 3d 4p 5s 4d

5 Energy Energy Sublevels 6d 5f 7s 6p 5d 4f 6s 5p 4d 5s 4p 3d 4s 3p 3s 2p 2s 7s 6s 5s 4s 3s 2s 6p 5p 4p 3p 2p 6d 5d 4d 3d 5f 4f n = 4 n = 3 n = 2 4f 4d 4p 3d 4s 3p 3s 2p 2s n = 1

6 Energy Sublevels s p d f s p d s p s n = 4 n = 3 4f 4d 4p 3d 4s 3p 3s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 n = 2 2p 2s n = 1

7 Aufbau Energy Level Diagram of an Atom 6s 6p 5d 4f 32 5s 5p 4d 18 4s 4p 3d Arbitrary Energy Scale 3s 3p s 2p 8 2 O Connor, Davis, MacNab, McClellan, CHEMISTRY Experiments and Principles 1982, page 177 NUCLEUS

8 Electron capacities Copyright 2006 Pearson Benjamin Cummings. All rights reserved.

9 Copyright 2007 Pearson Benjamin Cummings. All rights reserved

10 Energy General Rules Aufbau Principle Electrons fill the lowest energy orbitals first. Lazy Tenant Rule 6d 5f 7s 6p 5d 4f 6s 5p 4d 5s 4p 3d 4s 3p 3s 2p 2s 7s 6s 5s 4s 3s 6p 5p 4p 3p 2p 6d 5d 4d 3d 5f 4f 2s Courtesy Christy Johannesson

11 Order in which subshells are filled with electrons (AUFBAU) 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s s 2p 3s 3p 4s 3d 4p 5s 4d

12 LET s WATCH this SIMPLE VIDEO on how to use the AUFBAU diagram To WRITE ELECTRON configurations VIDEO LINK LET S DO IT! If you believe you haven t understood Anything so far here is a simple video. However, the electron config is WRONG For Lithium when she shows you. It is Li 2 2s 1

13 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS

14 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Hydrogen 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration H = 1

15 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Helium 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration He = 2

16 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Lithium 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration Li = 2 2s 1

17 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Carbon 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration C = 2 2s 2 2p 2

18 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Nitrogen 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p Hund s Rule maximum number of unpaired orbitals. NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration N = 2 2s 2 2p 3

19 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Fluorine 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration F = 2 2s 2 2p 5

20 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Aluminum 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration Al = 2 2s 2 2p 6 3s 2 3p 1

21 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Argon 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration Ar = 2 2s 2 2p 6 3s 2 3p 6

22 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Iron 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration Fe = 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6

23 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 4f Lanthanum 5s 5p 4d Bohr Model 4s 4p 3d 3s 3p N 2s 2p NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Electron Configuration La = 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 5d 1

24 Electron Configurations Orbital Filling Electron Element 2s 2p x 2p y 2p z 3s Configuration H He Li C N O F Ne Na 1 2 NOT CORRECT Violates Hund s Rule 2 2s 1 2 2s 2 2p 2 2 2s 2 2p 3 2 2s 2 2p 4 2 2s 2 2p 5 2 2s 2 2p 6 2 2s 2 2p 6 3s 1

25 Electron Configurations Orbital Filling Electron Element 2s 2p x 2p y 2p z 3s Configuration H He Li C N O F Ne Na s 1 2 2s 2 2p 2 2 2s 2 2p 3 2 2s 2 2p 4 2 2s 2 2p 5 2 2s 2 2p 6 2 2s 2 2p 6 3s 1

26 Shorthand Configuration A neon's electron configuration ( 2 2s 2 2p 6 ) [Ne] 3s 1 B C third energy level one electron in the s orbital D orbital shape Na = [ 2 2s 2 2p 6 ] 3s 1 electron configuration

27 Shorthand Configuration Element symbol Ca V F Ag I Xe Electron configuration [Ar] 4s 2 [Ar] 4s 2 3d 3 [He] 2s 2 2p 5 [Kr] 5s 2 4d 9 [Kr] 5s 2 4d 10 5p 5 [Kr] 5s 2 4d 10 5p 6 Fe [He] 2s[Ar] 2 2p 6 4s 3s 3d 3p 4s 2 3d 6 Sg [Rn] 7s 2 5f 14 6d 4

28 General Rules Pauli Exclusion Principle Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli Courtesy Christy Johannesson

29 General Rules Hund s Rule Within a sublevel, place one electron per orbital before pairing them. Empty Bus Seat Rule WRONG RIGHT Courtesy Christy Johannesson

30 Notation 8 O Orbital Diagram O 8e - 2s 2p Electron Configuration 2 2s 2 2p 4 Courtesy Christy Johannesson

31 Notation 16 S Longhand Configuration S 16e - 2 2s 2 2p 6 3s 2 3p 4 Core Electrons Valence Electrons Shorthand Configuration S 16e - [Ne] 3s 2 3p 4 Courtesy Christy Johannesson

