MODERN ATOMIC THEORY AND THE PERIODIC TABLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "MODERN ATOMIC THEORY AND THE PERIODIC TABLE"

Transcription

1 C10 04/19/ :34:14 Page 114 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek letter lambda, l. Frequency is a measure of the number of waves that pass a specific point every second. It is generally symbolized by the Greek letter nu, n. 2. Visible light ranges in wavelength from about mto m. Red light has a longer wavelength than blue light. 3. Photon 4. An electron orbital is a region in space around the nucleus of an atom where an electron is most probably found. 5. The electrons in the atom are located in the orbitals with the lowest energies. 6. The main difference is that the Bohr orbit has an electron traveling a specific path around the nucleus while an orbital is a region in space where the electron is most probably found. 7. Bohr s model was inadequate since it could not account for atoms more complex than hydrogen. It was modified by Schr odinger into the modern concept of the atom in which electrons exhibit wave and particle properties. The motion of electrons is determined only by probability functions as a region in space, or a cloud surrounding the nucleus. 8. Both 1s and 2s orbitals are spherical in shape and located symmetrically around the nucleus. The sizes of the spheres are different the radius of the 2s orbital is larger than the 1s. The electrons in 2s orbitals are located further from the nucleus. 9. The letters used to designate the energy sublevels are s, p, d, and f s, 2s, 2p, 3s, 3p, 4s, 3d, 4p. 11. s 2 electrons per shell p 6 electrons per shell after the first energy level d 10 electrons per shell after the second energy level. 12. s orbital

2 C10 04/19/ :34:14 Page 115 p orbitals Px z Py z Pz z x x x y y 13. A second electron may enter an orbital already occupied by an electron if its spin is opposite that of the electron already in the orbital and all other orbitals of the same sublevel contain an electron. 14. The valence shell is the outermost energy level of an atom. 15. Valence electrons are the electrons located in the outermost energy level of an atom. Valence electrons are involved in bonding. They are important because ion formation involves the gain or loss of valence electrons. Covalent bonding involves sharing valence electrons is the fourth principal energy level f indicates the energy sublevel 3 indicates the number of electrons in the f sublevel 17. Ir, Zr, and Ag are not representative elements; they are transition elements. 18. Elements in the p-block all have one to six electrons in the p sublevel. 19. Atomic # Symbol 6 C 7 N 8 O 15 P 33 As Elements with atomic numbers 7, 15, and 33 are all in the same group on the periodic table. They have an outermost electron structure of s 2 p The first three elements that have six electrons in their outermost energy level are O, S, and Se. 21. The greatest number of elements in any period is 32. The 6 th period has this number of elements. 22. The elements in Group A always have their last electrons in the outermost energy level, while the last electrons in Group B lie in an inner level. 23. Pairs of elements which are out of sequence with respect to atomic masses are: Ar and K; Co and Ni; Te and I; Th and Pa; U and Np; Pu and Am; Lr and Rf; Sg and Bh. 24. Dimitri Mendeleev, of Russia and Lothar Meyer, of Germany both independently published results that led to the current periodic table. 25. Dimitri Mendeleev is credited with being the father of the modern periodic table

3 C10 04/19/ :34:14 Page 116 SOLUTIONS TO EXERCISES 1. Element Total Electrons Valence Electrons (a) Li 3 1 Mg 12 2 Ca 20 2 F Element Total Electrons Valence Electrons (a) Na 11 1 As 33 5 P 15 5 Al Electron configurations (a) Sc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 Rb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 Br 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 S 1s 2 2s 2 2p 6 3s 2 3p 4 4. (a) Mn 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 Kr 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 Ga 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1 B 1s 2 2s 2 2p 1 5. The spectral lines of hydrogen are produced by energy emitted when the electron from a hydrogen atom, which has absorbed energy, falls from a higher energy level to a lower energy level (closer to the nucleus). 6. Bohr said that a number of orbits were available for electrons, each corresponding to an energy level. When an electron falls from a higher energy orbit to a lower energy orbit, energy is given off as a specific wavelength of light. Only those energies in the visible range are seen in the hydrogen spectrum. Each line corresponds to a change from one orbit to another orbitals in the 4 th principal energy level; 1 in s, 3 in p, 5 in d, and 7 in f. The s and p orbitals are in the 4 th period, the d orbitals are in the 5 th period, and the f orbitals are in the 6 th period electrons in third energy level; 2 in s, 6 in p, 10 in d

4 C10 04/19/ :34:14 Page (a) 14 7 N Cl Zn Zr I 10. (a) Si S Ar V P 11. (a) O 1s 2 2s 2 2p 4 Ca 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 Ar 1s 2 2s 2 2p 6 3s 2 3p 6 Br 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 Fe 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d (a) Li 1s 2 2s 1 P 1s 2 2s 2 2p 6 3s 2 3p 3 Zn 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 Na 1s 2 2s 2 2p 6 3s 1 K 1s 2 2s 2 2p 6 3s 2 3p 6 4s

5 C10 04/19/ :34:14 Page (a) Incorrect the 2 p sublevel should be completely filled before the 3s sublevel is populated. Correct Correct Incorrect electrons in the 3d sublevel should not be paired until all 3d orbitals are populated. 14. (a) Correct Incorrect the 3d sublevel should be populated before the 4p sublevel. Incorrect the second electron in the 4s orbital must be represented by a down arrow Correct 15. (a) Neon Phosphorus Gallium Manganese 16. (a) Nitrogen Nickel Calcium Sulfur 17. (a) fluorine, F sodium, Na sulfur, S nickel, Ni 18. (a) boron, B silicon, Si lead, Pb tellurium, Te 19. (a) Titanium (Ti) Argon (Ar) Arsenic (As) Bromine (Br) Manganese (Mn)

6 C10 04/19/ :34:14 Page (a) Phosphorus (P) Zinc (Zn) Calcium (Ca) Selenium (Se) Potassium (K) 21. (a) F S Co Kr Ru 22. (a) Cl Mg Ni Cu Ba 23. (a) S 28 Ni 24. (a) 13p 14n 2e 8e 3e Al 22p 26n 2e 8e 8e 4e Ti

7 C10 04/19/ :34:14 Page The eleventh electron of sodium is located in the third energy level because the first and second levels are filled. Also the properties of sodium are similar to the other elements in Group 1A. 26. The last electron in potassium is located in the fourth energy level because the 4s orbital is at a lower energy level than the 3d orbital. Also the properties of potassium are similar to the other elements in Group 1A. 27. Noble gases all have filled s and p orbitals in the outermost energy level. 28. Noble gases each have filled s and p orbitals in the outermost energy level. 29. Moving from left to right in any period of elements, the atomic number increases by one from one element to the next and the atomic radius generally decreases. Each period (except period 1) begins with an alkali metal and ends with a noble gas. There is a trend in properties of the elements changing from metallic to nonmetaliic from the beginning to the end of the period. 30. The elements in a group have the same number of outer energy level electrons. They are located vertically on the periodic table. 31. (a) (a) The outermost energy level contains one electron in an s orbital. 34. All of these elements have a s 2 d 10 electron configuration in their outermost energy levels. 35. (a) and (g) and 36. (a) and (f) and (h) , 38 since they are in the same group or family of elements , 33 since they are in the same group or family of elements. 39. (a) K, metal S, nonmetal Pu, metal Sb, metalloid 40. (a) I, nonmetal Mo, metal W, metal Ge, metalloid 41. Period 6, lanthanide series, contains the first element with an electron in an f orbital. 42. Period 4 Group 3B contains the first element with an electron in a d orbital. 43. Group 7A contain 7 valence electrons. Group 7B contain 2 electrons in the outermost level and 5 electrons in an inner d orbital. Group A elements are representative while Group B elements are transition elements

8 C10 04/19/ :34:15 Page Group 3A contain 3 valence electrons. Group 3B contain 2 electrons in the outermost level and one electron in an inner d orbital. Group A elements are representative while Group B elements are transition elements. 45. (a) arsenic cobalt lithium chlorine 46. (a) lead samarium gallium iridium 47. The valence energy level of an atom can be determined by looking at what period the element is in. Period 1 corresponds to valence energy level 1, period 2 to valence energy level 2 and so on. The number of valence electrons for element s 1 18 can be determined by looking at the group number. For example, boron is under Group 3A, therefore it has three valence shell electrons. 48. (a) Mg 1s 2 2s 2 2p 6 3s 2 P 1s 2 2s 2 2p 6 3s 2 3p 3 K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 F 1s 2 2s 2 2p 5 Se 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4s p 4 (f) N 1s 2 2s 2 2p (a) Na þ, F, and Ne have 8 valence electrons. 50. (a) 7A, Halogens 8A, Noble Gases 2A, Alkaline Earth Metals 8A, Noble Gases 1A, Alkali Metals (f) 1A, Alkali Metals 51. (a) No, the electronic configuration predicted by the periodic table is 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4. ð5:00 cm 3 Þ 7:19 g 1 mol 6: atoms 1cm 3 ¼ 4: atoms Cr 52:00 g 1 mol V ¼ 4 3 pr3 ¼ 4 3 p 1: ¼ 1: cm 3 3 ð5:00 cm 3 1 atom Þ 1: ¼ 4: atoms Cr cm Each of the different elements has a characteristic emission spectra which will be observed as different colors in the fireworks. 53. Sb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 3 or [Kr] 5s 2 4d 10 5p Bi 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 3 or [Xe] 6s 2 4f 14 5d 10 6p