32 Periodic Patterns s 2s 3s 4s 5s 6s 7s d (n-1) 3d 4d 5d 6d p 2p 3p 4p 5p 6p 7p f (n-2) 6 7 5f 4f

33 Periodic Patterns Period # energy level (subtract for d & f) A/B Group # total # of valence e - Column within sublevel block # of e - in sublevel Courtesy Christy Johannesson

34 Periodic Patterns Example - Hydrogen st column of s-block t Period s-block Courtesy Christy Johannesson

35 Periodic Patterns Shorthand Configuration Core electrons: Go up one row and over to the Noble Gas. Valence electrons: On the next row, fill in the # of e - in each sublevel Courtesy Christy Johannesson

36 Periodic Patterns 32 Ge Example - Germanium [Ar] 4s 2 3d 10 4p 2 Courtesy Christy Johannesson

37 Stability Full energy level Full sublevel (s, p, d, f) Half-full sublevel Courtesy Christy Johannesson

38 The Octet Rule Atoms tend to gain, lose, or share electrons until they have eight valence electrons. This fills the valence shell and tends to give the atom the stability of the inert gasses. 8 ONLY s- and p-orbitals are valence electrons.

39 THIS SLIDE IS ANIMATED IN FILLING ORDER 2.PPT H = 1 He = 2 Li = 2 2s 1 2s Be = 2 2s 2 2s C = 2 2s 2 2p 2 2s 2px 2py 2pz S = 2 2s 2 2p 4 2s 2px 2py 2pz 3s 3px 3py 3pz

40 Fe = 1 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 Iron has 26 electrons. 2s 2p x 2p y 2p z 3s 3p x 3p y 3p z 4s 3d 3d 3d 3d 3d 6s 6p 5d 4f 32 5s 5p 4d e- e- e - e - e - e- e - e - e - e - e - e e - e - e - e e - e - - e - e - e - e - e - e e - e- - Arbitrary Energy Scale 4s 4p 3d 3s 3p 2s 2p NUCLEUS

41 Energy Level Diagram of a Many-Electron Atom 6s 6p 5d 4f 32 5s 5p 4d 18 4s 4p 3d Arbitrary Energy Scale 3s 3p s 2p 8 2 O Connor, Davis, MacNab, McClellan, CHEMISTRY Experiments and Principles 1982, page 177 NUCLEUS

42 Maximum of Electrons In Each Sublevel Maximum Number of Electrons In Each Sublevel Maximum Number Sublevel Number of Orbitals of Electrons s 1 2 p 3 6 d 5 10 f 7 14 LeMay Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World, 1996, page 146

43 Stability Electron Configuration Exceptions Copper EXPECT: [Ar] 4s 2 3d 9 ACTUALLY: [Ar] 4s 1 3d 10 Copper gains stability with a full d-sublevel. Courtesy Christy Johannesson

44 Stability Electron Configuration Exceptions Chromium EXPECT: [Ar] 4s 2 3d 4 ACTUALLY: [Ar] 4s 1 3d 5 Chromium gains stability with a half-full d-sublevel. Courtesy Christy Johannesson

45 Energy Electron Filling in Periodic Table s s 1 p 2 3 d 4 K 4s 1 Ca 4s 2 Sc 3d 1 Ti 3d 2 V 3d 3 Cr 3d 45 Mn 3d 5 Fe 3d 6 Co 3d 7 Ni 3d 8 Cu 3d 9 3d 10 Zn 3d 10 Ga 4p 1 Ge 4p 2 As 4p 3 Se 4p 4 Br 4p 5 Kr 4p 6 n = 4 n = 3 n = 2 n = 1 4f 4d 4p 3d 4s 3p 3s 2p 2s Cr 4s 1 3d 5 4s Cu 4s 1 3d 10 3d Cr 4s 1 3d 5 Cu 4s 1 3d 10 4s 3d

46 Stability Ion Formation Atoms gain or lose electrons to become more stable. Isoelectronic with the Noble Gases Courtesy Christy Johannesson

47 Stability Ion Electron Configuration Write the e - configuration for the closest Noble Gas EX: Oxygen ion O 2- Ne O 2-10e - [He] 2s 2 2p 6 Courtesy Christy Johannesson

48 Orbital Diagrams for Nickel 28 Ni s 2p 3s 3p 4s 3d Excited State 2s 2p 3s 3p 4s 3d Pauli Exclusion 2s 2p 3s 3p 4s 3d Hund s Rule 2s 2p 3s 3p 4s 3d

49 Orbital Diagrams for Nickel 28 Ni s 2p 3s 3p 4s 3d Excited State s 2p 3s 3p 4s 3d VIOLATES Pauli Exclusion 2s 2p 3s 3p 4s 3d VIOLATES Hund s Rule 2s 2p 3s 3p 4s 3d

50 Write out the complete electron configuration for the following: 1) An atom of nitrogen 2) An atom of silver 3) An atom of uranium POP (shorthand) Fill in the orbital boxes for an atom of nickel (Ni) QUIZ 2s 2p 3s 3p 4s 3d Which rule states no two electrons can spin the same direction in a single orbital? Extra credit: Draw a Bohr model of a Ti 4+ cation. Ti 4+ is isoelectronic to Argon.