9 C10 04/19/ :34:15 Page (a) The four most abundant elements in the earth s crust, seawater, and air are: O: 1s 2 2s 2 2p 4 Si: 1s 2 2s 2 2p 6 3s 2 3p 2 Al: 1s 2 2s 2 2p 6 3s 2 3p 1 Fe: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 The five most abundant elements in the human body are: O: 1s 2 2s 2 2p 4 C: 1s 2 2s 2 2p 2 H: 1s 1 N: 1s 2 2s 2 2p 3 Ca: 1s 2 2s 2 2p 6 3s 2 3p 6 4s Maximum number of electrons (a) Any orbital can hold a maximum of two electrons. A d sublevel can hold a maximum of ten electrons. The third principal energy level can hold two electrons in 3s, six electrons in 3p, and ten electrons in 3d for a total of eighteen electrons. Any orbital can hold a maximum of two electrons. An f sublevel can hold a maximum of fourteen electrons. 57. Name of elements (a) Magnesium Phosphorus Argon 58. Nitrogen has more valence electrons on more energy levels than hydrogen. More varied electron transitions are possible. 59. (a) Ne Ge F N 60. The outermost electron structure for the elements in 7A is s 2 p Transition elements are found in Groups 1B 8B, lanthanides and actinides. 62. In transition elements the last electron added is in a d or f orbital. The last electron added in a representative element is in an s or p orbital. 63. Elements 7, 15, 33, 51, and 83 all have 5 electrons in their valence shell. 64. Family names (a) Alkali Metals Alkaline Earth Metals Halogens 65. Sublevels (a) sublevel p sublevel d sublevel f 66. (a) Na representative element metal N representative element nonmetal Mo transition element metal Ra representative element metal As representative element metalloid (f) Ne noble gas nonmetal

10 C10 04/19/ :34:15 Page If element 36 is a noble gas, 35 would be in periodic Group 7A and 37 would be in periodic Group 1A. 68. Answers will vary but should at least include a statement about: (1) Numbering of the elements and their relationship to atomic structure; (2) division of the elements into periods and groups; (3) division of the elements into metals, nonmetals, and metalloids; (4) identification and location of the representative and transition elements. 69. (a) The two elements are isotopes. The two elements are adjacent to each other in the same period. 70. Most gases are located in the upper right part of the periodic table (H is an exception). They are nonmetals. Liquids show no pattern. Neither do solids, except the vast majority of solids are metals. 71. excited sulfur atom: electron configuration: 1s 2 2s 2 2p 6 3s 1 3p 5 orbital diagram: 72. Electrons are located in seven principal energy levels. The outermost energy level has one electron residing in a 7s orbital. 73. Metals are located on the left side of the periodic table. The elements in Group 1A have only one valence electron and those in Group 2A have only two valence electrons. All metals easily lose their valence electrons to obtain a Noble Gas configuration. Nonmetals are located on the right side of the periodic table where they are only a few electrons short of a noble gas configuration. Nonmetals gain valence electrons to obtain a noble gas configuration. 74. On the periodic table, the period number corresponds to the principal energy level in which the s and p sublevels are filling. The group number of the Main Representative elements corresponds to the number of electrons filling in the principal energy level. Groups 1A and 2A are known as the s-block elements and Groups 3A through 8A are known as the p-block elements

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom?

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom? Atomic Structure and the Periodic Table Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above is a metal. Ans: A Difficulty:

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

Assessment Chapter 5 Pre-Test Chapter: The Periodic Law Use the periodic table below to answer the questions in this Chapter Test.

Assessment Chapter 5 Pre-Test Chapter: The Periodic Law Use the periodic table below to answer the questions in this Chapter Test. Assessment Chapter 5 Pre-Test Chapter: The Periodic Law Use the periodic table below to answer the questions in this Chapter Test. In the space provided, write the letter of the term or phrase that best

More information

Chemistry Chapter 9 Review. 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x s -1.

Chemistry Chapter 9 Review. 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x s -1. Chemistry Chapter 9 Review 1. What is the frequency of radiation that has a wavelength of 4.7 x 10-5 cm? 2. Calculate the wavelength of a photon of blue light whose frequency is 6.3 x 10 14 s -1. 3. The

More information

Part I Assignment: Electron Configurations and the Periodic Table

Part I Assignment: Electron Configurations and the Periodic Table Chapter 11 The Periodic Table Part I Assignment: Electron Configurations and the Periodic Table Use your periodic table and your new knowledge of how it works with electron configurations to write complete

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

Atoms with More than One Electron

Atoms with More than One Electron Activity 6 Atoms with More than One Electron GOALS In this activity you will: View the spectra of various materials. Graphically analyze patterns in the amounts of energy required to remove electrons from

More information

Chapter 2: The Structure of the Atom and the Periodic Table

Chapter 2: The Structure of the Atom and the Periodic Table Chapter 2: The Structure of the Atom and the Periodic Table 1. What are the three primary particles found in an atom? A) neutron, positron, and electron B) electron, neutron, and proton C) electron, proton,

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

Homework Chapter 03 Chemistry 51 Los Angeles Mission College Answer the following questions: a. What electron sublevel starts to fill after

Homework Chapter 03 Chemistry 51 Los Angeles Mission College Answer the following questions: a. What electron sublevel starts to fill after 3.93 Give the period and group number for each of the following elements: a. bromine b. argon c. potassium d. radium 3.94 Give the period and group number for each of the following elements: a. radon b.

More information

6.3 Classifying Elements with the Periodic Table

6.3 Classifying Elements with the Periodic Table 6.3 Classifying Elements with the Periodic Table The Periodic Table was developed by scientists to organize elements in such a way as to make sense of the growing information about their properties. The

More information

#9 Modern Atomic Theory Quantitative Chemistry

#9 Modern Atomic Theory Quantitative Chemistry Name #9 Modern Atomic Theory Quantitative Chemistry Student Learning Map Unit EQ: What is the current model of the atom? Key Learning: The current model of the atom is based on the quantum mechanical model.

More information

5. The outermost principal energy level electron configuration of the element bromine is: a. 4s 2 c. 4s 2 4p 5 b. 4p 5 d.

5. The outermost principal energy level electron configuration of the element bromine is: a. 4s 2 c. 4s 2 4p 5 b. 4p 5 d. 1 c E = h 1. Sodium and potassium have similar properties because they have the same a. atomic radii. c. number of valence electrons. b. ionization energy. d. electronegativity. 2. Electrons must be added

More information

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements?

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements? Searching for an Organizing Principle Searching for an Organizing Principle How did chemists begin to organize the known elements? Searching for an Organizing Principle A few elements, including copper,

More information

Unit 02 Review: Atomic Theory and Periodic Table Review

Unit 02 Review: Atomic Theory and Periodic Table Review Practice Multiple Choice Questions Unit 02 Review: Atomic Theory and Periodic Table Review 1. The number of neutrons in an atom of radioactive C 14 is: a) 6 c) 8 b) 12 d) 14 2. When a radioactive nucleus

More information

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct.

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct. Unit Two Test Review Click to get a new slide. Choose your answer, then click to see if you were correct. According to the law of definite proportions, any two samples of water, H2O, A. will be made up

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 186 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

CHAPTER 6. Table & Periodic Law. John Newlands

CHAPTER 6. Table & Periodic Law. John Newlands CHAPTER 6 Table & Periodic Law 6.1 Developing a Periodic Table The periodic table was developed to show the properties of an element by simply looking at it's location. In 1860, chemists agreed on a way

More information

Chapter 3 Classification of Elements and Periodicity in Properties

Chapter 3 Classification of Elements and Periodicity in Properties Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Periodic Table. Engr. Yvonne Ligaya F. Musico 1

Periodic Table. Engr. Yvonne Ligaya F. Musico 1 Periodic Table Engr. Yvonne Ligaya F. Musico 1 TOPIC Definition of Periodic Table Historical Development of the Periodic Table The Periodic Law and Organization of Elements in a Periodic Table Periodic

More information

Unit Five Practice Test (Part I) PT C U5 P1

Unit Five Practice Test (Part I) PT C U5 P1 Unit Five Practice Test (Part I) PT C U5 P1 Name Period LPS Standard(s): --- State Standard(s): 12.3.1 Short Answers. Answer the following questions. (5 points each) 1. Write the electron configuration

More information

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Terms, definitions, and people Dobereiner Newlands Mendeleev Moseley Periodic table Periodic Law group family period Page 1 of 38 alkali

More information

Name PRACTICE Unit 3: Periodic Table

Name PRACTICE Unit 3: Periodic Table 1. Compared to the atoms of nonmetals in Period 3, the atoms of metals in Period 3 have (1) fewer valence electrons (2) more valence electrons (3) fewer electron shells (4) more electron shells 2. On the

More information

Unit 3: The Periodic Table and Atomic Theory

Unit 3: The Periodic Table and Atomic Theory Name: Period: Unit 3: The Periodic Table and Atomic Theory Day Page # Description IC/HW 1 2-3 Periodic Table and Quantum Model Notes IC 1 4-5 Orbital Diagrams Notes IC 1 14 3-A: Orbital Diagrams Worksheet

More information

Practice Periodic Table Review

Practice Periodic Table Review Practice Periodic Table Review Name 1. An electron will emit energy in quanta when its energy state changes from 4p to A) 5s B) 5p C) 3s D) 6p 2. Which electron configuration represents an atom in the