51 Answer Key Write out the complete electron configuration for the following: 1) An atom of nitrogen 2 2s 2 2p 3 2) An atom of silver 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 9 3) An atom of uranium (shorthand) [Rn]7s 2 6d 1 5f 3 Fill in the orbital boxes for an atom of nickel (Ni) 2s 2p 3s 3p 4s 3d Which rule states no two electrons can spin the same direction in a single orbital? Pauli exclusion principle Extra credit: Draw a Bohr model of a Ti 4+ cation. n = 22+ n Ti 4+ is isoelectronic to Argon.

Unit 5: Light and Electron Configuration C H E M I S T R Y M R. R O N G

Unit 5: Light and Electron Configuration C H E M I S T R Y M R. R O N G Unit 5: Light and Electron Configuration C H E M I S T R Y 2 0 1 4-15 M R. R O N G Historical Models of the Atom Dalton Thomson Rutherford Bohr What do you notice about where the electrons are? Bohr Model

More information

General Rules. Pauli Exclusion Principle. Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli

General Rules. Pauli Exclusion Principle. Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli General Rules Pauli Exclusion Principle Each orbital can hold TWO electrons with opposite spins. Wolfgang Pauli General Rules Aufbau Principle Electrons fill the lowest energy orbitals first. Lazy Tenant

More information

When I lecture we will add more info, so leave spaces in your notes

When I lecture we will add more info, so leave spaces in your notes Title and Highlight Topic: EQ: Date Reflect Question: Reflect on the material by asking a question (its not suppose to be answered from notes) NOTES: Write out the notes from my website. Use different

More information

Unit Two: Elements & Matter. February 1, 2016

Unit Two: Elements & Matter. February 1, 2016 Unit Two: Elements & Matter February 1, 2016 Warm-Up: 2/1/2016 1. Fill in the following information: Atomic Symbol Ca 2+ Atomic Number Proton Neutron Electron 34 36 Mass Num. 2. Identify which family the

More information

[3.3] Energy Level Diagrams and Configurations

[3.3] Energy Level Diagrams and Configurations [3.3] Energy Level Diagrams and Configurations 1 Energy Level Diagrams Energy level diagrams are used to represent the electron arrangement in an atom 2 Pauli s Exclusion Principle No two electrons have

More information

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n.

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n. Shells and Subshells The orbitals in an atom are arranged in shells and subshells. n=3 orbital 3s 3p 3d Shell: all orbitals with the same value of n n=3 3s 3p 3d Subshell: all orbitals with the same value

More information

Electron Configurations

Electron Configurations Section 3 Electron Configurations Key Terms electron configuration Pauli exclusion principle noble gas Aufbau principle Hund s rule noble-gas configuration Main Ideas Electrons fill in the lowest-energy

More information

Where are the s, p, d, f orbitals located on the periodic table? Identify them on the diagram below.

Where are the s, p, d, f orbitals located on the periodic table? Identify them on the diagram below. Chapter 4 Arrangement of Electrons in Atoms Section 3: Electron Configuration Objectives: Be able to define: Aufbau Principle, Pauli Exclusion Principle, Hund s rule. Be able to list the number of electrons

More information

Unit 4B- Electron Configuration- Guided Notes

Unit 4B- Electron Configuration- Guided Notes Unit 4B- Electron Configuration- Guided Notes Atomic Structure Electrons are arranged in or around the nucleus of an atom o First shell can hold a maximum of electrons o Second shell can hold a maximum

More information

Electron Configuration. The electron configuration of an atom tells us how the electrons are distributed among the various atomic orbitals.