More information

7. What is the likeliest oxidation number of an element located in Period 3 and Group 16? a. +2 b. +3 c. -3 d The amount of energy required to

7. What is the likeliest oxidation number of an element located in Period 3 and Group 16? a. +2 b. +3 c. -3 d The amount of energy required to 1. Which of the following is the most important factor in determining the properties of an element? a. Atomic mass b. Atomic radius c. Periodic table position d. Electron configuration 2. Similar properties

More information

CHAPTER 6 The Periodic Table

CHAPTER 6 The Periodic Table CHAPTER 6 The Periodic Table 6.1 Organizing the Elements Mendeleev: listed the elements in order of increasing atomic mass and in vertical columns according to their properties. Left blank spaces for undiscovered

More information

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) CAPTER 6: TE PERIODIC TABLE Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) The Periodic Table (Mendeleev) In 1872, Dmitri

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

(FIRST) IONIZATION ENERGY

(FIRST) IONIZATION ENERGY 181 (FIRST) IONIZATION ENERGY - The amount of energy required to remove a single electron from the outer shell of an atom. - Relates to reactivity for metals. The easier it is to remove an electron, the

More information

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 188 THE FIRST TWO PERIODIC TRENDS IN A NUTSHELL LARGER IONIZATION ENERGY SMALLER RADIUS IA H IIA IIIA IVA VA VIA VIIA VIIIA He Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

Chapter 6: The Periodic Table

Chapter 6: The Periodic Table Chapter 6: The Periodic Table (Lecture Notes) Russian chemist Mendeleev proposed that properties of elements repeat at regular intervals when they are arranged in order of increasing atomic mass. He is

More information

Name: Teacher: Gerraputa

Name: Teacher: Gerraputa Name: Teacher: Gerraputa 1. Which list of elements contains a metal, a metalloid, and a nonmetal? 1. Ag, Si, I 2 3.K, Cu, Br 2 2. Ge, As, Ne 4.S, Cl 2, Ar 2. The elements on the Periodic Table are arranged

More information

Development of the Modern Periodic Table

Development of the Modern Periodic Table 2017/2018 Development of the Modern Periodic Table Mohamed Ahmed Abdelbari Introduction Atom: the smallest, indivisible unit of an element that retains all chemical and physical properties of the element.

More information

Periodic Trends. Name: Class: Date: ID: A. Matching

Periodic Trends. Name: Class: Date: ID: A. Matching Name: Class: Date: Periodic Trends Matching Match each item with the correct statement below. a. electronegativity f. periodic law b. ionization energy g. atomic mass c. atomic radius h. period d. metal

More information

Section 11: Electron Configuration and Periodic Trends

Section 11: Electron Configuration and Periodic Trends Section 11: Electron Configuration and Periodic Trends The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 11.01 The Bohr Model of the Atom

More information

DEVELOPMENT OF THE PERIODIC TABLE

DEVELOPMENT OF THE PERIODIC TABLE DEVELOPMENT OF THE PERIODIC TABLE Prior to the 1700s, relatively few element were known, and consisted mostly of metals used for coinage, jewelry and weapons. From early 1700s to mid-1800s, chemists discovered

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 5 REVIEW The Periodic Law SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. In the modern periodic table, elements are ordered (a) according to decreasing atomic mass.

More information

UNIT #3: Electrons in Atoms/Periodic Table and Trends

UNIT #3: Electrons in Atoms/Periodic Table and Trends Name: Period: UNIT #3: Electrons in Atoms/Periodic Table and Trends 1. ELECTRON CONFIGURATION Electrons fill the space surrounding an atom s nucleus in a very specific order following the rules listed

More information

Unit 2: Atomic Structure Additional Practice

Unit 2: Atomic Structure Additional Practice Name: Unit 2: Atomic Structure Additional Practice Period: 1. Which particles have approximately the same mass? an electron and an alpha particle an electron and a proton a neutron and an alpha particle

More information

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL ELECTRONS IN ATOMS LIMITATIONS OF RUTHERFORD S ATOMIC MODEL Did not explain the chemical properties of atoms For example, it could not explain why metals or compounds of metals give off characteristic

More information

Test bank chapter (7)

Test bank chapter (7) Test bank chapter (7) Choose the most correct answer 1. The lowest energy state of an atom is referred to as its a) bottom state. b) ground state. c) fundamental state. d) original state. 2. All s orbitals

More information

3.1 Classification of Matter. Copyright 2009 by Pearson Education, Inc.

3.1 Classification of Matter. Copyright 2009 by Pearson Education, Inc. Chapter 3 Atoms and Elements 3.1 Classification of Matter Copyright 2009 by Pearson Education, Inc. 1 Matter Matter is the stuff that makes up all things. Copyright 2009 by Pearson Education, Inc. 2 Pure

More information

Chapter 3 Classification of Elements and Periodicity in Properties

Chapter 3 Classification of Elements and Periodicity in Properties Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 Modern Atomic Theory (a.k.a. the electron chapter!) 1 Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 ELECTROMAGNETIC RADIATION 2 Electromagnetic radiation. 3 4 Electromagnetic Radiation

More information

Atomic Structure Practice Questions

Atomic Structure Practice Questions Atomic Structure Practice Questions 1. Experiments performed to reveal the structure of atoms led scientists to conclude that an atom s (1) positive charge is evenly distributed throughout its volume (2)

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table!