Electron Configuration. The electron configuration of an atom tells us how the electrons are distributed among the various atomic orbitals. Electron Configuration The electron configuration of an atom tells us how the electrons are distributed among the various atomic orbitals. Spin Quantum Number, m s In the 1920s, it was discovered that

More information

Unit 8: Atomic Theory. Quantum Mechanics

Unit 8: Atomic Theory. Quantum Mechanics Unit 8: Atomic Theory Quantum Mechanics 1 Unit 8: Atomic Theory 1. Historical Views of the Atom 2. The 'New' Look Atom 3. Electron Configurations 4. Electron Configurations & the Periodic Table 5. Quantum

More information

Unit 8: Atomic Theory. Quantum Mechanics

Unit 8: Atomic Theory. Quantum Mechanics Unit 8: Atomic Theory Quantum Mechanics 1 Unit 8: Atomic Theory 1. Historical Views of the Atom 2. The 'New' Look Atom 3. Electron Configurations 4. Electron Configurations & the Periodic Table 5. Quantum

More information

Electron Configuration & Orbitals

Electron Configuration & Orbitals Electron Configuration & Orbitals 2 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 Continuous spectrum (results when white light is passed through a prism) contains

More information

Orbital Diagrams & Electron Configurations for Atoms and Ions

Orbital Diagrams & Electron Configurations for Atoms and Ions Orbital Diagrams & Electron Configurations for Atoms and Ions Section 3.5 The Periodic Table is like a MAP that describes the arrangement of electrons within their orbitals. Orbital diagrams represent

More information

6.4 Electronic Structure of Atoms (Electron Configurations)

6.4 Electronic Structure of Atoms (Electron Configurations) Chapter 6 Electronic Structure and Periodic Properties of Elements 317 Orbital n l m l degeneracy Radial nodes (no.) 4f 4 3 7 0 4p 4 1 3 2 7f 7 3 7 3 5d 5 2 5 2 Check Your Learning How many orbitals have

More information

Electron Configurations

Electron Configurations Electron Configurations Parts of the atom Protons identify the element. Neutrons add mass and help glue the nucleus together ( all those protons are NOT happy being stuck next to each other). Parts of

More information

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL ELECTRONS IN ATOMS LIMITATIONS OF RUTHERFORD S ATOMIC MODEL Did not explain the chemical properties of atoms For example, it could not explain why metals or compounds of metals give off characteristic

More information

5. N. 9. Cl 2. Pb. 6. Ag. c. 4f d. 3d

5. N. 9. Cl 2. Pb. 6. Ag. c. 4f d. 3d Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration consists of numbers, letters, and superscripts with

More information

Unit 1 Part 1 Atomic Structure and The Periodic Table Introduction to Atomic Structure UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Unit 1 Part 1 Atomic Structure and The Periodic Table Introduction to Atomic Structure UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE PART 1 INTRODUCTION TO ATOMIC STRUCTURE Contents 1. Protons, Neutrons and Electrons 2. Early Models of the Atom 3. Isotopes and Atomic Mass 4. Atoms and Ions

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Chapter 7 The Structure of Atoms and Periodic Trends

Chapter 7 The Structure of Atoms and Periodic Trends Chapter 7 The Structure of Atoms and Periodic Trends Jeffrey Mack California State University, Sacramento Arrangement of Electrons in Atoms Electrons in atoms are arranged as SHELLS (n) SUBSHELLS (l) ORBITALS

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Bohr Model Quantum Model Energy level Atomic orbital Quantum Atomic number Quantum mechanical

More information

ELECTRONIC STRUCTURE OF ATOMS

ELECTRONIC STRUCTURE OF ATOMS ELECTRONIC STRUCTURE OF ATOMS Electron Spin The electron: spins around its own axis acts as an tiny magnet (any moving electrical charge creates a magnetic field around itself) can spin in either of 2

More information

Section 11: Electron Configuration and Periodic Trends

Section 11: Electron Configuration and Periodic Trends Section 11: Electron Configuration and Periodic Trends The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 11.01 The Bohr Model of the Atom

More information

Topic 2 Atomic Structure. IB Chemistry SL Coral Gables Senior High School Ms. Kiely

Topic 2 Atomic Structure. IB Chemistry SL Coral Gables Senior High School Ms. Kiely Topic 2 Atomic Structure IB Chemistry SL Coral Gables Senior High School Ms. Kiely Bell Ringer (i) Calculate the number of neutrons and electrons in one atom of ⁶⁵Cu. (ii) State one difference in the physical

More information

Electron Configuration

Electron Configuration Electron Configuration Electrons as Waves Review Louis de Broglie (1924) Applied wave-particle theory to electrons ELECTRONS EXHIBIT WAVE PROPERTIES Louis de Broglie ~1924 QUANTIZED WAVELENGTHS 200 Fundamental

More information

Electronic configuration

Electronic configuration Electronic configuration The energy of electrons The electrons of an atom all have the same charge and the same mass, but each electron has a different amount of energy. Electrons that have the lowest

More information

1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions

1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions Pre-AP Chemistry 11 Atomic Theory II Name: Date: Block: 1. Electronic Structure 2. Electron Configuration 3. Core Notation 4. EC Relationship to Periodic Table 5. Electron Configuration of Ions Electronic