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! Development of the Periodic Table! Main Idea: The periodic table evolved over time as scientists discovered more useful ways

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms Electronic Structure Electronic structure the arrangement and energy of electrons 1 st lets talk about waves Why? Extremely small particles have properties that

More information

1.02 Elements, Symbols and Periodic Table

1.02 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry Miramar College.0 Elements, Symbols and the Periodic Table January 0 The Elements: Building block of Matter The periodic table of the

More information

Atoms and The Periodic Table

Atoms and The Periodic Table Atoms and The Periodic Table A. Early Models of the Atom 1. The earliest models of the atom came in the 5 th century B.C. when In the 4 th century, B.C., rejected this idea and proposed that earthly matter

More information

1 Arranging the Elements

1 Arranging the Elements CHAPTER 12 1 Arranging the Elements SECTION The Periodic Table BEFORE YOU READ After you read this section, you should be able to answer these questions: How are elements arranged on the periodic table?

More information

Development of the Periodic Table

Development of the Periodic Table Development of the Periodic Table John Newlands - Law of Octaves 1864 When arranged in order of atomic mass, every eighth element had similar properties. Dimitri Mendeleev / Lothar Meyer 1869 organized

More information

Read The First Periodic Table and answer the following questions: 1. What was the first way that Mendeleev organized his element cards?

Read The First Periodic Table and answer the following questions: 1. What was the first way that Mendeleev organized his element cards? Chemistry Name Date Block Read The First Periodic Table and answer the following questions: 1. What was the first way that Mendeleev organized his element cards? 2. Why did Mendeleev organize the element

More information

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education Chapter 6 Laser: step-like energy transition 6.1 The Wave Nature of Light 6.2 Quantized Energy and Photons 6.3 Line Spectra and the Bohr Model 6.4 The Wave Behavior of Matter 6.5 Quantum Mechanics and

More information

Writing Chemical formula with polyatomic groups

Writing Chemical formula with polyatomic groups Writing Chemical formula with polyatomic groups 1. Use the Periodic table to determine the combining powers of single elements. Eg. Magnesium is in Group 2 and has a combining power of 2. 2. Use Table

More information

Determine Chemical Behavior

Determine Chemical Behavior Fun with the Periodic Table Activity 7 CHEM POETRY A sodium atom walks onto the scene, His valence electron s feeling keen, Positive that he will ionically bond With a halogen of whom he is fond. How Electrons

More information

4.06 Periodic Table and Periodic Trends

4.06 Periodic Table and Periodic Trends 4.06 Periodic Table and Periodic Trends Dr. Fred Omega Garces Chemistry 100, Miramar College 1 4.06 Periodic Table and Periodic Trend The Periodic Table and the Elements What is the periodic table? What

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

SECTION 1. History of the Periodic Table

SECTION 1. History of the Periodic Table Periodic Law SECTION 1 History of the Periodic Table MENDELEEV AND CHEMICAL PERIODICITY When the Russian chemist Dmitri Mendeleev heard about the new atomic masses he decided to include the new values

More information

4.01 Elements, Symbols and Periodic Table

4.01 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry 00 Miramar College.0 Elements, symbols and the Periodic Table Aug The Elements: Building block of Matter The periodic table of the chemical

More information

Today is Monday, October 9 th, 2017

Today is Monday, October 9 th, 2017 In This Lesson: Valence Electrons and Lewis Dot Structures (Lesson 4 of 4) Today is Monday, October 9 th, 2017 Stuff You Need: Periodic Table Pre-Class: You ve probably heard of the special name we give

More information

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram:

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram: Teacher: Mr. gerraputa Print Close Name: 1. Given the electron dot diagram: The valence electrons represented by the electron dot diagram could be those of atoms in Group 1. 13 3. 3 2. 15 4. 16 2. Which

More information

Modern Atomic Theory and the Periodic Table

Modern Atomic Theory and the Periodic Table Modern Atomic Theory and the Periodic Table Chapter 10 the exam would have to be given earlier Hein and Arena Version 1.1 Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Sons,

More information

CHAPTER 2. Structure of the Atom. Atoms and Elements

CHAPTER 2. Structure of the Atom. Atoms and Elements CHAPTER 2 Atoms and Elements 1 Atoms Dalton s Atomic Theory - 1808 1. -Element is composed of small, indivisible particles called atoms. 2. -Atoms of an element have identical properties that differ from

More information

3. Determine the total charge of an oxygen nucleus: Valence electrons are ELECTRONS on the outer most electron shell (principle energy level).

3. Determine the total charge of an oxygen nucleus: Valence electrons are ELECTRONS on the outer most electron shell (principle energy level). Name: Period: Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau UNIT 2: Bonding Lesson 2.1: Ions and Ionic Bonding By the end of today, you will have an answer to: How do metals and non- metals bond

More information

CHEMISTRY 102 Fall 2014 HOUR EXAM I Page 1

CHEMISTRY 102 Fall 2014 HOUR EXAM I Page 1 OUR EXAM I Page 1 1. Draw the Lewis structure for ICl5. ow many of the following four statements (I-IV) is/are true regarding ICl5? I. The central atom in ICl5 has one lone pair of electrons. II. Some

More information

Periodic Table. Modern periodic table

Periodic Table. Modern periodic table 41 Periodic Table - Mendeleev (1869): --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods) --- Some of the physical

More information

Chapter 9: Elements are the Building blocks of Life

Chapter 9: Elements are the Building blocks of Life Chapter 9: Elements are the Building blocks of Life Section 9.1- Elements and the Periodic Table Keep Scale in mind Animation: http://htwins.net/scale2/ I. ELEMENTS All matter is made up of one or more

More information

Unit 4: The Periodic Table Text Questions from Corwin

Unit 4: The Periodic Table Text Questions from Corwin Unit 4: The Periodic Table Name: KEY Text Questions from Corwin 4.4 1. List five properties of metals. solid, has luster, highly dense, has high melting point, and is a good conductor of heat and electricity

More information

2/15/2013. Chapter 6 6.1

2/15/2013. Chapter 6 6.1 Chapter 6 In a self-service store, the products are grouped according to similar characteristics. With a logical classification system, finding and comparing products is easy. You will learn how elements

More information

Atomic Theory. Quantum Mechanics

Atomic Theory. Quantum Mechanics Atomic Theory Quantum Mechanics Quantum Mechanics The ol solar system model of the atom does have some practical uses It tells us that protons and neutrons are in the nucleus, and electrons are in orbitals

More information

nucleus charge = +5 nucleus charge = +6 nucleus charge = +7 Boron Carbon Nitrogen

nucleus charge = +5 nucleus charge = +6 nucleus charge = +7 Boron Carbon Nitrogen ChemQuest 16 Name: Date: Hour: Information: Shielding FIGURE 1: Bohr Diagrams of boron, carbon and nitrogen nucleus charge = +5 nucleus charge = +6 nucleus charge = +7 Boron Carbon Nitrogen Because the

More information

Chemical Periodicity

Chemical Periodicity Chemical Periodicity Richard Parsons, (RichardP) Therese Forsythe, (ThereseF) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version

More information

Atomic terms. Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Atomic terms. Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the atomic

More information

7. How many unpaired electrons are there in an atom of tin in its ground state? 2

7. How many unpaired electrons are there in an atom of tin in its ground state? 2 Name period AP chemistry Unit 2 worksheet 1. List in order of increasing energy: 4f, 6s, 3d,1s,2p 1s, 2p, 6s, 4f 2. Explain why the effective nuclear charge experienced by a 2s electron in boron is greater

More information

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. 59 Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the

More information

= proton (positive charge) = electron (negative charge) = neutron (no charge) A Z. ,, and are notations that represent isotopes of carbon.

= proton (positive charge) = electron (negative charge) = neutron (no charge) A Z. ,, and are notations that represent isotopes of carbon. ChemQuest 8 Name: Date: Hour: Information: Structure of the Atom Note the following symbols: (they are not to scale) = proton (positive charge) = electron (negative charge) = neutron (no charge) The following

More information

spins. As shown in the following table, the sublevels s, p, d, and f have 1, 3, 5, and 7 available orbitals, respectively.

spins. As shown in the following table, the sublevels s, p, d, and f have 1, 3, 5, and 7 available orbitals, respectively. Math Tutor The arrangement of elements in the periodic table reflects the arrangement of electrons in an atom. Each period begins with an atom that has an electron in a new energy level and with the exception

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

Unit 2: Atoms and the Periodic Table

Unit 2: Atoms and the Periodic Table Unit 2: Atoms and the Periodic Table Name Block Learning Goals A. Use the periodic table to identify the group and the period of an element. Your Prior Understanding of Learning Goals Excellent Good Okay

More information

Honors Chemistry Unit 4 ( )