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms Page III-6b- / Chapter Six Part II Lecture Notes The Structure of Atoms and Periodic Trends Chapter Six Part Arrangement of Electrons in Atoms Electrons in atoms are arranged as SHELLS (n) SUBSHELLS (l)

More information

POGIL: Electron Configurations

POGIL: Electron Configurations Name DUE DATE Period Chemistry POGIL: Electron Configurations Why? The electron structure of an atom is very important. Scientists use the electronic structure of atoms to predict bonding in molecules,

More information

LABELING ELECTRONS IN ATOMS

LABELING ELECTRONS IN ATOMS Date: Name: LABELING ELECTRONS IN ATOMS The location of each electron in an atom is determined by a few different factors. Each factor is represented by a QUANTUM NUMBER. Prediction: What do you think

More information

Unit 3: The Periodic Table and Atomic Theory

Unit 3: The Periodic Table and Atomic Theory Name: Period: Unit 3: The Periodic Table and Atomic Theory Day Page # Description IC/HW 1 2-3 Periodic Table and Quantum Model Notes IC 1 4-5 Orbital Diagrams Notes IC 1 14 3-A: Orbital Diagrams Worksheet

More information

Electronic configurations, Auf-bau principle, Pauli principle, Hunds rule 1. Which of the following statements in relation to the hydrogen atom is correct? 1) 3s and 3p orbitals are of lower energy than

More information

Arrangement of Electrons. Chapter 4

Arrangement of Electrons. Chapter 4 Arrangement of Electrons Chapter 4 Properties of Light -Light s interaction with matter helps to understand how electrons behave in atoms -Light travels through space & is a form of electromagnetic radiation

More information

UNIT 2 PART 1: ELECTRONS

UNIT 2 PART 1: ELECTRONS UNIT 2 PART 1: ELECTRONS Electrons in an Atom Bohr s Model: Electrons resided in an allowed orbit. Quantum Mechanics Model: Probability of finding an electron in an area around the nucleus. This area around

More information

Atomic Theory. Quantum Mechanics

Atomic Theory. Quantum Mechanics Atomic Theory Quantum Mechanics Quantum Mechanics The ol solar system model of the atom does have some practical uses It tells us that protons and neutrons are in the nucleus, and electrons are in orbitals

More information

Name Chemistry-PAP Period. Notes: Electrons. Light travels through space as a wave. Waves have three primary characteristics:

Name Chemistry-PAP Period. Notes: Electrons. Light travels through space as a wave. Waves have three primary characteristics: Name Chemistry-PAP Period The Wave Nature of Light Notes: Electrons Light travels through space as a wave. Waves have three primary characteristics: Wavelength (λ): the distance between 2 consecutive crests

More information

Chapter 6 Part 3; Many-electron atoms

Chapter 6 Part 3; Many-electron atoms Chapter 6 Part 3; Many-electron atoms Read: BLB 6.7 6.9 HW: BLB 6:59,63,64,67,71b-d,74,75,90,97; Packet 6:10 14 Know: s & atoms with many electrons Spin quantum number m s o Pauli exclusion principle o

More information

2 e. 14 e. # e # orbitals. 10 e 5. sublevel. shape of orbital. Orbital Shapes. Notes Orbital Notation; e Config; NGN.

2 e. 14 e. # e # orbitals. 10 e 5. sublevel. shape of orbital. Orbital Shapes. Notes Orbital Notation; e Config; NGN. How to build an atom: The bigger (more massive) the atom, the more protons (and neutrons) The bigger the atom, the more electrons Electrons fill lower energy levels first "Aufbau" Principle ("To build

More information

Electrons! Chapter 5, Part 2

Electrons! Chapter 5, Part 2 Electrons! Chapter 5, Part 2 3. Contained within sublevels are orbitals: pairs of electrons each having a different space or region they occupy a. Each sublevel contains certain orbitals: i. s sublevel

More information

Model 1: Orbitals. 1. What is an atomic orbital? What are the four different orbitals?

Model 1: Orbitals. 1. What is an atomic orbital? What are the four different orbitals? Name: Date: Period: POGIL: Electron Configuration and Orbitals Model 1: Orbitals The quantum mechanical model determines the allowed energies an electron can have and how likely it is to find the electron

More information

Mendeleev s Periodic Law

Mendeleev s Periodic Law Mendeleev s Periodic Law Periodic Law When the elements are arranged in order of increasing atomic mass, certain sets of properties recur periodically. Mendeleev s Periodic Law allows us to predict what

More information

Chap 7 Part 2Tc.notebook November 02, 2017

Chap 7 Part 2Tc.notebook November 02, 2017 Chapter 7 Section 4 11 Quantum mechanics electrons are organized in atoms in very specific ways energy levels represent distances from the nucleus inside energy levels are orbitals that can hold 2 electrons

More information

Komperda. Electron Configuration and Orbital Notation

Komperda. Electron Configuration and Orbital Notation Electron Configuration and Orbital Notation Dmitri Mendeleyev Father of the Modern P.T. Periods and Group Period horizontal row on P.T. Each period represents an energy level (think back to models of the

More information

Wave-Mechanical Model of the Atom. Aim: To write orbital notation and electron configurations representing the wave mechanical model of the atom.

Wave-Mechanical Model of the Atom. Aim: To write orbital notation and electron configurations representing the wave mechanical model of the atom. Wave-Mechanical Model of the Atom Aim: To write orbital notation and electron configurations representing the wave mechanical model of the atom. Wave-Mechanical Model of the Atom Atoms contain protons,

More information

Creating Energy-Level Diagrams Aufbau (building up) Principle Electrons are added to the lowest energy orbital available.

Creating Energy-Level Diagrams Aufbau (building up) Principle Electrons are added to the lowest energy orbital available. 3.6 Atomic Structure and the Periodic Table Bohr's Theory Was Incorrect Because... Only explained the line spectrum of hydrogen Position and motion of an e cannot be specified (since the e is so small,

More information

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the Honors Chemistry Ms. Ye Name Date Block Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the 2. The Pauli Exclusion Principle: a maximum of can occupy an orbital

More information

Electron Configuration! Chapter 5

Electron Configuration! Chapter 5 Electron Configuration! Chapter 5 Helpful Videos https://www.youtube.com/watch?v=j-djeilynje Quantum Mechanics Better than any previous model, quantum mechanics does explain how the atom behaves. Quantum

More information

An Electron s Address: Orbital Diagrams and Electron Configuration

An Electron s Address: Orbital Diagrams and Electron Configuration AP Chemistry Ms. Ye Name Date Block An Electron s Address: Orbital Diagrams and Electron Configuration Information: Energy Levels and Sublevels As you know, in his solar system model Bohr proposed that

More information

Electron Arrangement - Part 2

Electron Arrangement - Part 2 Brad Collins Electron Arrangement - Part 2 Chapter 9 Some images Copyright The McGraw-Hill Companies, Inc. Review Energy Levels Multi-electron 4d 4d 4d 4d 4d n = 4 4s 4p 4p 4p 3d 3d 3d 3d 3d n=3, l = 2

More information

5.2 Electron Arrangement in Atoms > Happy Thursday!

5.2 Electron Arrangement in Atoms > Happy Thursday! Happy Thursday! Please take out your homework problems for me to check for a grade. Keep them out since we will be going over them. Also, take out your notes packet! 1 Chapter 5 Electrons In Atoms 5.1

More information

Chapter 5. Periodicity and the Electronic Structure of Atoms

Chapter 5. Periodicity and the Electronic Structure of Atoms Chapter 5 Periodicity and the Electronic Structure of Atoms Electron Spin experiments by Stern and Gerlach showed a beam of silver atoms is split in two by a magnetic field the experiment reveals that

More information

Notes: Unit 6 Electron Configuration and the Periodic Table

Notes: Unit 6 Electron Configuration and the Periodic Table Name KEY Block Notes: Unit 6 Electron Configuration and the Periodic Table In the 1790's Antoine Lavoisier compiled a list of the known elements at that time. There were only 23 elements. By the 1870's

More information

HL Chemistry Topic 12 Atomic Structure

HL Chemistry Topic 12 Atomic Structure Define: ionization energy - 1 - Trends in Ionization Energy in the Periodic Table Why do these trends in ionization energy occur? Background information: Understand the concept of effective nuclear charge

More information

Full file at

Full file at 16 Chapter 2: Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element. a.

More information

1.1 Atomic structure. The Structure of the Atom Mass Spectrometry Electronic Structure Ionisation Energies

1.1 Atomic structure. The Structure of the Atom Mass Spectrometry Electronic Structure Ionisation Energies 1.1 Atomic structure The Structure of the Atom Mass Spectrometry Electronic Structure Ionisation Energies a) Protons, neutrons and electrons THE STRUCTURE OF THE ATOM Atoms are made up of three fundamental

More information

Page 1 of 9. Website: Mobile:

Page 1 of 9. Website:    Mobile: Question 1: Did Dobereiner s triads also exist in the columns of Newlands Octaves? Compare and find out. Only one triad of Dobereiner s triads exists in the columns of Newlands octaves. The triad formed

More information

Student Exploration: Electron Configuration

Student Exploration: Electron Configuration Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion

More information

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE!