Honors Chemistry Unit 4 ( ) Honors Chemistry Unit 4 (2017-2018) Families (research and present) Metals/nonmetals Trends o Atomic radius o Electronegativity o Ionization energy o Metallic and nonmetallic character Review Ions Oxidation

More information

Chapter 3 Atoms and Elements

Chapter 3 Atoms and Elements Chapter 3 Atoms and Elements Atomic Theory Atoms are tiny particles of matter. Atoms are made up of subatomic particles: protons, neutrons and electrons. Protons have a positive (+) charge. Electrons have

More information

Chapter 2 Lecture Notes: Atoms

Chapter 2 Lecture Notes: Atoms Educational Goals Chapter 2 Lecture Notes: Atoms 1. Describe the subatomic structure of an atom. 2. Define the terms element and atomic symbol. 3. Understand how elements are arranged in the periodic table

More information

Name: Period: Date: Find the following elements according to their group and period: Write the excited state electron configuration of Na.

Name: Period: Date: Find the following elements according to their group and period: Write the excited state electron configuration of Na. Name: Period: Date: UNIT 3: Electrons Lesson 3: Small particles, big similarities Do Now: By the end of today, you will have an answer to: Why do elements within the same group react similarly? Find the

More information

A bit of review. Atoms are made of 3 different SUB-ATOMIC PARTICLES: 1. ELECTRONS 2. PROTONS 3. NEUTRONS

A bit of review. Atoms are made of 3 different SUB-ATOMIC PARTICLES: 1. ELECTRONS 2. PROTONS 3. NEUTRONS Chemistry in Action A bit of review Chemistry is the study of MATTER and ENERGY. Matter is anything that has MASS. All matter is made of super small particles called ATOMS. Atoms are made of 3 different

More information

The Periodic Table. Atoms, Elements, and the Periodic Table

The Periodic Table. Atoms, Elements, and the Periodic Table Atoms, Elements, and the Periodic Table Element: a pure substance that cannot be broken down into simpler substances by a chemical reaction. Each element is identified by a one- or two-letter symbol. Elements

More information

Periodic Classification and Properties Page of 6

Periodic Classification and Properties Page of 6 The Modern Periodic Table In the modern Periodic table the elements are arranged according to electron configuration of the atoms of the elements. The elements are placed in the increasing order of their

More information

Complete the following chart: (assume the overall charge on all atoms = 0...except the last one. #of Protons. #of Neutrons. He 4

Complete the following chart: (assume the overall charge on all atoms = 0...except the last one. #of Protons. #of Neutrons. He 4 Name: Period: Complete the following chart: (assume the overall charge on all atoms = 0....except the last one Element Symbol Atomic Number #of Protons #of Neutrons Hydrogen 1 Mass Numbra- (amu) #of Electrons

More information

Electrons. Unit H Chapter 6

Electrons. Unit H Chapter 6 Electrons Unit H Chapter 6 1 Electrons were discovered by 1. Dalton 2. Lavoisier 3. Proust 4. Mendeleev 6. Rutherford 7. Bohr 8. Schrodinger 9. Dirac 5. Thomson 2 Electrons were discovered by 1. Dalton

More information

Chapter 6 - The Periodic Table and Periodic Law

Chapter 6 - The Periodic Table and Periodic Law Chapter 6 - The Periodic Table and Periodic Law Objectives: Identify different key features of the periodic table. Explain why elements in a group have similar properties. Relate the group and period trends

More information

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that 20 CHEMISTRY 11 D. Organizing the Elements The Periodic Table 1. Following Dalton s Atomic Theory, By 1817, chemists had discovered 52 elements and by 1863 that number had risen to 62. 2. In 1869 Russian

More information

Group Trends: the trend that the atoms follow going down any particular group

Group Trends: the trend that the atoms follow going down any particular group Trends of the Periodic Table Basics Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

CHAPTER 5 Electrons in Atoms

CHAPTER 5 Electrons in Atoms CHAPTER 5 Electrons in Atoms 5.1 Light & Quantized Energy Was the Nuclear Atomic model incomplete? To most scientists, the answer was yes. The arrangement of electrons was not determined > Remember...the

More information

Chapter 3: Electronic Structure and the Periodic Law

Chapter 3: Electronic Structure and the Periodic Law hapter 3: Electronic Structure and the Periodic Law HPTER OUTLINE 3.1 The Periodic Law and Table 3.2 Electronic rrangements in toms 3.3 The Shell Model and hemical Properties 3.4 Electronic onfigurations

More information

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE!

ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! ELECTRON CONFIGURATIONS... WHY BOHR RUTHERFORD DIAGRAMS JUST WON T CUT IT ANYMORE! REPRESENTING ELECTRONS... Now that you know what an orbital is, you need to be able to use that to describe the electronic

More information