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! REPRESENTING ELECTRONS... Now that you know what an orbital is, you need to be able to use that to describe the electronic

More information

Section 3 Electron Configurations. Chapter 4. Preview

Section 3 Electron Configurations. Chapter 4. Preview Preview Lesson Starter Objectives Electron Configurations Rules Governing Electron Configurations Representing Electron Configurations Elements of the Second Period Elements of the Third Period Elements

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

ATOMIC ORBITALS AND ELECTRON CONFIGURATIONS

ATOMIC ORBITALS AND ELECTRON CONFIGURATIONS ATOMIC ORBITALS AND ELECTRON CONFIGURATIONS Quantum Mechanics Better than any previous model, quantum mechanics does explain how the atom behaves. Quantum mechanics treats electrons not as particles, but

More information

Chemistry- Unit 3. Section II - Chapter 7 ( , 7.11) Quantum Mechanics

Chemistry- Unit 3. Section II - Chapter 7 ( , 7.11) Quantum Mechanics Chemistry- Unit 3 Section II - Chapter 7 (7.6-7.8, 7.11) Quantum Mechanics Atomic Review What subatomic particles do you get to play with? Protons Neutrons Electrons NO! It would change the element Don

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE C10 04/19/2013 13:34:14 Page 114 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

Chapter 8. Periodic Properties of the Elements

Chapter 8. Periodic Properties of the Elements Chapter 8 Periodic Properties of the Elements Mendeleev (1834 1907) Ordered elements by atomic mass. Saw a repeating pattern of properties. Periodic Law When the elements are arranged in order of increasing

More information

Modern Atomic Theory CHAPTER OUTLINE

Modern Atomic Theory CHAPTER OUTLINE Chapter 3B Modern Atomic Theory 1 CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration

More information

Electron Configurations: Assigning each electron in an atom to the energy level and sublevel it occupies in the atom. Number of Electrons

Electron Configurations: Assigning each electron in an atom to the energy level and sublevel it occupies in the atom. Number of Electrons First some terms and more information about the structure of the atom: 1) Energy level is no longer an orbit but more like a boundary or maximum distance from the nucleus that electrons occupy. 1, 2, 3

More information

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s Electronic Structure of Atoms and the Periodic table Chapter 6 & 7, Part 3 October 26 th, 2004 Homework session Wednesday 3:00 5:00 Electron Spin Quantum # m s Each electron is assigned a spinning motion

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

#9 Modern Atomic Theory Quantitative Chemistry

#9 Modern Atomic Theory Quantitative Chemistry Name #9 Modern Atomic Theory Quantitative Chemistry Student Learning Map Unit EQ: What is the current model of the atom? Key Learning: The current model of the atom is based on the quantum mechanical model.

More information

4.2 WHERE are the electrons in the { atom???? QUANTUM NUMBERS

4.2 WHERE are the electrons in the { atom???? QUANTUM NUMBERS 4.2 WHERE are the electrons in the { atom???? QUANTUM NUMBERS Bohr s Model Contradicts Common Sense If only certain orbits with definite energies are allowed and the electrons constantly gives off radiation,

More information

KWL CHART--ELECTRONS

KWL CHART--ELECTRONS KWL CHART--ELECTRONS WHAT DO I ALREADY KNOW ABOUT ELECTRONS? WHAT DO I WANT TO KNOW CONCERNING ELECTRONS? WHAT HAVE I LEARNED TODAY ABOUT ELECTRONS? GPS STANDARD SC3. Students will use the modern atomic

More information

Electron Configurations

Electron Configurations Electron Configurations Electron Arrangement in an Atom The arrangement of electrons in an atom is its electron configuration. It is impossible to know where an electron is or how fast it is traveling

More information

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom?

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom? Atomic Structure and the Periodic Table Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

The Rutherford s model of the atom did not explain how an atom can emit light or the chemical properties of an atom.

The Rutherford s model of the atom did not explain how an atom can emit light or the chemical properties of an atom. The Rutherford s model of the atom did not explain how an atom can emit light or the chemical properties of an atom. Plum Pudding Model Rutherford s Model Niels Bohr studied the hydrogen atom because it

More information

Practice with Electron Configurations

Practice with Electron Configurations Practice with Electron Configurations Prelab Assignment Read the entire lab and write an objective and possible hazards in your laboratory notebook. Answer the following questions in your laboratory notebook

More information

CDO AP Chemistry Unit 5

CDO AP Chemistry Unit 5 1. a. Calculate the wavelength of electromagnetic radiation that has a frequency of 5.56 MHz. b. Calculate the frequency of electromagnetic radiation that has a wavelength equal to 667 nm. 2. Electromagnetic

More information

Electron Configuration & Periodicity Unit 3

Electron Configuration & Periodicity Unit 3 Name: Electron Configuration & Periodicity Unit 3 (seven class periods) Unit 3.1: First Ionization Energy & Photoelectron Spectroscopy 1) Coulombs Law a) The force of attraction between two charged objects

More information

Atomic Emission Spectra, & Electron Configuration. Unit 1 Coral Gables Senior High Ms. Kiely Pre-IB Chemistry I

Atomic Emission Spectra, & Electron Configuration. Unit 1 Coral Gables Senior High Ms. Kiely Pre-IB Chemistry I Atomic Emission Spectra, & Electron Configuration Unit 1 Coral Gables Senior High Ms. Kiely Pre-IB Chemistry I Bell-Ringer What does Heisenberg s Uncertainty Principle state? Answer Heisenberg s Uncertainty

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011

Remember Bohr s Explanation: Energy Levels of Hydrogen: The Electronic Structure of the Atom 11/28/2011 The Electronic Structure of the Atom Bohr based his theory on his experiments with hydrogen he found that when energy is added to a sample of hydrogen, energy is absorbed and reemitted as light When passed

More information

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Chemistry I: Quantum Mechanics Notes Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Major developments that put

More information

Name: Date: Period: ELECTRON ORBITAL ACTIVITY

Name: Date: Period: ELECTRON ORBITAL ACTIVITY ELECTRON ORBITAL ACTIVITY Background Information: The arrangement of electrons within the orbitals of an atom is known as the electron configuration. The most stable arrangement is called the ground-state

More information

Electrons and Periodic Behavior. Cartoon courtesy of NearingZero.net

Electrons and Periodic Behavior. Cartoon courtesy of NearingZero.net Electrons and Periodic Behavior Cartoon courtesy of NearingZero.net Wave-Particle Duality JJ Thomson won the Nobel prize for describing the electron as a particle. His son, George Thomson won the Nobel

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

Quantum theory predicts that an atom s electrons are found in: To account that orbitals hold two electrons, we need:

Quantum theory predicts that an atom s electrons are found in: To account that orbitals hold two electrons, we need: Quantum theory predicts that an atom s electrons are found in: To account that orbitals hold two electrons, we need: Shells (principle quantum number, n) Subshells (angular momentum, l) Orbitals (magnetic

More information

Atoms and Periodic Properties

Atoms and Periodic Properties Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 01 (Chp 6,7): Atoms and Periodic Properties John D. Bookstaver St. Charles Community College

More information

Quantum Numbers and Electronic Configuration.

Quantum Numbers and Electronic Configuration. Quantum Numbers and Electronic Configuration. F Scullion: www.justchemy.com 1 Each electron has a set of four numbers, called quantum numbers, that specify it completely; no two electrons in the same atom

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 170 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

Additional Problem 1.13

Additional Problem 1.13 Task 1 Due: 11:59pm on Friday, April 27, 2018 You will receive no credit for items you complete after the assignment is due. Grading Policy Additional Problem 1.13 Classify each of the following as a pure

More information

October 30 November 3. Daily Log

October 30 November 3. Daily Log October 30 November 3 Daily Log October 30 th Bellwork In general there is a decrease in atomic radii as you move from left to right across a period. This trend, is caused by the increasing positive charge

More information

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 Modern Atomic Theory (a.k.a. the electron chapter!) 1 Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 ELECTROMAGNETIC RADIATION 2 Electromagnetic radiation. 3 4 Electromagnetic Radiation

More information

Atomic Structure and Electron Configuration

Atomic Structure and Electron Configuration Rapid Learning Center Chemistry :: Biology :: Physics :: Math Rapid Learning Center Presenting Teach Yourself High School Chemistry in 4 Hours 1/56 http://www.rapidlearningcenter.com Atomic Structure and

More information

7.1 Ions > Chapter 7 Ionic and Metallic Bonding. 7.1 Ions. 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals

7.1 Ions > Chapter 7 Ionic and Metallic Bonding. 7.1 Ions. 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU What

More information

A bit of review. Atoms are made of 3 different SUB-ATOMIC PARTICLES: 1. ELECTRONS 2. PROTONS 3. NEUTRONS

A bit of review. Atoms are made of 3 different SUB-ATOMIC PARTICLES: 1. ELECTRONS 2. PROTONS 3. NEUTRONS Chemistry in Action A bit of review Chemistry is the study of MATTER and ENERGY. Matter is anything that has MASS. All matter is made of super small particles called ATOMS. Atoms are made of 3 different

More information

Chapter 5. Arrangement of Electrons in Atoms

Chapter 5. Arrangement of Electrons in Atoms Chapter 5 Arrangement of Electrons in Atoms Light Dual Nature of Light: Light can act like, and as particles. Light is one type of which is a form of Energy that has wavelike behaviour Other types of em

More information

Early Chemistry. Early Chemists only believed in 1 element: Dirt. Later Chemists believed in 4 elements:

Early Chemistry. Early Chemists only believed in 1 element: Dirt. Later Chemists believed in 4 elements: Early Chemistry Early Chemists only believed in 1 element: Dirt Later Chemists believed in 4 elements: Air Earth Fire Water Various combinations of these produced various compounds Atomic Structure All

More information